Official Software
Get notified when we add a new ChevroletSilverado Manual

We cover 60 Chevrolet vehicles, were you looking for one of these?

Chevrolet Aveo 2007-2010 Factory Repair Manual PDF
Chevrolet Suburban 2000-2006 FACTORY Service Repair Manual PDF
Chevrolet Cruze Workshop Manual (L4-1.4L Turbo (2011))
Malibu L4-2.4L (2010)
Chevrolet Impala Workshop Manual (V6-3.5L (2008))
TrailBlazer 4WD L6-4.2L VIN S (2002)
Chevrolet Blazer 4wd Workshop Manual (V6-4.3L VIN X (2005))
Chevrolet Traverse Awd Workshop Manual (V6-3.6L (2011))
Chevrolet Equinox Awd Workshop Manual (V6-3.4L VIN F (2006))
Chevrolet - S-10 - Workshop Manual - (2001)
Chevrolet - Epica - Workshop Manual - 2008 - 2008
Chevrolet - Spark - Workshop Manual - 2011 - 2011
Chevrolet Malibu Workshop Manual (V6-3.5L VIN 8 (2004))
Chevrolet Impala Workshop Manual (V6-3.8L VIN K (2004))
Chevrolet - Malibu - Workshop Manual - 2007 - 2009
Chevrolet Astro Van 2wd Workshop Manual (V6-4.3L VIN X (2002))
Chevrolet - Tahoe - Workshop Manual - 2001 - 2002
Chevrolet Cavalier Workshop Manual (Cavalier-Z24 L4-134 2.2L (1991))
TrailBlazer 2WD L6-4.2L VIN S (2003)
Chevrolet Express 4500 Workshop Manual (V8-6.0L (2010))
Chevrolet Avalanche 1500 4wd Workshop Manual (V8-5.3L VIN T (2003))
Chevrolet Camaro Workshop Manual (V8-350 5.7L (1989))
Chevrolet Astro Van Awd Workshop Manual (V6-4.3L VIN X (2003))
Chevrolet Caprice Workshop Manual (V8-305 5.0L VIN E TBI (1991))
Chevrolet Chevette Workshop Manual (L4-98 1.6L (1982))
Chevrolet Equinox Awd Workshop Manual (V6-3.4L (2008))
Chevrolet Colorado 2wd Workshop Manual (L4-2.8L VIN 8 (2004))
Chevrolet - Cruze - Workshop Manual - 2011 - 2015
Chevrolet - Monte Carlo - Workshop Manual - (2004)
Uplander FWD V6-3.5L VIN L (2006)
Chevrolet Equinox Fwd Workshop Manual (V6-3.4L VIN F (2005))
Chevrolet S10 Workshop Manual (S10-T10 Blazer 4WD V6-262 4.3L VIN Z (1994))
Chevrolet Camaro Workshop Manual (V8-6.2L (2010))
2010 Chevrolet Cruze Body Repair Manual
Tahoe 4WD V8-5.3L VIN T (2004)
Chevrolet K Tahoe 4wd Workshop Manual (V8-5.7L VIN R (1996))
Chevrolet Chevelle Workshop Manual (Chevelle-Malibu V8-305 5.0L (1983))
Chevrolet G 30 Van Workshop Manual (V8-379 6.2L DSL (1987))
Chevrolet Cavalier Workshop Manual (L4-2.2L VIN F (2004))
2001-2005--Chevrolet--Impala--6 Cylinders K 3.8L FI OHV--32849802
Chevrolet - Express - Wiring Diagram - 2019 - 2019
Chevrolet Equinox Fwd Workshop Manual (V6-3.0L (2010))
Chevrolet K 1500 Suburban 4wd Workshop Manual (V8-454 7.4L VIN N TBI (1995))
Chevrolet Express 1500 Awd Workshop Manual (V8-5.3L (2008))
Chevrolet Caprice Classic Workshop Manual (V8-305 5.0L VIN E TBI (1991))
Chevrolet Malibu Workshop Manual (V6-191 3.1L VIN M SFI (1997))
Chevrolet Hhr Workshop Manual (L4-2.2L (2007))
Chevrolet S10 Workshop Manual (S10-T10 Blazer 4WD V6-262 4.3L VIN W CPI (1992))
Malibu L4-2.2L VIN F (2005)
Lumina V6-204 3.4L DOHC VIN X SFI (1996)
Chevrolet Tahoe 4wd Workshop Manual (V8-5.3L (2007))
Chevrolet Impala Workshop Manual (V6-3.4L VIN E (2000))
S10-T10 Blazer 2WD V6-262 4.3L VIN W CPI (1992)
Chevrolet - S-10 - Workshop Manual - (1997)
Chevrolet Chevrolet Cruze Chevrolet Cruze 2012 Workshop Manual
Chevrolet Chevrolet K1500 Chevrolet C K Pick Up Truck 1999 Workshop Manual
Chevrolet S10 Workshop Manual (S10-T10 P-U 2WD L4-151 2.5L (1988))
Tracker 4WD L4-2.0L VIN C (1999)
Chevrolet Impala Workshop Manual (V6-3.5L VIN N (2006))
Chevrolet K 2500 Truck 4wd Workshop Manual (V8-393 6.5L DSL Turbo (1993))
Summary of Content
Factory Workshop Manual Make Chevrolet Model Silverado Classic 1500 2wd Engine and year V8-6.0L (2007) Please navigate through the PDF using the options provided by OnlyManuals.com on the sidebar. This manual was submitted by Anonymous Date 1st January 2018 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Central Control Module > Component Information > Service and Repair Central Control Module: Service and Repair Communication Interface Module Replacement Removal Procedure Important: The vehicle communication interface module (VCIM) has a specific set of unique numbers that tie the module to each vehicle. These numbers, the 10-digit station identification and the 11-digit electronic serial number, are used by the National Cellular Network and OnStar(R) to identify the specific vehicle. Because these numbers are tied to the vehicle identification number of the vehicle, you must never exchange these parts with those of another vehicle. 1. Remove the instrument panel (I/P) upper trim panel. 2. Fully open the I/P storage compartment. 3. Disconnect the electrical connectors (2) from the VCIM (1). 4. Disconnect the coaxial cable (3) from the VCIM. 5. Remove the screws (1, 3) from the passenger side upper I/P support (2). 6. Remove the passenger side upper I/P support (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Central Control Module > Component Information > Service and Repair > Page 7 7. Remove the screw (1) retaining the VCIM bracket to the I/P. 8. Remove the retainer from the VCIM bracket. 9. Remove the nuts holding the mounting brackets to the VCIM. 10. If necessary, move the cross-car duct forward slightly in order to make room for the removal of the module. 11. Remove the VCIM and bracket assembly from the I/P. 12. Remove the nuts (4) from the VCIM mounting brackets (2). 13. Remove the mounting brackets (2) from the VCIM (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Central Control Module > Component Information > Service and Repair > Page 8 Installation Procedure 1. If replacing the VCIM, record the 10-digit STID number, and the 11-digit ESN number from the labels on the new module. 2. Ensure the nuts (3) are installed on the module mounting brackets (3). 3. Install the mounting brackets (2) to the VCIM (1). Notice: Refer to Fastener Notice. 4. Install the nuts (4). Tighten the nuts to 2 N.m (18 lb in). 5. If necessary, move the cross-car duct forward slightly in order to make room for the installation of the module. 6. Install the VCIM and bracket assembly to the I/P. 7. Install the push in retainer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Central Control Module > Component Information > Service and Repair > Page 9 8. Install the VCIM screw (1) to the I/P. Tighten the screws to 2 N.m (18 lb in). 9. Install the passenger side upper I/P bracket (2). 10. Install the I/P upper bracket screws (3). Tighten the screws (3) to 2 N.m (18 lb in). 11. Install the I/P upper bracket screws (1). Tighten the screws (1) to 50 N.m (37 lb ft). 12. Connect the coaxial cable (3) to the VCIM. 13. Connect the electrical connectors (2) to the VCIM. 14. Install the I/P trim panel. Important: After replacing the vehicle communication interface module, you must reconfigure the OnStar(R) system. Failure to reconfigure the system will result in an additional customer visit for repair. In addition, pressing and holding the white dot button on the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Central Control Module > Component Information > Service and Repair > Page 10 keypad will NOT reset this version of the OnStar(R) system. This action will cause a DTC to set. 15. Install the scan tool. Use the special functions menu in order to perform the OnStar(R) setup procedure for this vehicle. 16. Move the vehicle to an open area that is away from tall buildings and with a clear view of unobstructed sky. Allow the vehicle to run for 10 minutes. 17. Use the ID information menu on the scan tool to access the new station ID (STID) and the electronic serial number (ESN) from the new VCIM. 18. Press the blue OnStar(R) button to connect to the OnStar(R) Call Center and perform the following procedure: 1. Tell the advisor that this vehicle has received a new VCIM. 2. Ask the advisor to add the new STID and the ESN to update the customer's account. 3. Follow any additional instructions from the OnStar(R) advisor. 4. Ask the advisor to activate the OnStar(R) Personal Calling feature, if available. 19. The default language for voice recognition in the generation 5 OnStar(R) module is English. To change the language resident in the module, Refer to OnStar Reconfiguration (w/o SPS Programming). See: Accessories and Optional Equipment/Testing and Inspection/Programming and Relearning/OnStar Reconfiguration (w/o SPS Programming) 20. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > Recalls: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) Technical Service Bulletin # 10037 Date: 100420 Campaign - Unwanted Repeat Calls to OnStar(R) CUSTOMER SATISFACTION Bulletin No.: 10037 Date: April 20, 2010 Subject: 10037 - Unwanted Repeat Calls to OnStar(R) Models: 2003 Buick LeSabre 2004-2006 Buick Rendezvous 2005 Buick LeSabre, Terraza 2005-2006 Buick LaCrosse/Allure 2006-2008 Buick Lucerne 2008 Buick LaCrosse/Allure 2008-2009 Buick Enclave 2003 Cadillac CTS 2004 Cadillac Escalade 2004-2005 Cadillac CTS-V, Deville 2005 Cadillac Escalade ESV, SRX 2005-2006 Cadillac STS 2005-2008 Cadillac CTS 2006-2008 Cadillac DTS 2007 Cadillac Escalade, Escalade EXT 2007-2008 Cadillac Escalade ESV 2008 Cadillac SRX, STS 2002 Chevrolet Impala 2003-2008 Chevrolet Suburban 2003-2009 Chevrolet Silverado 2004-2008 Chevrolet Impala 2005 Chevrolet Colorado, Corvette, Malibu 2005-2006 Chevrolet Uplander 2005-2008 Chevrolet Avalanche, Tahoe, TrailBlazer 2006 Chevrolet HHR, Monte Carlo 2006-2008 Chevrolet Equinox 2007-2008 Chevrolet Corvette 2008 Chevrolet HHR 2008-2009 Chevrolet Cobalt, Colorado, Malibu, Uplander 2003 GMC Envoy XL, Sierra, Yukon XL 2004-2008 GMC Yukon 2005-2009 GMC Sierra 2005-2008 GMC Yukon XL 2006-2008 GMC Envoy 2007 GMC Canyon 2007-2009 GMC Acadia 2006 HUMMER H2 2006-2008 HUMMER H3 2008 HUMMER H2 2003 Oldsmobile Silhouette 2005 Montana SV6 2005-2008 Pontiac Grand Prix 2006 Pontiac G6, Vibe 2007 Pontiac Montana SV6 2007-2008 Pontiac Solstice 2008 Pontiac G6, Torrent 2008-2009 Pontiac G5, G8 2009 Pontiac G3, Montana SV6 2005-2007 Saturn ION 2006-2009Saturn VUE 2007-2008 Saturn AURA, OUTLOOK, SKY Equipped with OnStar(R) (RPO UE1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > Recalls: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) > Page 19 THIS PROGRAM IS IN EFFECT UNTIL APRIL 30, 2011. Condition Certain 2002-2009 model year vehicles equipped with OnStar(R) may have a condition in which the vehicle's OnStar(R) system repeatedly makes incomplete calls to OnStar(R) without the vehicle's occupant(s) input or knowledge. Customer initiated Blue Button call, Emergency calls, and Automatic Crash Notification calls will also fail to establish a data connection with the OnStar(R) Call Center. Eventually, the customer's call will connect as a voice only line and the customer will be able to talk with an OnStar(R) advisor; however, the advisor will not get crucial customer data such as vehicle identification and location. Correction Dealers/retailers are to replace the OnStar(R) module (VCIM). Vehicles Involved Involved are certain 2002-2009 model year vehicles equipped with OnStar(R), and built within these VIN breakpoints: Note: Some model years/models have only one vehicle involved. Important Dealers/retailers are to confirm vehicle eligibility prior to beginning repairs by using GMVIS (dealers/retailers using WINS) or the Investigate Vehicle History link (dealers/retailers using GWM). Not all vehicles within the above breakpoints may be involved. For dealers/retailers with involved vehicles, a listing with involved vehicles containing the complete vehicle identification number, customer name, and address information has been prepared and will be provided to dealers/retailers through the GM GlobalConnect Recall Reports. Dealers/retailers will not have a report available if they have no involved vehicles currently assigned. The listing may contain customer names and addresses obtained from Motor Vehicle Registration Records. The use of such motor vehicle registration data for any purpose other than follow-up necessary to complete this program is a violation of law in several states/provinces/countries. Accordingly, you are urged to limit the use of this report to the follow-up necessary to complete this program. Parts Information US: OnStar(R) modules required for this program are to be obtained by contacting Autocraft Electronics via the web at www.autocraft.com, and selecting the catalog item that contains bulletin number 10037 (or PIC 4893B), or by calling 1-800-336-3998. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. Canada: OnStar(R) modules required for this program are to be obtained by contacting MASS Electronics at 1-877-410-6277. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. DO NOT ORDER ONSTAR(R) MODULES FROM GENERAL MOTORS CUSTOMER CARE AND AFTERSALES (GMCC&A;), SATURN SERVICE PARTS OPERATION (SSPO), OR THE TECHNICAL ASSISTANCE CENTER (TAC). Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers/retailers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Claim Information 1. Submit a claim using the table below. 2. Courtesy Transportation - For dealers/retailers using WINS, submit using normal labor code; for dealers/retailers using GWM - submit as Net Item under the repair labor code. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > Recalls: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) > Page 20 * Dealers using WINs: Add 0.2 hours to the labor time for administrative allowance for the module exchange. Dealers using GWM: Submit 0.2 hours administrative allowance under "Administration Time" for the module exchange. ** The $25 represents the additional net amount allowed for the module exchange. *** Dealers are to claim only administrative allowance of 0.2 hours when the module is replaced by Masscomp's Mobile Unit. Dealers using WINS should submit the 0.2 hours administrative allowance in labor time. Dealer using GWM should submit the 0.2 hours administrative allowance under Administrative Time. Customer Notification OnStar will notify customers of this program on their vehicle. Dealer Program Responsibility All unsold new vehicles in dealers'/retailers' possession and subject to this program must be held and inspected/repaired per the service procedure of this program bulletin before customers take possession of these vehicles. Dealers/retailers are to service all vehicles subject to this program at no charge to customers, regardless of mileage, age of vehicle, or ownership, through April 30, 2011. Customers who have recently purchased vehicles sold from your vehicle inventory, and for which there is no customer information indicated on the dealer/retailer listing, are to be contacted by the dealer/retailer. Arrangements are to be made to make the required correction according to the instructions contained in this bulletin. A copy of the customer letter is provided in this bulletin for your use in contacting customers. Program follow-up cards should not be used for this purpose, since the customer may not as yet have received the notification letter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > Recalls: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) > Page 21 In summary, whenever a vehicle subject to this program enters your vehicle inventory, or is in your dealership/facility for service through April 30, 2011, you must take the steps necessary to be sure the program correction has been made before selling or releasing the vehicle. Disclaimer Service Procedure Service Procedure Note Do NOT replace the inside rear view mirror in tandem with this concern. The mirror has no bearing on this specific issue. 1. Remove the OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module removal instructions. Note Inform customer that all Bluetooth devices must be paired with the new VCIM. Bluetooth devices that have not been paired to the new VCIM will not function properly. 2. Install the new OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module installation instructions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Communications Control Module: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) Technical Service Bulletin # 10037 Date: 100420 Campaign - Unwanted Repeat Calls to OnStar(R) CUSTOMER SATISFACTION Bulletin No.: 10037 Date: April 20, 2010 Subject: 10037 - Unwanted Repeat Calls to OnStar(R) Models: 2003 Buick LeSabre 2004-2006 Buick Rendezvous 2005 Buick LeSabre, Terraza 2005-2006 Buick LaCrosse/Allure 2006-2008 Buick Lucerne 2008 Buick LaCrosse/Allure 2008-2009 Buick Enclave 2003 Cadillac CTS 2004 Cadillac Escalade 2004-2005 Cadillac CTS-V, Deville 2005 Cadillac Escalade ESV, SRX 2005-2006 Cadillac STS 2005-2008 Cadillac CTS 2006-2008 Cadillac DTS 2007 Cadillac Escalade, Escalade EXT 2007-2008 Cadillac Escalade ESV 2008 Cadillac SRX, STS 2002 Chevrolet Impala 2003-2008 Chevrolet Suburban 2003-2009 Chevrolet Silverado 2004-2008 Chevrolet Impala 2005 Chevrolet Colorado, Corvette, Malibu 2005-2006 Chevrolet Uplander 2005-2008 Chevrolet Avalanche, Tahoe, TrailBlazer 2006 Chevrolet HHR, Monte Carlo 2006-2008 Chevrolet Equinox 2007-2008 Chevrolet Corvette 2008 Chevrolet HHR 2008-2009 Chevrolet Cobalt, Colorado, Malibu, Uplander 2003 GMC Envoy XL, Sierra, Yukon XL 2004-2008 GMC Yukon 2005-2009 GMC Sierra 2005-2008 GMC Yukon XL 2006-2008 GMC Envoy 2007 GMC Canyon 2007-2009 GMC Acadia 2006 HUMMER H2 2006-2008 HUMMER H3 2008 HUMMER H2 2003 Oldsmobile Silhouette 2005 Montana SV6 2005-2008 Pontiac Grand Prix 2006 Pontiac G6, Vibe 2007 Pontiac Montana SV6 2007-2008 Pontiac Solstice 2008 Pontiac G6, Torrent 2008-2009 Pontiac G5, G8 2009 Pontiac G3, Montana SV6 2005-2007 Saturn ION 2006-2009Saturn VUE 2007-2008 Saturn AURA, OUTLOOK, SKY Equipped with OnStar(R) (RPO UE1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Communications Control Module: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) > Page 27 THIS PROGRAM IS IN EFFECT UNTIL APRIL 30, 2011. Condition Certain 2002-2009 model year vehicles equipped with OnStar(R) may have a condition in which the vehicle's OnStar(R) system repeatedly makes incomplete calls to OnStar(R) without the vehicle's occupant(s) input or knowledge. Customer initiated Blue Button call, Emergency calls, and Automatic Crash Notification calls will also fail to establish a data connection with the OnStar(R) Call Center. Eventually, the customer's call will connect as a voice only line and the customer will be able to talk with an OnStar(R) advisor; however, the advisor will not get crucial customer data such as vehicle identification and location. Correction Dealers/retailers are to replace the OnStar(R) module (VCIM). Vehicles Involved Involved are certain 2002-2009 model year vehicles equipped with OnStar(R), and built within these VIN breakpoints: Note: Some model years/models have only one vehicle involved. Important Dealers/retailers are to confirm vehicle eligibility prior to beginning repairs by using GMVIS (dealers/retailers using WINS) or the Investigate Vehicle History link (dealers/retailers using GWM). Not all vehicles within the above breakpoints may be involved. For dealers/retailers with involved vehicles, a listing with involved vehicles containing the complete vehicle identification number, customer name, and address information has been prepared and will be provided to dealers/retailers through the GM GlobalConnect Recall Reports. Dealers/retailers will not have a report available if they have no involved vehicles currently assigned. The listing may contain customer names and addresses obtained from Motor Vehicle Registration Records. The use of such motor vehicle registration data for any purpose other than follow-up necessary to complete this program is a violation of law in several states/provinces/countries. Accordingly, you are urged to limit the use of this report to the follow-up necessary to complete this program. Parts Information US: OnStar(R) modules required for this program are to be obtained by contacting Autocraft Electronics via the web at www.autocraft.com, and selecting the catalog item that contains bulletin number 10037 (or PIC 4893B), or by calling 1-800-336-3998. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. Canada: OnStar(R) modules required for this program are to be obtained by contacting MASS Electronics at 1-877-410-6277. Dealer must provide the VIN, R.O. number, and the current vehicle mileage. DO NOT ORDER ONSTAR(R) MODULES FROM GENERAL MOTORS CUSTOMER CARE AND AFTERSALES (GMCC&A;), SATURN SERVICE PARTS OPERATION (SSPO), OR THE TECHNICAL ASSISTANCE CENTER (TAC). Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers/retailers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Claim Information 1. Submit a claim using the table below. 2. Courtesy Transportation - For dealers/retailers using WINS, submit using normal labor code; for dealers/retailers using GWM - submit as Net Item under the repair labor code. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Communications Control Module: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) > Page 28 * Dealers using WINs: Add 0.2 hours to the labor time for administrative allowance for the module exchange. Dealers using GWM: Submit 0.2 hours administrative allowance under "Administration Time" for the module exchange. ** The $25 represents the additional net amount allowed for the module exchange. *** Dealers are to claim only administrative allowance of 0.2 hours when the module is replaced by Masscomp's Mobile Unit. Dealers using WINS should submit the 0.2 hours administrative allowance in labor time. Dealer using GWM should submit the 0.2 hours administrative allowance under Administrative Time. Customer Notification OnStar will notify customers of this program on their vehicle. Dealer Program Responsibility All unsold new vehicles in dealers'/retailers' possession and subject to this program must be held and inspected/repaired per the service procedure of this program bulletin before customers take possession of these vehicles. Dealers/retailers are to service all vehicles subject to this program at no charge to customers, regardless of mileage, age of vehicle, or ownership, through April 30, 2011. Customers who have recently purchased vehicles sold from your vehicle inventory, and for which there is no customer information indicated on the dealer/retailer listing, are to be contacted by the dealer/retailer. Arrangements are to be made to make the required correction according to the instructions contained in this bulletin. A copy of the customer letter is provided in this bulletin for your use in contacting customers. Program follow-up cards should not be used for this purpose, since the customer may not as yet have received the notification letter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Communications Control Module: > 10037 > Apr > 10 > Campaign - Unwanted Repeat Calls to OnStar(R) > Page 29 In summary, whenever a vehicle subject to this program enters your vehicle inventory, or is in your dealership/facility for service through April 30, 2011, you must take the steps necessary to be sure the program correction has been made before selling or releasing the vehicle. Disclaimer Service Procedure Service Procedure Note Do NOT replace the inside rear view mirror in tandem with this concern. The mirror has no bearing on this specific issue. 1. Remove the OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module removal instructions. Note Inform customer that all Bluetooth devices must be paired with the new VCIM. Bluetooth devices that have not been paired to the new VCIM will not function properly. 2. Install the new OnStar(R) module (referred to as the Communication Interface Module (CIM) or Vehicle Communication Interface Module (VCIM) in SI). Refer to SI for module installation instructions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Communications Control Module: > 06-08-46-005B > Feb > 10 > OnStar(R) - Availability for Hearing Impaired Communications Control Module: All Technical Service Bulletins OnStar(R) - Availability for Hearing Impaired INFORMATION Bulletin No.: 06-08-46-005B Date: February 11, 2010 Subject: Availability of OnStar(R) for Hearing Impaired Models: 2007-2010 GM Passenger Cars and Light Duty Trucks (Including Saturn and Saab) Except 2007 Cadillac CTS Except 2007-2008 HUMMER H2, H2 SUT Except 2007 Pontiac Montana SV6 Except 2007-2010 Pontiac Vibe Except 2007 Saturn ION, VUE Except 2008 Saturn Astra Supercede: This bulletin is being revised to add a Note regarding 2009 Bluetooth(R)-equipped vehicles, additional models and model years. Please discard Corporate Bulletin Number 06-08-46-005A (Section 08 - Body and Accessories). Important This service bulletin is not applicable to 'GM of Canada' dealers and retailers. Note On 2009 and newer model year vehicles equipped with the Bluetooth(R) feature (option code UPF), when up-fitted with TTY capabilities, the Bluetooth(R) feature will be disabled. OnStar with Text Telephone Capability (TTY) General Motors is pleased to announce that the safety and security of OnStar is now available to our deaf, hard of hearing and speech impaired customers. The current vehicles listed above, as well as forthcoming vehicles equipped with OnStar hardware version 7.0 or higher, have the ability to utilize texting telephones. Vehicle specific TTY capability can be determined by utilizing the VIN lookup Tool. Additional information may be found by referring to www.onstar.com/tty. TTY equipment allows people who are deaf, hard of hearing or speech impaired, in-vehicle access to 911 and basic OnStar(R) services by pressing the OnStar(R) blue button or red emergency button. The keypad provides a means to communicate by allowing customers to type messages back and forth, with an OnStar(R) advisor or other party when using the OnStar(R) Hands-Free Calling feature. A TTY is required at both ends of the conversation in order to communicate. OnStar(R) Turn by Turn Navigation and Virtual Advisor are not available with the addition of TTY. The Reimbursement Program This equipment will be made available to eligible customers through GM Mobility and OnStar(R). Under this program, the customer must complete a GM Mobility application form. To take advantage of the program, vehicles must be adapted at the time of delivery for purchase / lease and a dealer claim ($1,000 Maximum per GM Mobility guidelines) with the application form submitted to GM Mobility. Saab dealers must fax documents. GM Dealers will receive electronic reimbursement directly from GM Mobility. Saab dealers will receive a check directly from OnStar(R). Additional questions or concerns should be directed to the OnStar Dealer Center. How to Order To order the dealer installed kit, contact AutoCraft Electronics or via the web at www.autocraft.com. The kit consists of an OnStar Interface Module, a Dial Pad (for making calls), OTIM wiring harness, the TTY device, installation/Tech 2(R) programming instructions and owner's guide. Warranty Information The Ultra-Tec Compact C TTY device is manufactured by an independent manufacturer and is covered by the manufacturer's warranty. It is not covered under the GM New Vehicle Limited Warranty. All other parts (OTIM, dial pad and OTIM wiring harness) are covered by the standard GM new vehicle parts and labor warranty. Replacement parts are available through AutoCraft Electronics. Contact AutoCraft Electronics or via the web. Warranty claims for the OTIM, dial pad and OTIM wiring harness should be submitted through normal warranty procedures using a sublet warranty claim with GM Labor Operation R5140. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Communications Control Module: > 06-08-46-005B > Feb > 10 > OnStar(R) - Availability for Hearing Impaired > Page 34 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Communications Control Module: > 06-08-46-005B > Feb > 10 > OnStar(R) - Availability for Hearing Impaired Communications Control Module: All Technical Service Bulletins OnStar(R) - Availability for Hearing Impaired INFORMATION Bulletin No.: 06-08-46-005B Date: February 11, 2010 Subject: Availability of OnStar(R) for Hearing Impaired Models: 2007-2010 GM Passenger Cars and Light Duty Trucks (Including Saturn and Saab) Except 2007 Cadillac CTS Except 2007-2008 HUMMER H2, H2 SUT Except 2007 Pontiac Montana SV6 Except 2007-2010 Pontiac Vibe Except 2007 Saturn ION, VUE Except 2008 Saturn Astra Supercede: This bulletin is being revised to add a Note regarding 2009 Bluetooth(R)-equipped vehicles, additional models and model years. Please discard Corporate Bulletin Number 06-08-46-005A (Section 08 - Body and Accessories). Important This service bulletin is not applicable to 'GM of Canada' dealers and retailers. Note On 2009 and newer model year vehicles equipped with the Bluetooth(R) feature (option code UPF), when up-fitted with TTY capabilities, the Bluetooth(R) feature will be disabled. OnStar with Text Telephone Capability (TTY) General Motors is pleased to announce that the safety and security of OnStar is now available to our deaf, hard of hearing and speech impaired customers. The current vehicles listed above, as well as forthcoming vehicles equipped with OnStar hardware version 7.0 or higher, have the ability to utilize texting telephones. Vehicle specific TTY capability can be determined by utilizing the VIN lookup Tool. Additional information may be found by referring to www.onstar.com/tty. TTY equipment allows people who are deaf, hard of hearing or speech impaired, in-vehicle access to 911 and basic OnStar(R) services by pressing the OnStar(R) blue button or red emergency button. The keypad provides a means to communicate by allowing customers to type messages back and forth, with an OnStar(R) advisor or other party when using the OnStar(R) Hands-Free Calling feature. A TTY is required at both ends of the conversation in order to communicate. OnStar(R) Turn by Turn Navigation and Virtual Advisor are not available with the addition of TTY. The Reimbursement Program This equipment will be made available to eligible customers through GM Mobility and OnStar(R). Under this program, the customer must complete a GM Mobility application form. To take advantage of the program, vehicles must be adapted at the time of delivery for purchase / lease and a dealer claim ($1,000 Maximum per GM Mobility guidelines) with the application form submitted to GM Mobility. Saab dealers must fax documents. GM Dealers will receive electronic reimbursement directly from GM Mobility. Saab dealers will receive a check directly from OnStar(R). Additional questions or concerns should be directed to the OnStar Dealer Center. How to Order To order the dealer installed kit, contact AutoCraft Electronics or via the web at www.autocraft.com. The kit consists of an OnStar Interface Module, a Dial Pad (for making calls), OTIM wiring harness, the TTY device, installation/Tech 2(R) programming instructions and owner's guide. Warranty Information The Ultra-Tec Compact C TTY device is manufactured by an independent manufacturer and is covered by the manufacturer's warranty. It is not covered under the GM New Vehicle Limited Warranty. All other parts (OTIM, dial pad and OTIM wiring harness) are covered by the standard GM new vehicle parts and labor warranty. Replacement parts are available through AutoCraft Electronics. Contact AutoCraft Electronics or via the web. Warranty claims for the OTIM, dial pad and OTIM wiring harness should be submitted through normal warranty procedures using a sublet warranty claim with GM Labor Operation R5140. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Communications Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Communications Control Module: > 06-08-46-005B > Feb > 10 > OnStar(R) - Availability for Hearing Impaired > Page 40 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned Emergency Contact Module: Customer Interest OnStar(R) - Number Incorrect/Incorrectly Assigned INFORMATION Bulletin No.: 05-08-46-004C Date: December 23, 2010 Subject: OnStar(R) Phone Number Concerns (Phone Number Incorrect/Assigned to Another Vehicle/Phone) That Occur During Diagnosis of OnStar(R) System Models: 2000-2011 GM Passenger Cars and Trucks Equipped with OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to update model years up to 2011. Please discard Corporate Bulletin Number 05-08-46-004B (Section 08 - Body and Accessories). During diagnosis of an OnStar(R) concern, the technician may be told that the OnStar(R) phone number is incorrect or tied to another vehicle and/or phone of some kind. To resolve these concerns, the Tech 2(R) with software version 22.005 (or higher), has the capability to change the OnStar(R) phone number. Service Procedure 1. With the Tech 2(R), build the vehicle to specifications within the Diagnostics area of the Tech 2(R). 2. For vehicles with physical-based diagnostics - under Body, go to the OnStar(R) section. Then select the Special Functions menu. For vehicles with functional-based diagnostics - under Body and Accessories, go to the Cellular Communication section. Select Module Setup and then Vehicle Communication Interface Module. 3. Locate the Program Phone Number prompt and select it. The original phone number will be displayed on the Tech 2(R) screen. 4. Contact the OnStar(R) team at the GM Technical Assistance Center (TAC) to obtain a new phone number. 5. Highlight the digits of the phone number one at a time and enter the new phone number using the number keys on the Tech 2(R). 6. Press the Soft key at the base of the screen for Done once these numbers have been changed on the screen. 7. Press the Soft key for Done again. The area code or new phone number has now been programmed into the phone. 8. Cycle the ignition to Off and open the driver's door. 9. Press the blue OnStar(R) button to make sure that a normal connection can be made to the OnStar(R) call center. If applicable, make sure the Hands-Free Calling (HFC) works properly by making a phone call. 10. If the system is working properly, fax or voicemail a case closing into the OnStar(R) team at TAC with the results. Dealers in Canada should submit case closing information through the GM infoNET. Please follow this diagnostic process thoroughly and complete each step. If the condition exhibited is resolved WITHOUT completing every step, the remaining steps do not need to be performed. If the procedure above does not resolve the condition, you must contact TAC for further assistance. This diagnostic approach was developed specifically for this condition and should not automatically be used for other vehicles with similar symptoms. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned > Page 49 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call Emergency Contact Module: Customer Interest OnStar(R) - Incorrect GPS Position Reported During Call Bulletin No.: 02-08-46-006C Date: January 08, 2008 INFORMATION Subject: Incorrect OnStar(R) Global Positioning System (GPS) Location Reported During OnStar(R) Call Models: 2000-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 02-08-46-006B (Section 08 - Body and Accessories). A small number of the above-mentioned vehicles may exhibit a condition in which the vehicle reports an inaccurate location to the OnStar(R) Call Center. This condition can only be identified via a button press to the OnStar(R) Call Center by the customer. Call Center personnel will be able to identify this inaccurate location condition. Customers will then be notified through the mail by OnStar(R) if their vehicle exhibits this condition. Once this condition has been identified OnStar(R) will instruct the customer to return to the dealership to have this condition corrected. It is not necessary to reconfigure the vehicle after the following procedure. In order to correct this condition you must cycle power to the OnStar(R) system. This can be done by either removing the fuses powering the OnStar(R) system or disconnecting the OnStar(R) module (VCIM) from the vehicle. As a last resort you can disconnect the vehicle's battery. The power needs to be removed from the system for approximately 15 minutes. After completing this procedure the vehicle should be taken to an area with an unobstructed view of the sky. The vehicle should be kept running for approximately 10 minutes to allow the vehicle to reacquire the global positioning system (GPS). Then contact the OnStar(R) Call Center via the blue OnStar(R) button and ask the advisor to verify the GPS position. If the OnStar(R) advisor still has an inaccurate GPS location refer to the Navigation Systems and Cellular Communications sub-sections in the Service Manual in order to diagnose and repair the concern. If the normal diagnostics lead to module replacement you will need to contact Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis and if appropriate order a replacement part. Replacement parts are usually shipped out within 24 hours and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part you will avoid a significant non-return core charge. Warranty Information (excluding Saab US Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call > Page 54 For vehicles repaired under warranty use, the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues Emergency Contact Module: Customer Interest OnStar(R) - Loss of GPS Signal/Hands Free Issues Bulletin No.: 02-08-46-007C Date: November 19, 2007 INFORMATION Subject: Information on OnStar(R) System - Possible Loss of GPS Signal, Hands-Free Calling Minutes Expire Prematurely and/or Inability to Add Hands-Free Calling Minutes Models: 2001-2008 GM Passenger Cars and Light Duty Trucks (Including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) System (RPO UE1) Supercede: This bulletin is being revised to add the 2008 model year, warranty information and to provide GPS signal recovery steps (under Dealer Action heading) to do PRIOR to determining if the VIU/VCIM needs replacement. Please discard Corporate Bulletin Number 02-08-46-007B (Section 08 - Body & Accessories). If the vehicle currently has analog-upgradable OnStar(R) hardware, then the customer should be made aware of the digital upgrade program per the latest version of Service Bulletin # 05-08-46-006. Any analog OnStar system that is not upgraded prior to the end of 2007 will be deactivated due to the upcoming phase-out of the analog cellular network in the U.S. and Canada. If the vehicle has recently been upgraded or has had a service replacement unit installed, this bulletin may not be applicable. Certain 2001-2008 model year vehicles equipped with OnStar(R) may exhibit a condition with the Global Positioning System (GPS) that causes inaccuracies in the GPS clock. The GPS system is internal to the OnStar(R) Vehicle Interface Unit (VIU) or the Vehicle Communication Interface Module (VCIM). This inaccuracy can result in a symptom where the OnStar(R) Call Center is unable to obtain an accurate GPS signal, hands-Free Calling minutes expire prematurely and/or the inability to add Hands-Free calling minutes. Customer Notification OnStar(R) will notify the customer by mail with instructions to contact their dealership service department. Dealer Action Not all vehicles will require VIU/VCIM replacement. The GPS signal in some vehicles may be recoverable. To determine if the signal is recoverable, simply connect the Tech2(R) and using the GPS information data display option, observe the GPS date and time. If the date/time stamps are equal to a date approximately 19 years in the future, the GPS clock has exceeded its capacity and the VIU/VCIM will need to be replaced. If the date/time stamp is in the past or near future, the GPS clock has simply generated an inaccurate value and may be recoverable by performing the following power-up reset. To initiate a power-up reset, battery voltage (batt. +) must be removed from the VIU/VCIM. The preferred methods, in order, of initiating the reset are outlined below. Remove the fuse that supplies Battery positive (Batt. +) voltage to the module (refer to the applicable Service Information schematics for the appropriate fuse). The next preferred method is to remove the connector to the OnStar(R) unit that Batt + is contained. The least preferable method is to remove the negative terminal of the vehicle battery. This will not only initiate the power-up reset, but it may also result in the loss of radio presets and other stored personalization information/settings in other modules as well. After initiating the power-up reset, the GPS data will be set to the defaulted date and time and will require an acquisition of the GPS signal in order to gain the proper date and time. Acquiring the GPS signal requires running the vehicle in an open/unobstructed view of the sky. First, contact OnStar(R) Technical Support by pressing the blue button. Allow the OnStar(R) Technical Advisor to activate the GPS recovery process. This should take approximately 10 minutes. Continue to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 59 monitor the Tech2(R) for the current time and date. REMINDER - Keep in mind that the time displayed on the Tech2(R) is in Greenwich Mean Time (GMT) and the offset is based on the time zones relationship to GMT. If replacement of the VIU/VCIM is necessary, you MUST reconfigure the OnStar® system. Failure to reconfigure the system will result in an additional customer visit for repair. OnStar® VIU, Generations 2 and 3, will require the technician to press the blue OnStar® button to reconfigure the vehicle with an OnStar® advisor. OnStar(R) VCIM, Generations 4-7 will require the technician to reconfigure the vehicle with the use of the TIS2WEB and SPS applications (pass thru only), along with the Tech2(R). The configuration and set-up procedure is a two-step process that must be completed step-by-step without interruption or delay in between each step. This procedure enables an automated activation without a button press by the technician to the OnStar(R) Call Center. Following this procedure, it may take up to 24 hours for all OnStar(R) services to be fully activated. How to Order Parts If the OnStar(R) GPS date/time stamp is non-recoverable and the unit needs to be replaced, dealers in the U.S. should contact Autocraft Electronics select the catalog item that contains this bulletin number. Canadian dealers should contact MASS Electronics. Dealers DO NOT need to call the GM Technical Assistance Center (TAC) for replacement approval. Autocraft Electronics and MASS Electronics will be responsible for verifying that the subject vehicle is a candidate for a replacement VIU/VCIM. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > Customer Interest: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 60 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Number Incorrect/Incorrectly Assigned INFORMATION Bulletin No.: 05-08-46-004C Date: December 23, 2010 Subject: OnStar(R) Phone Number Concerns (Phone Number Incorrect/Assigned to Another Vehicle/Phone) That Occur During Diagnosis of OnStar(R) System Models: 2000-2011 GM Passenger Cars and Trucks Equipped with OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to update model years up to 2011. Please discard Corporate Bulletin Number 05-08-46-004B (Section 08 - Body and Accessories). During diagnosis of an OnStar(R) concern, the technician may be told that the OnStar(R) phone number is incorrect or tied to another vehicle and/or phone of some kind. To resolve these concerns, the Tech 2(R) with software version 22.005 (or higher), has the capability to change the OnStar(R) phone number. Service Procedure 1. With the Tech 2(R), build the vehicle to specifications within the Diagnostics area of the Tech 2(R). 2. For vehicles with physical-based diagnostics - under Body, go to the OnStar(R) section. Then select the Special Functions menu. For vehicles with functional-based diagnostics - under Body and Accessories, go to the Cellular Communication section. Select Module Setup and then Vehicle Communication Interface Module. 3. Locate the Program Phone Number prompt and select it. The original phone number will be displayed on the Tech 2(R) screen. 4. Contact the OnStar(R) team at the GM Technical Assistance Center (TAC) to obtain a new phone number. 5. Highlight the digits of the phone number one at a time and enter the new phone number using the number keys on the Tech 2(R). 6. Press the Soft key at the base of the screen for Done once these numbers have been changed on the screen. 7. Press the Soft key for Done again. The area code or new phone number has now been programmed into the phone. 8. Cycle the ignition to Off and open the driver's door. 9. Press the blue OnStar(R) button to make sure that a normal connection can be made to the OnStar(R) call center. If applicable, make sure the Hands-Free Calling (HFC) works properly by making a phone call. 10. If the system is working properly, fax or voicemail a case closing into the OnStar(R) team at TAC with the results. Dealers in Canada should submit case closing information through the GM infoNET. Please follow this diagnostic process thoroughly and complete each step. If the condition exhibited is resolved WITHOUT completing every step, the remaining steps do not need to be performed. If the procedure above does not resolve the condition, you must contact TAC for further assistance. This diagnostic approach was developed specifically for this condition and should not automatically be used for other vehicles with similar symptoms. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned > Page 66 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 02-08-44-007D > May > 09 > OnStar(R) - Negative Impact of Cloth/Vinyl Roofs Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Negative Impact of Cloth/Vinyl Roofs INFORMATION Bulletin No.: 02-08-44-007D Date: May 12, 2009 Subject: Negative Impact of Dealer-Installed Cloth/Vinyl Roofs on XM Radio and/or OnStar(R) Systems Models: 2002-2009 Passenger Cars and Trucks (Including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with XM Radio (RPO U2K) and/or OnStar(R) (RPO UE1) .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to include the 2009 model year. Please discard Corporate Bulletin Number 02-08-44-007C (Section 08 - Body and Accessories). .............................................................................................................................................................. .................................................................................. Dealers should not install a cloth or vinyl roof on vehicles that have been ordered with the XM radio option (RPO U2K) and/or OnStar(R) (RPO UE1). The performance of these systems may be negatively impacted by the installation of the cloth/vinyl roof. Additionally, water leaks may result from installing a cloth or vinyl roof on vehicles with roof-mounted antenna systems. Relocating the antenna to another spot on the vehicle exterior, in order to install a cloth or vinyl roof, is not advised either. The performance of the OnStar(R) and XM Radio antennas has been optimized for their current locations. Relocating the antennas may result in a performance degradation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Analog/Digital System Information INFORMATION Bulletin No.: 06-08-46-008C Date: September 18, 2008 Subject: Information on OnStar(R) Dual-Mode (Analog/Digital) Systems Models Supercede: This bulletin is being revised to correct the model year range for the Chevrolet Impala and Monte Carlo and update the reference to GM Dealerworld. Please discard Corporate Bulletin Number 06-08-46-008B (Section 08 - Body and Accessories). All 2000-2003 model year vehicles equipped with OnStar® from the list above were built with Analog/Digital-Ready OnStar(R) Hardware. Some of these vehicles may have been upgraded to Dual-Mode (Analog/Digital). Certain 2004-2005 model year vehicles equipped with OnStar(R) from the list above may have been either: ^ Originally built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware with Dual-Mode (Analog/Digital) OnStar(R) Hardware OR ^ Upgraded to Dual-Mode (Analog/Digital) Hardware All 2006 model year and newer vehicles equipped with OnStar(R) were built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware. If a vehicle has Dual-Mode (Analog/Digital) OnStar(R) Hardware, then the system is capable of operating on both the analog and digital cellular Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information > Page 75 networks, and will not require an upgrade in connection with the cellular industry's transition to the digital network. In order to verify the type of OnStar(R) Hardware in a vehicle, type the VIN into the VIN look-up tool, which is available at the OnStar(R) Online Enrollment website within GM GlobalConnect (for U.S. dealers) or InfoNet (for Canadian dealers). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 08-08-46-004 > Aug > 08 > OnStar(R) - Aftermarket Device Interference Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Aftermarket Device Interference Information INFORMATION Bulletin No.: 08-08-46-004 Date: August 14, 2008 Subject: Information on Aftermarket Device Interference with OnStar(R) Diagnostic Services Models: 2009 and Prior GM Passenger Car and Truck (including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X with OnStar(R) (RPO UE1) This bulletin is being issued to provide dealer service personnel with information regarding aftermarket devices connected to the Diagnostic Link Connector (DLC) and the impact to OnStar(R) diagnostic probes and Vehicle Diagnostic e-mails. Certain aftermarket devices, when connected to the Diagnostic Link Connector, such as, but not limited to, Scan Tools, Trip Computers, Fuel Economy Analyzers and Insurance Tracking Devices, interfere with OnStar's ability to perform a diagnostic probe when requested (via a blue button call) by a subscriber. These devices also prohibit the ability to gather diagnostic and tire pressure data for a subscriber's scheduled OnStar(R) Vehicle Diagnostic (OVD) e-mail. These aftermarket devices utilize the Vehicles serial data bus to perform data requests and/or information gathering. When these devices are requesting data, OnStar(R) is designed not to interfere with any data request being made by these devices as required by OBD II regulations. The OnStar(R) advisor is unable to definitively detect the presence of these devices and will only be able to inform the caller or requester of the unsuccessful or incomplete probe and may in some cases refer the subscriber/requester to take the vehicle to a dealer for diagnosis of the concern. When performing a diagnostic check for an unsuccessful or incomplete OnStar(R) diagnostic probe, or for concerns regarding completeness of the OnStar(R) Vehicle Diagnostic (OVD) e-mail, verify that an aftermarket device was not present at the time of the requested probe. Regarding the OVD e-mail, if an aftermarket device is interfering (including a Scan Tool of any type), the e-mail will consistently display a "yellow" indication in diagnostics section for all vehicle systems except the OnStar(R) System and Tire Pressure data (not available on all vehicles) will not be displayed (i.e. section is collapsed). Successful diagnostic probes and complete OVD e-mails will resume following the removal or disconnecting of the off-board device. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 08-08-46-002 > Jun > 08 > OnStar(R) - False Crash Detection Customer Calling Emergency Contact Module: All Technical Service Bulletins OnStar(R) - False Crash Detection Customer Calling TECHNICAL Bulletin No.: 08-08-46-002 Date: June 26, 2008 Subject: OnStar(R) Calls Unwanted, False Crash Detection Customer Calling (Reprogram SDM) Models: 2007 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL with OnStar(R) (RPO UE1) Condition Some customers may comment on receiving unwanted calls from the OnStar(R) Center. Cause During certain extreme vehicle maneuvers, the vehicle SDM may mistakenly detect a crash event and generate a call to the OnStar(R) call Center. The OnStar(R) advisor is connected to the vehicle to see if everyone is alright and if a request for emergency help is needed. Correction A revised SDM Operating System software has been developed to address this issue. Reprogram the Sensing and Diagnostic Module (SDM) with the controller option described as "SDM Sensing and Diagnostic Module" under Operating System using the TIS2WEB Service Programming System (SPS) application. As always, make sure your Tech 2(R) is updated with the latest software version. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 00-08-46-004C > Jan > 08 > OnStar(R) - Re-establishing OnStar(R) Communications Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Re-establishing OnStar(R) Communications Bulletin No.: 00-08-46-004C Date: January 17, 2008 INFORMATION Subject: Re-establishing Communications with OnStar(R) Center After Battery Disconnect Models: 2000-2008 GM Passenger Cars and Trucks (Including Saturn and Saab) with Digital OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 00-08-46-004B (Section 08 - Body and Accessories). When servicing any of the above models and a battery cable is disconnected or power to the OnStar(R) Vehicle Communication Interface Module (VCIM) is interrupted for any reason the following procedure must be performed to verify proper Global Positioning System (GPS) function. Never swap OnStar(R) Vehicle Communication Interface Modules (VCIM) from other vehicles. Transfer of OnStar(R) modules from other vehicles should not be done. Each OnStar(R) module has a unique identification number. The VCIM has a specific Station Identification (STID). This identification number is used by the National Cellular Telephone Network and OnStar(R) systems and is stored in General Motors Vehicle History files by VIN. After completing ALL repairs to the vehicle you must perform the following procedure: Move the vehicle into an open area of the service lot. Sit in the vehicle with the engine running and the radio turned on for five minutes. Press the OnStar(R) button in the vehicle. When the OnStar(R) advisor answers ask the advisor to verify the current location of the vehicle. If the vehicle location is different than the location the OnStar(R) advisor gives contact GM Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis of a failed VCIM and, if appropriate, order a replacement part. Replacement parts are usually shipped out within 24 hours, and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part, you will avoid a non-return core charge. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Incorrect GPS Position Reported During Call Bulletin No.: 02-08-46-006C Date: January 08, 2008 INFORMATION Subject: Incorrect OnStar(R) Global Positioning System (GPS) Location Reported During OnStar(R) Call Models: 2000-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 02-08-46-006B (Section 08 - Body and Accessories). A small number of the above-mentioned vehicles may exhibit a condition in which the vehicle reports an inaccurate location to the OnStar(R) Call Center. This condition can only be identified via a button press to the OnStar(R) Call Center by the customer. Call Center personnel will be able to identify this inaccurate location condition. Customers will then be notified through the mail by OnStar(R) if their vehicle exhibits this condition. Once this condition has been identified OnStar(R) will instruct the customer to return to the dealership to have this condition corrected. It is not necessary to reconfigure the vehicle after the following procedure. In order to correct this condition you must cycle power to the OnStar(R) system. This can be done by either removing the fuses powering the OnStar(R) system or disconnecting the OnStar(R) module (VCIM) from the vehicle. As a last resort you can disconnect the vehicle's battery. The power needs to be removed from the system for approximately 15 minutes. After completing this procedure the vehicle should be taken to an area with an unobstructed view of the sky. The vehicle should be kept running for approximately 10 minutes to allow the vehicle to reacquire the global positioning system (GPS). Then contact the OnStar(R) Call Center via the blue OnStar(R) button and ask the advisor to verify the GPS position. If the OnStar(R) advisor still has an inaccurate GPS location refer to the Navigation Systems and Cellular Communications sub-sections in the Service Manual in order to diagnose and repair the concern. If the normal diagnostics lead to module replacement you will need to contact Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis and if appropriate order a replacement part. Replacement parts are usually shipped out within 24 hours and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part you will avoid a significant non-return core charge. Warranty Information (excluding Saab US Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call > Page 92 For vehicles repaired under warranty use, the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Loss of GPS Signal/Hands Free Issues Bulletin No.: 02-08-46-007C Date: November 19, 2007 INFORMATION Subject: Information on OnStar(R) System - Possible Loss of GPS Signal, Hands-Free Calling Minutes Expire Prematurely and/or Inability to Add Hands-Free Calling Minutes Models: 2001-2008 GM Passenger Cars and Light Duty Trucks (Including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) System (RPO UE1) Supercede: This bulletin is being revised to add the 2008 model year, warranty information and to provide GPS signal recovery steps (under Dealer Action heading) to do PRIOR to determining if the VIU/VCIM needs replacement. Please discard Corporate Bulletin Number 02-08-46-007B (Section 08 - Body & Accessories). If the vehicle currently has analog-upgradable OnStar(R) hardware, then the customer should be made aware of the digital upgrade program per the latest version of Service Bulletin # 05-08-46-006. Any analog OnStar system that is not upgraded prior to the end of 2007 will be deactivated due to the upcoming phase-out of the analog cellular network in the U.S. and Canada. If the vehicle has recently been upgraded or has had a service replacement unit installed, this bulletin may not be applicable. Certain 2001-2008 model year vehicles equipped with OnStar(R) may exhibit a condition with the Global Positioning System (GPS) that causes inaccuracies in the GPS clock. The GPS system is internal to the OnStar(R) Vehicle Interface Unit (VIU) or the Vehicle Communication Interface Module (VCIM). This inaccuracy can result in a symptom where the OnStar(R) Call Center is unable to obtain an accurate GPS signal, hands-Free Calling minutes expire prematurely and/or the inability to add Hands-Free calling minutes. Customer Notification OnStar(R) will notify the customer by mail with instructions to contact their dealership service department. Dealer Action Not all vehicles will require VIU/VCIM replacement. The GPS signal in some vehicles may be recoverable. To determine if the signal is recoverable, simply connect the Tech2(R) and using the GPS information data display option, observe the GPS date and time. If the date/time stamps are equal to a date approximately 19 years in the future, the GPS clock has exceeded its capacity and the VIU/VCIM will need to be replaced. If the date/time stamp is in the past or near future, the GPS clock has simply generated an inaccurate value and may be recoverable by performing the following power-up reset. To initiate a power-up reset, battery voltage (batt. +) must be removed from the VIU/VCIM. The preferred methods, in order, of initiating the reset are outlined below. Remove the fuse that supplies Battery positive (Batt. +) voltage to the module (refer to the applicable Service Information schematics for the appropriate fuse). The next preferred method is to remove the connector to the OnStar(R) unit that Batt + is contained. The least preferable method is to remove the negative terminal of the vehicle battery. This will not only initiate the power-up reset, but it may also result in the loss of radio presets and other stored personalization information/settings in other modules as well. After initiating the power-up reset, the GPS data will be set to the defaulted date and time and will require an acquisition of the GPS signal in order to gain the proper date and time. Acquiring the GPS signal requires running the vehicle in an open/unobstructed view of the sky. First, contact OnStar(R) Technical Support by pressing the blue button. Allow the OnStar(R) Technical Advisor to activate the GPS recovery process. This should take approximately 10 minutes. Continue to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 97 monitor the Tech2(R) for the current time and date. REMINDER - Keep in mind that the time displayed on the Tech2(R) is in Greenwich Mean Time (GMT) and the offset is based on the time zones relationship to GMT. If replacement of the VIU/VCIM is necessary, you MUST reconfigure the OnStar® system. Failure to reconfigure the system will result in an additional customer visit for repair. OnStar® VIU, Generations 2 and 3, will require the technician to press the blue OnStar® button to reconfigure the vehicle with an OnStar® advisor. OnStar(R) VCIM, Generations 4-7 will require the technician to reconfigure the vehicle with the use of the TIS2WEB and SPS applications (pass thru only), along with the Tech2(R). The configuration and set-up procedure is a two-step process that must be completed step-by-step without interruption or delay in between each step. This procedure enables an automated activation without a button press by the technician to the OnStar(R) Call Center. Following this procedure, it may take up to 24 hours for all OnStar(R) services to be fully activated. How to Order Parts If the OnStar(R) GPS date/time stamp is non-recoverable and the unit needs to be replaced, dealers in the U.S. should contact Autocraft Electronics select the catalog item that contains this bulletin number. Canadian dealers should contact MASS Electronics. Dealers DO NOT need to call the GM Technical Assistance Center (TAC) for replacement approval. Autocraft Electronics and MASS Electronics will be responsible for verifying that the subject vehicle is a candidate for a replacement VIU/VCIM. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 98 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Language Change Information Bulletin No.: 05-08-46-009B Date: June 29, 2007 INFORMATION Subject: Language Change for OnStar(R) System (U.S. and Canada Only) Models: 2006-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2006-2008 HUMMER H2, H3 2006-2008 Saab 9-7X with OnStar(R) (RPO UE1) Built After and Including VIN Breakpoints Listed Below (2006 MY Only) Attention: This bulletin only applies to vehicles equipped with OnStar(R) Generation 6.1 or later with a Station Identification (STID) Number in the following range: 16,000,000-17,000,000 or 20,000,000-21,999,999 or 23,500,001-26,000,000 Supercede: This bulletin is being revised to update the service procedure and add a Canadian procedure. Please discard Corporate Bulletin Numbers 05-08-46-009A and 05-08-46-008A (Section 08 - Body and Accessories). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 103 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 104 Built After and Including the VIN Breakpoints shown. The Generation (Gen) 6.1 OnStar(R) system found in these vehicles has the capability to change the default English voice recognition to French or Spanish. Changing the language of the OnStar(R) system will change the following features to the language you select: Voice recognition command prompts will be played in the language selected. The voice recognition system will only recognize commands given in the selected language. Once completed, this process completely changes all voice recognition and voice commands of the OnStar(R) system. The process will need to be repeated in its entirety to change to a different language, including English. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 105 Method 1 Method 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 106 Method 3 The Gen 6.1 version of OnStar(R) does not require the use of the Service Programming System (SPS) to change the voice recognition system. However, there are three ways to change the language. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 02-08-44-007D > May > 09 > OnStar(R) - Negative Impact of Cloth/Vinyl Roofs Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Negative Impact of Cloth/Vinyl Roofs INFORMATION Bulletin No.: 02-08-44-007D Date: May 12, 2009 Subject: Negative Impact of Dealer-Installed Cloth/Vinyl Roofs on XM Radio and/or OnStar(R) Systems Models: 2002-2009 Passenger Cars and Trucks (Including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with XM Radio (RPO U2K) and/or OnStar(R) (RPO UE1) .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to include the 2009 model year. Please discard Corporate Bulletin Number 02-08-44-007C (Section 08 - Body and Accessories). .............................................................................................................................................................. .................................................................................. Dealers should not install a cloth or vinyl roof on vehicles that have been ordered with the XM radio option (RPO U2K) and/or OnStar(R) (RPO UE1). The performance of these systems may be negatively impacted by the installation of the cloth/vinyl roof. Additionally, water leaks may result from installing a cloth or vinyl roof on vehicles with roof-mounted antenna systems. Relocating the antenna to another spot on the vehicle exterior, in order to install a cloth or vinyl roof, is not advised either. The performance of the OnStar(R) and XM Radio antennas has been optimized for their current locations. Relocating the antennas may result in a performance degradation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Analog/Digital System Information INFORMATION Bulletin No.: 06-08-46-008C Date: September 18, 2008 Subject: Information on OnStar(R) Dual-Mode (Analog/Digital) Systems Models Supercede: This bulletin is being revised to correct the model year range for the Chevrolet Impala and Monte Carlo and update the reference to GM Dealerworld. Please discard Corporate Bulletin Number 06-08-46-008B (Section 08 - Body and Accessories). All 2000-2003 model year vehicles equipped with OnStar® from the list above were built with Analog/Digital-Ready OnStar(R) Hardware. Some of these vehicles may have been upgraded to Dual-Mode (Analog/Digital). Certain 2004-2005 model year vehicles equipped with OnStar(R) from the list above may have been either: ^ Originally built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware with Dual-Mode (Analog/Digital) OnStar(R) Hardware OR ^ Upgraded to Dual-Mode (Analog/Digital) Hardware All 2006 model year and newer vehicles equipped with OnStar(R) were built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware. If a vehicle has Dual-Mode (Analog/Digital) OnStar(R) Hardware, then the system is capable of operating on both the analog and digital cellular Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information > Page 116 networks, and will not require an upgrade in connection with the cellular industry's transition to the digital network. In order to verify the type of OnStar(R) Hardware in a vehicle, type the VIN into the VIN look-up tool, which is available at the OnStar(R) Online Enrollment website within GM GlobalConnect (for U.S. dealers) or InfoNet (for Canadian dealers). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 08-08-46-004 > Aug > 08 > OnStar(R) - Aftermarket Device Interference Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Aftermarket Device Interference Information INFORMATION Bulletin No.: 08-08-46-004 Date: August 14, 2008 Subject: Information on Aftermarket Device Interference with OnStar(R) Diagnostic Services Models: 2009 and Prior GM Passenger Car and Truck (including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X with OnStar(R) (RPO UE1) This bulletin is being issued to provide dealer service personnel with information regarding aftermarket devices connected to the Diagnostic Link Connector (DLC) and the impact to OnStar(R) diagnostic probes and Vehicle Diagnostic e-mails. Certain aftermarket devices, when connected to the Diagnostic Link Connector, such as, but not limited to, Scan Tools, Trip Computers, Fuel Economy Analyzers and Insurance Tracking Devices, interfere with OnStar's ability to perform a diagnostic probe when requested (via a blue button call) by a subscriber. These devices also prohibit the ability to gather diagnostic and tire pressure data for a subscriber's scheduled OnStar(R) Vehicle Diagnostic (OVD) e-mail. These aftermarket devices utilize the Vehicles serial data bus to perform data requests and/or information gathering. When these devices are requesting data, OnStar(R) is designed not to interfere with any data request being made by these devices as required by OBD II regulations. The OnStar(R) advisor is unable to definitively detect the presence of these devices and will only be able to inform the caller or requester of the unsuccessful or incomplete probe and may in some cases refer the subscriber/requester to take the vehicle to a dealer for diagnosis of the concern. When performing a diagnostic check for an unsuccessful or incomplete OnStar(R) diagnostic probe, or for concerns regarding completeness of the OnStar(R) Vehicle Diagnostic (OVD) e-mail, verify that an aftermarket device was not present at the time of the requested probe. Regarding the OVD e-mail, if an aftermarket device is interfering (including a Scan Tool of any type), the e-mail will consistently display a "yellow" indication in diagnostics section for all vehicle systems except the OnStar(R) System and Tire Pressure data (not available on all vehicles) will not be displayed (i.e. section is collapsed). Successful diagnostic probes and complete OVD e-mails will resume following the removal or disconnecting of the off-board device. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 08-08-46-002 > Jun > 08 > OnStar(R) - False Crash Detection Customer Calling Emergency Contact Module: All Technical Service Bulletins OnStar(R) - False Crash Detection Customer Calling TECHNICAL Bulletin No.: 08-08-46-002 Date: June 26, 2008 Subject: OnStar(R) Calls Unwanted, False Crash Detection Customer Calling (Reprogram SDM) Models: 2007 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL with OnStar(R) (RPO UE1) Condition Some customers may comment on receiving unwanted calls from the OnStar(R) Center. Cause During certain extreme vehicle maneuvers, the vehicle SDM may mistakenly detect a crash event and generate a call to the OnStar(R) call Center. The OnStar(R) advisor is connected to the vehicle to see if everyone is alright and if a request for emergency help is needed. Correction A revised SDM Operating System software has been developed to address this issue. Reprogram the Sensing and Diagnostic Module (SDM) with the controller option described as "SDM Sensing and Diagnostic Module" under Operating System using the TIS2WEB Service Programming System (SPS) application. As always, make sure your Tech 2(R) is updated with the latest software version. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 00-08-46-004C > Jan > 08 > OnStar(R) - Re-establishing OnStar(R) Communications Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Re-establishing OnStar(R) Communications Bulletin No.: 00-08-46-004C Date: January 17, 2008 INFORMATION Subject: Re-establishing Communications with OnStar(R) Center After Battery Disconnect Models: 2000-2008 GM Passenger Cars and Trucks (Including Saturn and Saab) with Digital OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 00-08-46-004B (Section 08 - Body and Accessories). When servicing any of the above models and a battery cable is disconnected or power to the OnStar(R) Vehicle Communication Interface Module (VCIM) is interrupted for any reason the following procedure must be performed to verify proper Global Positioning System (GPS) function. Never swap OnStar(R) Vehicle Communication Interface Modules (VCIM) from other vehicles. Transfer of OnStar(R) modules from other vehicles should not be done. Each OnStar(R) module has a unique identification number. The VCIM has a specific Station Identification (STID). This identification number is used by the National Cellular Telephone Network and OnStar(R) systems and is stored in General Motors Vehicle History files by VIN. After completing ALL repairs to the vehicle you must perform the following procedure: Move the vehicle into an open area of the service lot. Sit in the vehicle with the engine running and the radio turned on for five minutes. Press the OnStar(R) button in the vehicle. When the OnStar(R) advisor answers ask the advisor to verify the current location of the vehicle. If the vehicle location is different than the location the OnStar(R) advisor gives contact GM Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis of a failed VCIM and, if appropriate, order a replacement part. Replacement parts are usually shipped out within 24 hours, and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part, you will avoid a non-return core charge. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Language Change Information Bulletin No.: 05-08-46-009B Date: June 29, 2007 INFORMATION Subject: Language Change for OnStar(R) System (U.S. and Canada Only) Models: 2006-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2006-2008 HUMMER H2, H3 2006-2008 Saab 9-7X with OnStar(R) (RPO UE1) Built After and Including VIN Breakpoints Listed Below (2006 MY Only) Attention: This bulletin only applies to vehicles equipped with OnStar(R) Generation 6.1 or later with a Station Identification (STID) Number in the following range: 16,000,000-17,000,000 or 20,000,000-21,999,999 or 23,500,001-26,000,000 Supercede: This bulletin is being revised to update the service procedure and add a Canadian procedure. Please discard Corporate Bulletin Numbers 05-08-46-009A and 05-08-46-008A (Section 08 - Body and Accessories). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 133 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 134 Built After and Including the VIN Breakpoints shown. The Generation (Gen) 6.1 OnStar(R) system found in these vehicles has the capability to change the default English voice recognition to French or Spanish. Changing the language of the OnStar(R) system will change the following features to the language you select: Voice recognition command prompts will be played in the language selected. The voice recognition system will only recognize commands given in the selected language. Once completed, this process completely changes all voice recognition and voice commands of the OnStar(R) system. The process will need to be repeated in its entirety to change to a different language, including English. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 135 Method 1 Method 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Emergency Contact Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Emergency Contact Module: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 136 Method 3 The Gen 6.1 version of OnStar(R) does not require the use of the Service Programming System (SPS) to change the voice recognition system. However, there are three ways to change the language. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Keyless Entry Module > Component Information > Service and Repair Keyless Entry Module: Service and Repair Remote Control Door Lock Receiver Replacement The remote control door lock module is incorporated into the passenger side window switch module. Refer to Door Lock and Side Window Switch Replacement - Passenger Side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Parking Assist Control Module > Component Information > Technical Service Bulletins > Parking Assist System - 'Park Assist Off' Message on DIC Parking Assist Control Module: Technical Service Bulletins Parking Assist System - 'Park Assist Off' Message on DIC INFORMATION Bulletin No.: 07-08-49-014A Date: July 30, 2008 Subject: Diagnostic Information for Park Assist Off Message on Driver Information Center (DIC) Models: 2007-2009 Cadillac Escalade Models 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Yukon Models Supercede: This bulletin is being revised to add the 2008 and 2009 model years. Please discard Corporate Bulletin Number 07-08-49-014 (Section 08 - Body and Accessories). Some customers may comment that a "Park Assist Off" message is appearing on the Driver Information center (DIC) at times. There are several factors listed above that can cause this message to appear. A Tech 2 can be used to access the latest entry into the Park Assist Module history buffer to help determine a cause. Engineering has received multiple inhibited Rear park Assist Modules through warranty parts return with attached object stored in the latest history buffer. If a vehicle has a trailer hitch installed into the trailer hitch receiver, it is possible for the rear park assist to be disabled. Once the trailer hitch is removed, the message should go away. Other possible causes may be dirty sensors. Keep the rear bumper free of mud, dirt, snow, ice and slush. Important: Please note that any object that is installed in the receiver hitch, extending from the rear of the vehicle, or blocking the sensors can disable the Parking Assist, resulting in the message "Park Assist Off". Please remove the object or obstruction from the vehicle to re-enable the system. This is normal operation of the system. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > Customer Interest for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules Relay Module: Customer Interest Electrical - MIL ON/DTC's Set By Various Control Modules TECHNICAL Bulletin No.: 09-06-03-004D Date: December 08, 2010 Subject: Intermittent No Crank/No Start, No Module Communication, MIL, Warning Lights, Vehicle Messages or DTCs Set by Various Control Modules - Diagnosing and Repairing Fretting Corrosion (Disconnect Affected Connector and Apply Dielectric Lubricant) Models: 2011 and Prior GM Passenger Cars and Trucks Attention: This repair can be applied to ANY electrical connection including, but not limited to: lighting, body electrical, in-line connections, powertrain control sensors, etc. DO NOT over apply lubricant to the point where it prevents the full engagement of sealed connectors. A light coating on the terminal surfaces is sufficient to correct the condition. Supercede: This bulletin is being revised to update the Attention statement and add the 2011 model year. Please discard Corporate Bulletin Number 09-06-03-004C (Section 06 Engine/Propulsion System). Condition Some customers may comment on any of the following conditions: - An intermittent no crank/no start - Intermittent malfunction indicator lamp (MIL) illumination - Intermittent service lamp illumination - Intermittent service message(s) being displayed The technician may determine that he is unable to duplicate the intermittent condition. Cause This condition may be caused by a buildup of nonconductive insulating oxidized debris known as fretting corrosion, occurring between two electrical contact surfaces of the connection or connector. This may be caused by any of the following conditions: - Vibration - Thermal cycling - Poor connection/terminal retention - Micro motion - A connector, component or wiring harness not properly secured resulting in movement On low current signal circuits this condition may cause high resistance, resulting in intermittent connections. On high current power circuits this condition may cause permanent increases in the resistance and may cause a device to become inoperative. Representative List of Control Modules and Components The following is only a representative list of control modules and components that may be affected by this connection or connector condition and DOES NOT include every possible module or component for every vehicle. - Blower Control Module - Body Control Module (BCM) - Communication Interface Module (CIM) - Cooling Fan Control Module - Electronic Brake Control Module (EBCM) - Electronic Brake and Traction Control Module (EBTCM) - Electronic Suspension Control (ESC) Module - Engine Control Module (ECM) - Heating, Ventilation and Air Conditioning (HVAC) Control Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > Customer Interest for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 152 - HVAC Actuator - Inflatable Restraint Sensing and Diagnostic Module (SDM) - Any AIR BAG module - Seatbelt Lap Anchor Pretensioner - Seatbelt Retractor Pretensioner - An SIR system connection or connector condition resulting in the following DTCs being set: B0015, B0016, B0019, B0020, B0022, or B0023 - Powertrain Control Module (PCM) - Remote Control Door Lock Receiver (RCDLR) - Transmission Control Module (TCM) Correction Important DO NOT replace the control module, wiring or component for the following conditions: - The condition is intermittent and cannot be duplicated. - The condition is present and by disconnecting and reconnecting the connector the condition can no longer be duplicated. Use the following procedure to correct the conditions listed above. 1. Install a scan tool and perform the Diagnostic System Check - Vehicle. Retrieve and record any existing history or current DTCs from all of the control modules (refer to SI). ‹› If any DTC(s) are set, refer to Diagnostic Trouble Code (DTC) List - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). ‹› If DTCs are not set, refer to Symptoms - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). 2. When identified, use the appropriate DTC Diagnostics, Symptoms, Schematics, Component Connector End Views and Component Locator documents to locate and disconnect the affected harness connector(s) which are causing the condition. Note Fretting corrosion looks like little dark smudges on electrical terminals and appear where the actual electrical contact is being made. In less severe cases it may be unable to be seen or identified without the use of a magnifying glass. Important DO NOT apply an excessive amount of dielectric lubricant to the connectors as shown, as hydrolock may result when attempting to mate the connectors. Use ONLY a clean nylon brush that is dedicated to the repair of the conditions in this bulletin. 3. With a one-inch nylon bristle brush, apply dielectric lubricant to both the module/component side and the harness side of the affected connector(s). 4. Reconnect the affected connector(s) and wipe away any excess lubricant that may be present. 5. Attempt to duplicate the condition by using the following information: - DTC Diagnostic Procedure - Circuit/System Description - Conditions for Running the DTC - Conditions for Setting the DTC - Diagnostic Aids - Circuit/System Verification ‹› If the condition cannot be duplicated, the repair is complete. ‹› If the condition can be duplicated, then follow the appropriate DTC, Symptom or Circuit/System Testing procedure (refer to SI). Repair Order Documentation Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > Customer Interest for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 153 Important The following information MUST be documented on the repair order. Failure to do so may result in a chargeback. - Customer vehicle condition. - Was a Service Lamp or Service Message illuminated? If yes, specify which Service Lamp or Service Message. - Was a DTC(s) set? If yes, specify which DTC(s) were set. - After following the procedure contained within this bulletin, could the condition be duplicated? ‹› If the condition was not duplicated, then document the affected module/component connector name and number on the repair order. - If the condition was duplicated after the procedure contained within this bulletin was followed, and additional diagnosis led to the replacement of a module or component, the SI Document ID Number MUST be written on the repair order. Parts Information Alternate Distributor For All of North America Note NyoGel(R) 760G Lubricant* is equivalent to GMSPO P/N 12377900, and P/N 10953529 (Canada), specified for use to correct the condition in this bulletin. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to: Warranty Information (Saab Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > Customer Interest for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 154 For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to refer to the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules Relay Module: All Technical Service Bulletins Electrical - MIL ON/DTC's Set By Various Control Modules TECHNICAL Bulletin No.: 09-06-03-004D Date: December 08, 2010 Subject: Intermittent No Crank/No Start, No Module Communication, MIL, Warning Lights, Vehicle Messages or DTCs Set by Various Control Modules - Diagnosing and Repairing Fretting Corrosion (Disconnect Affected Connector and Apply Dielectric Lubricant) Models: 2011 and Prior GM Passenger Cars and Trucks Attention: This repair can be applied to ANY electrical connection including, but not limited to: lighting, body electrical, in-line connections, powertrain control sensors, etc. DO NOT over apply lubricant to the point where it prevents the full engagement of sealed connectors. A light coating on the terminal surfaces is sufficient to correct the condition. Supercede: This bulletin is being revised to update the Attention statement and add the 2011 model year. Please discard Corporate Bulletin Number 09-06-03-004C (Section 06 Engine/Propulsion System). Condition Some customers may comment on any of the following conditions: - An intermittent no crank/no start - Intermittent malfunction indicator lamp (MIL) illumination - Intermittent service lamp illumination - Intermittent service message(s) being displayed The technician may determine that he is unable to duplicate the intermittent condition. Cause This condition may be caused by a buildup of nonconductive insulating oxidized debris known as fretting corrosion, occurring between two electrical contact surfaces of the connection or connector. This may be caused by any of the following conditions: - Vibration - Thermal cycling - Poor connection/terminal retention - Micro motion - A connector, component or wiring harness not properly secured resulting in movement On low current signal circuits this condition may cause high resistance, resulting in intermittent connections. On high current power circuits this condition may cause permanent increases in the resistance and may cause a device to become inoperative. Representative List of Control Modules and Components The following is only a representative list of control modules and components that may be affected by this connection or connector condition and DOES NOT include every possible module or component for every vehicle. - Blower Control Module - Body Control Module (BCM) - Communication Interface Module (CIM) - Cooling Fan Control Module - Electronic Brake Control Module (EBCM) - Electronic Brake and Traction Control Module (EBTCM) - Electronic Suspension Control (ESC) Module - Engine Control Module (ECM) - Heating, Ventilation and Air Conditioning (HVAC) Control Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 160 - HVAC Actuator - Inflatable Restraint Sensing and Diagnostic Module (SDM) - Any AIR BAG module - Seatbelt Lap Anchor Pretensioner - Seatbelt Retractor Pretensioner - An SIR system connection or connector condition resulting in the following DTCs being set: B0015, B0016, B0019, B0020, B0022, or B0023 - Powertrain Control Module (PCM) - Remote Control Door Lock Receiver (RCDLR) - Transmission Control Module (TCM) Correction Important DO NOT replace the control module, wiring or component for the following conditions: - The condition is intermittent and cannot be duplicated. - The condition is present and by disconnecting and reconnecting the connector the condition can no longer be duplicated. Use the following procedure to correct the conditions listed above. 1. Install a scan tool and perform the Diagnostic System Check - Vehicle. Retrieve and record any existing history or current DTCs from all of the control modules (refer to SI). ‹› If any DTC(s) are set, refer to Diagnostic Trouble Code (DTC) List - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). ‹› If DTCs are not set, refer to Symptoms - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). 2. When identified, use the appropriate DTC Diagnostics, Symptoms, Schematics, Component Connector End Views and Component Locator documents to locate and disconnect the affected harness connector(s) which are causing the condition. Note Fretting corrosion looks like little dark smudges on electrical terminals and appear where the actual electrical contact is being made. In less severe cases it may be unable to be seen or identified without the use of a magnifying glass. Important DO NOT apply an excessive amount of dielectric lubricant to the connectors as shown, as hydrolock may result when attempting to mate the connectors. Use ONLY a clean nylon brush that is dedicated to the repair of the conditions in this bulletin. 3. With a one-inch nylon bristle brush, apply dielectric lubricant to both the module/component side and the harness side of the affected connector(s). 4. Reconnect the affected connector(s) and wipe away any excess lubricant that may be present. 5. Attempt to duplicate the condition by using the following information: - DTC Diagnostic Procedure - Circuit/System Description - Conditions for Running the DTC - Conditions for Setting the DTC - Diagnostic Aids - Circuit/System Verification ‹› If the condition cannot be duplicated, the repair is complete. ‹› If the condition can be duplicated, then follow the appropriate DTC, Symptom or Circuit/System Testing procedure (refer to SI). Repair Order Documentation Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 161 Important The following information MUST be documented on the repair order. Failure to do so may result in a chargeback. - Customer vehicle condition. - Was a Service Lamp or Service Message illuminated? If yes, specify which Service Lamp or Service Message. - Was a DTC(s) set? If yes, specify which DTC(s) were set. - After following the procedure contained within this bulletin, could the condition be duplicated? ‹› If the condition was not duplicated, then document the affected module/component connector name and number on the repair order. - If the condition was duplicated after the procedure contained within this bulletin was followed, and additional diagnosis led to the replacement of a module or component, the SI Document ID Number MUST be written on the repair order. Parts Information Alternate Distributor For All of North America Note NyoGel(R) 760G Lubricant* is equivalent to GMSPO P/N 12377900, and P/N 10953529 (Canada), specified for use to correct the condition in this bulletin. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to: Warranty Information (Saab Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Accessories and Optional Equipment > Relay Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Relay Module: > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 162 For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to refer to the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Lock Relay > Component Information > Locations Door Lock Relay: Locations Fuse Block - I/P Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Technical Service Bulletins > Body - Door Module/Switch Programming Information Door Module: Technical Service Bulletins Body - Door Module/Switch Programming Information INFORMATION Bulletin No.: 08-08-64-013 Date: August 19, 2008 Subject: Information on Reprogramming Replacement Door Modules/Switches Models: 2006-2009 Buick Lucerne 2008-2009 Buick Enclave 2006-2009 Cadillac DTS 2007-2009 Cadillac Escalade, Escalade ESV, Escalade EXT, SRX 2008-2009 Cadillac CTS 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Acadia, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 2007-2009 Saturn OUTLOOK A large number of door modules are being returned through the Warranty Parts Center (WPC). The returned part analyses indicate that the door modules/switches are missing their respective software calibrations. Important: For step-by-step programming instructions, please refer to the Techline Information System (TIS) terminal. Select the appropriate controller - Driver Door Module (DDM) or Passenger Door Module (PDM). Any time a new door module is replaced, the module will require the updated software and/or calibration files using the TIS Service Programming System (SPS) application. Refer to Door Control Module Programming and Setup in SI. The information in this bulletin is being provided to help reduce the amount of door modules being returned. Check the wiring at the respective door module, the door "doc-n-loc" electrical connectors, software calibrations, and the specific hardware or wiring associated with the customer complaint (e.g., window regulator, outside mirror, door handle, etc.) prior to replacing any door module. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions Door Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 173 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 174 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 175 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 176 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 177 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 178 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 179 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 180 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 181 Door Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 182 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 183 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 184 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 185 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 186 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 187 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 188 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 189 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 190 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 191 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 192 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 193 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 194 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 195 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 196 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 197 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 198 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 199 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 200 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 201 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 202 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 203 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 204 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 205 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 206 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 207 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 208 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 209 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 210 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 211 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 212 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 213 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 214 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 215 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 216 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 217 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 218 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 219 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 220 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 221 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 222 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 223 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 224 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 225 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 226 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 227 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 228 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 229 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 230 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 231 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 232 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 233 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 234 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 235 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 236 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 237 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 238 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 239 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 240 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 241 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 242 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 243 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 244 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 245 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 246 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 247 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 248 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 249 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 250 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 251 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 252 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 253 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 254 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 255 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 256 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 257 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 258 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 259 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 260 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 261 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 262 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 263 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 264 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 265 Door Module: Connector Views Driver Door Module (DDM) - C1 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 266 Driver Door Module (DDM) - C2 (With RPO Code YE9) (Pin 1 To 14) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 267 Driver Door Module (DDM) - C2 (With RPO Code YE9) (Pin 15 To 26) Driver Door Module (DDM) - C3 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 268 Driver Door Module (DDM) - C4 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 269 Driver Door Module (DDM) - C5 (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 270 Driver Door Module (DDM) - C5 (Memory/Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 271 Passenger Door Module (PDM) - C1 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 272 Passenger Door Module (PDM) - C2 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 273 Passenger Door Module (PDM) - C3 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 274 Passenger Door Module (PDM) - C4 (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 275 Passenger Door Module (PDM) - C5 (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Door Module > Component Information > Diagrams > Diagram Information and Instructions > Page 276 Passenger Door Module (PDM) - C5 (Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Keyless Entry Module > Component Information > Service and Repair Keyless Entry Module: Service and Repair Remote Control Door Lock Receiver Replacement The remote control door lock module is incorporated into the passenger side window switch module. Refer to Door Lock and Side Window Switch Replacement - Passenger Side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Memory Positioning Module > Component Information > Diagrams Memory Positioning Module: Diagrams Memory Seat Module - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Memory Positioning Module > Component Information > Diagrams > Page 283 Memory Seat Module - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Memory Positioning Module > Component Information > Diagrams > Page 284 Memory Seat Module - C3 (Pin 1 To 25) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Memory Positioning Module > Component Information > Diagrams > Page 285 Memory Seat Module - C3 (Pin 26) Memory Seat Module - C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Memory Positioning Module > Component Information > Diagrams > Page 286 Memory Positioning Module: Service and Repair MEMORY SEAT CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the seat cushion. 2. Disconnect the upper electrical harness connectors (3). 3. Remove the module (2) retaining screws (1). 4. Slide the module to the right to disengage the lower retainers. 5. Disconnect the lower electrical harness connectors (2). 6. Remove the module from the vehicle. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Memory Positioning Module > Component Information > Diagrams > Page 287 1. Position the module into the vehicle. 2. Connect the lower electrical harness connectors (2). 3. Slide the module (2) to the left to engage the lower retainers. 4. NOTE: Refer to Fastener Notice. Install the module retaining screws (3). Tighten the screws to 3 N.m (26 lb in). 5. Connect the upper electrical harness connectors (3). 6. Install the seat cushion. 7. If a new memory seat module was installed, calibrate the seat. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations Driver Seat (1 Of 2) (With RPO Codes AG1 And AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations > Page 291 Power Seat Control Module: Diagrams Memory Seat Module - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations > Page 292 Memory Seat Module - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations > Page 293 Memory Seat Module - C3 (Pin 1 To 25) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations > Page 294 Memory Seat Module - C3 (Pin 26) Memory Seat Module - C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations > Page 295 Power Seat Control Module: Service and Repair MEMORY SEAT CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the seat cushion. 2. Disconnect the upper electrical harness connectors (3). 3. Remove the module (2) retaining screws (1). 4. Slide the module to the right to disengage the lower retainers. 5. Disconnect the lower electrical harness connectors (2). 6. Remove the module from the vehicle. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Power Seat Control Module > Component Information > Locations > Page 296 1. Position the module into the vehicle. 2. Connect the lower electrical harness connectors (2). 3. Slide the module (2) to the left to engage the lower retainers. 4. NOTE: Refer to Fastener Notice. Install the module retaining screws (3). Tighten the screws to 3 N.m (26 lb in). 5. Connect the upper electrical harness connectors (3). 6. Install the seat cushion. 7. If a new memory seat module was installed, calibrate the seat. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > Customer Interest for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm Seat Heater Control Module: Customer Interest Seats - Driver/Passenger Heated Seats Inop./Slow to Warm TECHNICAL Bulletin No.: 10-08-50-008B Date: January 13, 2011 Subject: Driver or Passenger Heated Seat Inoperative, Slow to Warm, DTC(s) Set (Repair Connector, Re-Route Harness) Models: 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2010 Chevrolet Silverado, Suburban, Tahoe 2011 Chevrolet Silverado Heavy Duty 2007-2010 GMC Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2011 GMC Sierra Heavy Duty All Equipped with Heated Front Seat (RPO AN3, KA1) or Heated and Cooled Seat (RPO KB6) and/or Luxury Package (RPO PCK) Supercede: This bulletin is being revised to update the RPOs. Please discard Corporate Bulletin Number 10-08-50-008A (Section 08 - Body and Accessories). Condition Some customers may comment that the driver or passenger heated seat system exhibits the following symptoms: - Heated seat turns on and then turns off within 1 to 10 minutes (at any 60 second interval). - The system doesn't get warm enough, or gets warm very slowly. - The heated seat system is completely inoperative. Upon further review, DTCs B2430 0D and/or B2180 0D may be set as a current or history code if the vehicle is equipped with heated seats only (RPO KA1). Also, the LED indicator for the heated seats may come On and then flash after approximately 1 minute, then go out. If the vehicle is equipped with heated and cooled seats (KB6), the switch LED indicator may stay On, but the heated and cooled seat is inoperative. The fan will continue to blow air. Cause Heated Seats (RPO AN3, KA1) The heated seat control circuit terminal and/or ground terminal in harness connector X1 to the memory seat module (MSM) may have lost tension and is loose. The reduced terminal tension increases resistance in the connector, which may result in the symptoms described above. Heated and Cooled Seats (RPO KB6) The thermo-electric device (TED) in the seat cushion/seat back ventilation heating and cooling module may have become inoperative. Correction Heated Seats (RPO AN3, KA1) Follow the steps below to correct the concern with the heated seats. Note This repair requires a unique anti-abrasion electrical tape and harness clip from Kent Automotive. Refer to the Parts Information below. 1. Access and remove the seat bolts/nuts. 2. Adjust the seat rearward about halfway. Adjust the seat recline full forward. 3. Tilt the seat backward to access the bottom of the seat. Prop the seat up with a suitable tool if required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > Customer Interest for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 305 4. Disconnect seat harness connectors (1) X1, X2, X3 and X4 from the MSM. 5. Identify connector X1. Refer to Component Connector End Views in SI. 6. Perform a terminal drag test on connector X1, paying special attention to terminals 1, 4, 6, 11 and 14. Using an equivalent male terminal from the J-38125, test that the retention force is significantly different between a good terminal and a suspect terminal. Refer to Testing for Intermittent Conditions and Poor Connections in SI. 7. Replace any terminal in question including connector X1 terminals 1, 4, 6, 11 and 14 if necessary. Refer to Repairing Connector Terminals in SI. 8. Identify connector X4. Refer to Component Connector End Views in SI. 9. Perform the terminal drag test described in step 6, paying special attention to terminal 14. 10. Replace any terminal in question including connector X4 terminal 14 if necessary. Refer to Repairing Connector Terminals in SI. 11. Remove the harness clip (1) from the plastic carrier. 12. Cut the electrical tape holding the harness in the plastic carrier using a sharp utility knife in the area shown (1). 13. Free the harness from the carrier back to the area shown (1). 14. Obtain "*Woven Polyester (PET) Electrical Tape" (Special Order P/N RZ97156A00) from Kent Automotive. Refer to Parts Information below. Important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > Customer Interest for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 306 DO NOT substitute with vinyl electrical tape or friction tape. Use only the tape specified above. 15. Tape the harness starting at the MSM connectors (1) extending back to the new break-out location (2) in the plastic carrier. 16. Install a plastic tie strap around the harness and the plastic carrier at the break-out point (1). 17. Install the new harness edge clip (1) 10 mm (0.4 in) further from the connectors and the existing harness clip. Ensure the clip is installed in the orientation shown. 18. Install the harness with the new harness clip in the location shown (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > Customer Interest for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 307 19. Reinstall the harness connectors (1) to the MSM. 20. Reinstall the seat to the vehicle. Heated and Cooled Seats (RPO KB6) Follow the steps below to correct the concern with the heated and cooled seats. 1. Inspect the ventilation heating and cooling module for a concern with the TED. Refer to Seat Heating and Cooling, Diagnostic Information and Procedures in SI. Note If the heated and cooled seat function is inoperative, but the heat switch indicators are On, the MSM is functioning properly and the concern is with the TED. 2. If the TED is found to be the concern, replace the seat cushion or seat back ventilation heating and cooling module. Refer to Driver or Passenger Seat Back Ventilation Heating and Cooling Blower Replacement or Driver or Passenger Seat Cushion Ventilation Heating and Cooling Blower Replacement in SI. If the TED is not the concern, follow normal diagnostics and repair in SI. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Use the appropriate Labor Operation based on the repair completed. Heated Seats (RPO AN3, KA1) For vehicles repaired under warranty, use: Heated and Cooled Seats (RPO KB6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > Customer Interest for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 308 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm Seat Heater Control Module: All Technical Service Bulletins Seats - Driver/Passenger Heated Seats Inop./Slow to Warm TECHNICAL Bulletin No.: 10-08-50-008B Date: January 13, 2011 Subject: Driver or Passenger Heated Seat Inoperative, Slow to Warm, DTC(s) Set (Repair Connector, Re-Route Harness) Models: 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2010 Chevrolet Silverado, Suburban, Tahoe 2011 Chevrolet Silverado Heavy Duty 2007-2010 GMC Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2011 GMC Sierra Heavy Duty All Equipped with Heated Front Seat (RPO AN3, KA1) or Heated and Cooled Seat (RPO KB6) and/or Luxury Package (RPO PCK) Supercede: This bulletin is being revised to update the RPOs. Please discard Corporate Bulletin Number 10-08-50-008A (Section 08 - Body and Accessories). Condition Some customers may comment that the driver or passenger heated seat system exhibits the following symptoms: - Heated seat turns on and then turns off within 1 to 10 minutes (at any 60 second interval). - The system doesn't get warm enough, or gets warm very slowly. - The heated seat system is completely inoperative. Upon further review, DTCs B2430 0D and/or B2180 0D may be set as a current or history code if the vehicle is equipped with heated seats only (RPO KA1). Also, the LED indicator for the heated seats may come On and then flash after approximately 1 minute, then go out. If the vehicle is equipped with heated and cooled seats (KB6), the switch LED indicator may stay On, but the heated and cooled seat is inoperative. The fan will continue to blow air. Cause Heated Seats (RPO AN3, KA1) The heated seat control circuit terminal and/or ground terminal in harness connector X1 to the memory seat module (MSM) may have lost tension and is loose. The reduced terminal tension increases resistance in the connector, which may result in the symptoms described above. Heated and Cooled Seats (RPO KB6) The thermo-electric device (TED) in the seat cushion/seat back ventilation heating and cooling module may have become inoperative. Correction Heated Seats (RPO AN3, KA1) Follow the steps below to correct the concern with the heated seats. Note This repair requires a unique anti-abrasion electrical tape and harness clip from Kent Automotive. Refer to the Parts Information below. 1. Access and remove the seat bolts/nuts. 2. Adjust the seat rearward about halfway. Adjust the seat recline full forward. 3. Tilt the seat backward to access the bottom of the seat. Prop the seat up with a suitable tool if required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 314 4. Disconnect seat harness connectors (1) X1, X2, X3 and X4 from the MSM. 5. Identify connector X1. Refer to Component Connector End Views in SI. 6. Perform a terminal drag test on connector X1, paying special attention to terminals 1, 4, 6, 11 and 14. Using an equivalent male terminal from the J-38125, test that the retention force is significantly different between a good terminal and a suspect terminal. Refer to Testing for Intermittent Conditions and Poor Connections in SI. 7. Replace any terminal in question including connector X1 terminals 1, 4, 6, 11 and 14 if necessary. Refer to Repairing Connector Terminals in SI. 8. Identify connector X4. Refer to Component Connector End Views in SI. 9. Perform the terminal drag test described in step 6, paying special attention to terminal 14. 10. Replace any terminal in question including connector X4 terminal 14 if necessary. Refer to Repairing Connector Terminals in SI. 11. Remove the harness clip (1) from the plastic carrier. 12. Cut the electrical tape holding the harness in the plastic carrier using a sharp utility knife in the area shown (1). 13. Free the harness from the carrier back to the area shown (1). 14. Obtain "*Woven Polyester (PET) Electrical Tape" (Special Order P/N RZ97156A00) from Kent Automotive. Refer to Parts Information below. Important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 315 DO NOT substitute with vinyl electrical tape or friction tape. Use only the tape specified above. 15. Tape the harness starting at the MSM connectors (1) extending back to the new break-out location (2) in the plastic carrier. 16. Install a plastic tie strap around the harness and the plastic carrier at the break-out point (1). 17. Install the new harness edge clip (1) 10 mm (0.4 in) further from the connectors and the existing harness clip. Ensure the clip is installed in the orientation shown. 18. Install the harness with the new harness clip in the location shown (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 316 19. Reinstall the harness connectors (1) to the MSM. 20. Reinstall the seat to the vehicle. Heated and Cooled Seats (RPO KB6) Follow the steps below to correct the concern with the heated and cooled seats. 1. Inspect the ventilation heating and cooling module for a concern with the TED. Refer to Seat Heating and Cooling, Diagnostic Information and Procedures in SI. Note If the heated and cooled seat function is inoperative, but the heat switch indicators are On, the MSM is functioning properly and the concern is with the TED. 2. If the TED is found to be the concern, replace the seat cushion or seat back ventilation heating and cooling module. Refer to Driver or Passenger Seat Back Ventilation Heating and Cooling Blower Replacement or Driver or Passenger Seat Cushion Ventilation Heating and Cooling Blower Replacement in SI. If the TED is not the concern, follow normal diagnostics and repair in SI. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Use the appropriate Labor Operation based on the repair completed. Heated Seats (RPO AN3, KA1) For vehicles repaired under warranty, use: Heated and Cooled Seats (RPO KB6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Seat Heater Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Heater Control Module: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 317 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Sunroof / Moonroof Module > Component Information > Locations Sunroof Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Sunroof / Moonroof Module > Component Information > Locations > Page 321 Sunroof / Moonroof Module: Diagrams Sunroof Control Module C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Sunroof / Moonroof Module > Component Information > Locations > Page 322 Sunroof Control Module C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Body and Frame > Sunroof / Moonroof Module > Component Information > Locations > Page 323 Sunroof / Moonroof Module: Service and Repair SUNROOF CONTROL MODULE REPLACEMENT Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 04-05-25-002E > Mar > 09 > Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set Electronic Brake Control Module: Customer Interest Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set TECHNICAL Bulletin No.: 04-05-25-002E Date: March 11, 2009 Subject: ABS Light On, DTCs C0265, C0201, U1041 Set and/or Loss of Communication with Brake Module (Reground EBCM Ground) Models Supercede: This bulletin is being revised to add step 2 to the procedure and update the Parts and Warranty Information. Please discard Corporate Bulletin Number 04-05-25-002D (Section 05 - Brakes). Condition Some customers may comment that the ABS light is on. Upon further inspection, DTCs C0265 and C0201 may be set in the brake module. It is also possible for DTC U1041 to set in other modules. There may also be a loss of communication with the brake module. Cause A poor connection at the EBCM ground is causing unnecessary replacement of brake modules. Important: The EBCM ground is different for each application. Refer to the list below for the proper ground reference: ^ Midsize Utilities = Ground 304 ^ SSR = Ground 400 ^ Fullsize Trucks and Utilities = Ground 110 Correction Important: Do not replace the brake module to correct this condition. Perform the following repair before further diagnosis of the EBCM. Perform the following steps to improve the connection of the EBCM Ground: 1. Remove the EBCM Ground. The EBCM Ground is located on the frame beneath the driver's side door. If multiple grounds are found in this location, the EBCM ground can be identified as the heavy (12-gauge) wire. 2. If the original fastener has a welded on nut, remove the nut from the frame, and if required, enlarge the bolt hole to accommodate the new bolt and nut. 3. Clean the area, front and back, using a tool such as a *3M(TM) Scotch-Brite Roloc disc or equivalent. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 04-05-25-002E > Mar > 09 > Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set > Page 333 4. Install the ground, then the washer and then the bolt to the frame. Important: It is important to use the bolts, washers and nuts specified in this bulletin. These parts have been identified due to their conductive finish. 5. Install a washer and nut to the back side of the frame. Tighten Tighten the nut to 9 Nm (79 lb in). 6. Cover the front and back side of the repair area using Rubberized Undercoating. An additional check can be made to ensure a good connection for the battery cable to frame ground. It is possible for this ground to cause similar symptoms with the ABS as described above. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-05-25-002E > Mar > 09 > Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set Electronic Brake Control Module: All Technical Service Bulletins Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set TECHNICAL Bulletin No.: 04-05-25-002E Date: March 11, 2009 Subject: ABS Light On, DTCs C0265, C0201, U1041 Set and/or Loss of Communication with Brake Module (Reground EBCM Ground) Models Supercede: This bulletin is being revised to add step 2 to the procedure and update the Parts and Warranty Information. Please discard Corporate Bulletin Number 04-05-25-002D (Section 05 - Brakes). Condition Some customers may comment that the ABS light is on. Upon further inspection, DTCs C0265 and C0201 may be set in the brake module. It is also possible for DTC U1041 to set in other modules. There may also be a loss of communication with the brake module. Cause A poor connection at the EBCM ground is causing unnecessary replacement of brake modules. Important: The EBCM ground is different for each application. Refer to the list below for the proper ground reference: ^ Midsize Utilities = Ground 304 ^ SSR = Ground 400 ^ Fullsize Trucks and Utilities = Ground 110 Correction Important: Do not replace the brake module to correct this condition. Perform the following repair before further diagnosis of the EBCM. Perform the following steps to improve the connection of the EBCM Ground: 1. Remove the EBCM Ground. The EBCM Ground is located on the frame beneath the driver's side door. If multiple grounds are found in this location, the EBCM ground can be identified as the heavy (12-gauge) wire. 2. If the original fastener has a welded on nut, remove the nut from the frame, and if required, enlarge the bolt hole to accommodate the new bolt and nut. 3. Clean the area, front and back, using a tool such as a *3M(TM) Scotch-Brite Roloc disc or equivalent. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-05-25-002E > Mar > 09 > Brakes - ABS Lamp ON/DTC's C0265/C0201/U1041 Set > Page 339 4. Install the ground, then the washer and then the bolt to the frame. Important: It is important to use the bolts, washers and nuts specified in this bulletin. These parts have been identified due to their conductive finish. 5. Install a washer and nut to the back side of the frame. Tighten Tighten the nut to 9 Nm (79 lb in). 6. Cover the front and back side of the repair area using Rubberized Undercoating. An additional check can be made to ensure a good connection for the battery cable to frame ground. It is possible for this ground to cause similar symptoms with the ABS as described above. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Electronic Brake Control Module: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter Power Mirror Position Switch/Sensor: All Technical Service Bulletins Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter TECHNICAL Bulletin No.: 06-08-64-027I Date: April 12, 2011 Subject: Left or Right Outside Rearview Mirror Glass Shake or Flutter (Relearn Power Mirrors and Replace Mirror, If Necessary) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon XL, Yukon Denali All Equipped with Power Folding Mirrors RPO DL3 Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-08-64-027H (Section 08 - Body and Accessories). Condition Some customers may comment that the left or right outside rearview mirror glass shakes or flutters at normal driving speeds. Cause - The mirror may have been accidentally pushed in manually or obstructed while folding. - The mirror actuator screws may be loose, allowing the mirror to move. - The metal spring may not have enough tension to hold the mirror from moving. Correction Follow the procedure below to correct this condition. 1. The power folding mirrors should be cycled three complete times to relearn the mirror positions. Then perform a road test and check the mirror glass for stability. If stability is not corrected, proceed to Step 2. 2. Remove the mirror glass. Refer to Mirror Face Replacement in SI. 3. Verify the torque on the four retaining screws on the actuator. Tighten Tighten the screws to 1.13-1.6 Nm (10-14 lb in). 4. Bend the metal spring up to increase the tension engagement to the mirror housing 13 mm (1/2 in). 5. Install the glass assembly by pressing firmly, taking care not to allow the spring finger to unseat from its intended track in the mirror housing. Road test the vehicle. If stability is not improved, replace the mirror assembly. Refer to Power Mirror Replacement in SI. Parts Information If replacing the mirror assembly, see Mirror in Group 16.068 of the appropriate Parts Catalog for part numbers and usage. Warranty Information Important Only one Labor Operation should be claimed depending on the actual repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Electronic Brake Control Module: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter > Page 345 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Electronic Brake Control Module: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter > Page 351 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Technical Service Bulletins > Page 352 Electronic Brake Control Module: Locations Antilock Brake System Component Views Electronic Brake Control Module (EBCM) 1 - Electronic Brake Control Module (EBCM) 2 - Electronic Brake Control Module (EBCM) Electrical Connector - C1 3 - Electronic Brake Control Module (EBCM) Electrical Connector - C2 4 - Frame Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Diagrams > Electronic Brake Control Module (EBCM) C1 Electronic Brake Control Module: Diagrams Electronic Brake Control Module (EBCM) C1 Electronic Brake Control Module (EBCM) C1 Electronic Brake Control Module (EBCM) C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Diagrams > Electronic Brake Control Module (EBCM) C1 > Page 355 Electronic Brake Control Module: Diagrams Electronic Brake Control Module (EBCM) C2 (8600 GVW or Less W/Rear Disc Brakes) Electronic Brake Control Module (EBCM) C2 (8600 GVW or Less w/Rear Disc Brakes) Electronic Brake Control Module (EBCM) C2 (8600 GVW Or Less W/Rear Disc Brakes) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Diagrams > Electronic Brake Control Module (EBCM) C1 > Page 356 Electronic Brake Control Module: Diagrams Electronic Brake Control Module (EBCM) C2 (Greater Than 8600 GVW or Rear Drum Brakes) Electronic Brake Control Module (EBCM) C2 (Greater Than 8600 GVW or Rear Drum Brakes) Electronic Brake Control Module (EBCM) C2 (Greater Than 8600 GVW Or Rear Drum Brakes) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Diagrams > Page 357 Electronic Brake Control Module: Service and Repair Electronic Brake Control Module Replacement Removal Procedure Caution: Refer to Battery Disconnect Caution. Important: After installation, calibrate the new electronic brake control module (EBCM) to the tire size that is appropriate to the vehicle. 1. Disconnect the negative battery cable. 2. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Important: The area around the electronic hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled ABS components. Thoroughly wash all contaminants from around the EHCU. 4. Remove the mounting screws (1) that fasten the EBCM (2) to the brake pressure modulator valve (BPMV) (3). 5. Remove the EBCM from the BPMV. Removal may require a light amount of force. 6. Remove the EBCM from the vehicle. 7. Clean the BPMV to EBCM mounting surfaces with a clean cloth. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Electronic Brake Control Module > Component Information > Diagrams > Page 358 1. Important: ^ Do not reuse the old mounting screws. Always install new mounting screws with the new EBCM. ^ Do not use RTV or any other type of sealant on the EBCM gasket or mating surfaces. Install the EBCM to the BPMV. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the new EBCM screws (1). Tighten the screws to 5 Nm (39 inch lbs.) in an X-pattern. 3. Lower the vehicle. 4. Connect the negative battery cable. 5. If installing a replacement module, program the replacement module. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning 6. Turn the ignition to the ON position. DO NOT start the engine. 7. Perform the Diagnostic System Check - Vehicle. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 09-05-22-004 > Nov > 09 > Electrical - 'No Trailer Connected' Message On DIC Trailer Brake Control Module: Customer Interest Electrical - 'No Trailer Connected' Message On DIC TECHNICAL Bulletin No.: 09-05-22-004 Date: November 05, 2009 Subject: No "Trailer Connected" Message on Driver Information Center (DIC) at Startup When Trailer is Connected (Reprogram ITBCM) Models: 2007-2008 Chevrolet Silverado 2007-2008 GMC Sierra Equipped with Integrated Trailer Brake (RPO JL1) Condition Some customers may comment that when they connect their trailer, with the engine off, and after they start the engine, the Trailer Connected message is not displayed on the DIC. With the engine running, if the trailer connector is cycled, the vehicle will detect the trailer and display Trailer Connected. This concern should only affect trailers equipped with trailer brakes on a single axle. Cause The trailer brake control system is only compatible with trailers equipped with electric trailer brakes. The system will not work or detect trailers equipped with any other types of brakes such as surge, air or electric-over-hydraulic trailer brake systems. When a trailer is connected, the Trailer Brake Control Module (TBCM) performs a test to determine if the trailer is equipped with electric trailer brakes. If the trailer wiring or electric trailer brake magnets have additional resistance (caused by poor connections, corrosion, improper splices, etc.), the TBCM may not be able to detect the trailer. Correction A revised calibration has been developed to address these issues. Reprogram the Integrated Trailer Brake Control Module (ITBCM) with updated calibration files using the TIS2WEB Service Programming System (SPS) application. Refer to SI and Service Programming System (SPS) documentation for programming instructions, if required. Refer to Trailer Brake Control Module Programming and Setup in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller Trailer Brake Control Module: All Technical Service Bulletins Accessories - Aftermarket Trailer Brake Controller INFORMATION Bulletin No.: 07-08-45-001F Date: November 09, 2010 Subject: Procedure for Installation of an Aftermarket Trailer Brake Controller Models: 2007-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2011 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 HUMMER H2 with Integrated Trailer Brake Controller Supercede: This bulletin is being revised to combine information from bulletins 06-08-45-008D and 07-08-45-001E. Please discard Corporate Bulletin Numbers 07-08-45-001E and 06-08-45-008D (Section 08 - Body and Accessories). Important Installation of an electric brake controller and the wiring connections outlined in this bulletin are the responsibility of the dealership or customer. These repairs should never be charged to warranty. If you have any questions, please consult with your District Service Manager. Some customers may request to have an aftermarket trailer brake controller added to their vehicle, OR in lieu of the factory integrated trailer brake controller (ITBC) (RPO JL1). Installation Instructions Starting with the new 2007 full-size utilities and pickups and 2008 HUMMER H2, there is no longer an electric trailer brake controller pigtail harness. To install an aftermarket trailer brake controller, use the four blunt cut wires located near the data link connector. The following steps should be used to complete the installation. Important Ensure that the ringlets are not interfering with the UBEC cover. 1. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. 2. ONLY For Vehicles Equipped with JL1 - Locate connector X126 or X115 (varies with vehicle build; refer to SI) near the underhood fuse block. Refer to SI Document ID# 1849049 - I/P Harness-Engine Compartment. Circuit 47 from the blunt cut wires near the data link connector will end Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 372 at connector X126 terminal "G" or X115 terminal "B5." Obtain enough Dark Blue 12 gauge wire to run from X126/X115 to the 7-way trailer connector at the bumper. On one end of the Dark Blue wire attach terminal part number 15304732, located in Delphi Tray 8 and insert into X126 "G" or terminal part number 15304720 located in Delphi Tray 19 and insert into X115 "B5." Run the Dark Blue wire in its own conduit along the frame to the 7-way trailer connector at the bumper. Remove circuit 47 from the 7-way trailer connector terminal "C" and tape the bare terminal and attach to the harness. Attach terminal part number 12110853, located in Delphi Tray 4, to the other end of the Dark Blue wire and insert it into the 7-way trailer connector terminal "C." 3. ONLY For Vehicles Equipped with JL1 - The Red/Black wire, circuit 242, must be connected to stud #2 of the 30 Amp fuse of the underhood fuse block. This wire is located between the left fender and the underhood fuse block. Important This procedure will not result in any trailer brake related display messages to be set. However, ITBC diagnostics will continue to function. If an ITBC fault is detected, a "Service Trailer Brake System" message will be displayed on the driver information center (DIC) and an appropriate DTC will be stored in the ITBC module. The operator will still be able to adjust gain and access the "Trailer Gain / Output" display page in the DIC. However, the factory installed ITBC system will not sense a trailer connection and will not provide output to the trailer. 4. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 5. Pull the trailering wire harness down. 6. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 373 - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 7. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 8. Break the tape on the red/black wire and pull it toward the front of vehicle. 9. Remove the lid from the electrical center. Auxiliary Power (Applies to All LD and 2007-2009 HD's Only) Without JL1 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 374 Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers Trailer Brake Control Module: All Technical Service Bulletins Brakes - Aftermarket Trailer Brake Controllers INFORMATION Bulletin No.: 06-08-45-008D Date: July 12, 2010 Subject: Information on Auxiliary Power Wire at Trailer and Installation of Aftermarket Trailer Brake Controller - Towing, Tow Models: 2007-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2011 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2011 HUMMER H2 Supercede: This bulletin is being revised to add the 2011 model year and information about the orientation of the ringlet. Please discard Corporate Bulletin Number 06-08-45-008C (Section 08 Body and Accessories). Important Installation of an electric brake controller and the wiring connections outlined in this bulletin are the responsibility of the dealership or customer. These repairs should never be charged to warranty. If you have any questions, please consult with your District Service Manager. Some customers may have questions on how to connect an electric trailer brake controller or where the brake controller pigtail harness is located. Starting with the new 2007 full-size utilities and pickups and 2008 HUMMER H2, there is no longer an electric trailer brake controller pigtail harness. An aftermarket brake controller will need to be installed/connected to the blunt wires under the left side of the IP for vehicles built without JL1 - Integrated Brake Controller (full-size utilities and pickups). The following steps should be used to complete the installation. 1. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 2. Pull the trailering wire harness down. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 379 3. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 4. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 5. Break the tape on the red/black wire and pull it toward the front of vehicle. 6. Remove the lid from the electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 7. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. Auxiliary Power (Applies to All LD & 07-09 HD's Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 380 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Trailer Brake Control Module: > 09-05-22-004 > Nov > 09 > Electrical - 'No Trailer Connected' Message On DIC Trailer Brake Control Module: All Technical Service Bulletins Electrical - 'No Trailer Connected' Message On DIC TECHNICAL Bulletin No.: 09-05-22-004 Date: November 05, 2009 Subject: No "Trailer Connected" Message on Driver Information Center (DIC) at Startup When Trailer is Connected (Reprogram ITBCM) Models: 2007-2008 Chevrolet Silverado 2007-2008 GMC Sierra Equipped with Integrated Trailer Brake (RPO JL1) Condition Some customers may comment that when they connect their trailer, with the engine off, and after they start the engine, the Trailer Connected message is not displayed on the DIC. With the engine running, if the trailer connector is cycled, the vehicle will detect the trailer and display Trailer Connected. This concern should only affect trailers equipped with trailer brakes on a single axle. Cause The trailer brake control system is only compatible with trailers equipped with electric trailer brakes. The system will not work or detect trailers equipped with any other types of brakes such as surge, air or electric-over-hydraulic trailer brake systems. When a trailer is connected, the Trailer Brake Control Module (TBCM) performs a test to determine if the trailer is equipped with electric trailer brakes. If the trailer wiring or electric trailer brake magnets have additional resistance (caused by poor connections, corrosion, improper splices, etc.), the TBCM may not be able to detect the trailer. Correction A revised calibration has been developed to address these issues. Reprogram the Integrated Trailer Brake Control Module (ITBCM) with updated calibration files using the TIS2WEB Service Programming System (SPS) application. Refer to SI and Service Programming System (SPS) documentation for programming instructions, if required. Refer to Trailer Brake Control Module Programming and Setup in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller Trailer Brake Control Module: All Technical Service Bulletins Accessories - Aftermarket Trailer Brake Controller INFORMATION Bulletin No.: 07-08-45-001F Date: November 09, 2010 Subject: Procedure for Installation of an Aftermarket Trailer Brake Controller Models: 2007-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2011 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 HUMMER H2 with Integrated Trailer Brake Controller Supercede: This bulletin is being revised to combine information from bulletins 06-08-45-008D and 07-08-45-001E. Please discard Corporate Bulletin Numbers 07-08-45-001E and 06-08-45-008D (Section 08 - Body and Accessories). Important Installation of an electric brake controller and the wiring connections outlined in this bulletin are the responsibility of the dealership or customer. These repairs should never be charged to warranty. If you have any questions, please consult with your District Service Manager. Some customers may request to have an aftermarket trailer brake controller added to their vehicle, OR in lieu of the factory integrated trailer brake controller (ITBC) (RPO JL1). Installation Instructions Starting with the new 2007 full-size utilities and pickups and 2008 HUMMER H2, there is no longer an electric trailer brake controller pigtail harness. To install an aftermarket trailer brake controller, use the four blunt cut wires located near the data link connector. The following steps should be used to complete the installation. Important Ensure that the ringlets are not interfering with the UBEC cover. 1. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. 2. ONLY For Vehicles Equipped with JL1 - Locate connector X126 or X115 (varies with vehicle build; refer to SI) near the underhood fuse block. Refer to SI Document ID# 1849049 - I/P Harness-Engine Compartment. Circuit 47 from the blunt cut wires near the data link connector will end Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 390 at connector X126 terminal "G" or X115 terminal "B5." Obtain enough Dark Blue 12 gauge wire to run from X126/X115 to the 7-way trailer connector at the bumper. On one end of the Dark Blue wire attach terminal part number 15304732, located in Delphi Tray 8 and insert into X126 "G" or terminal part number 15304720 located in Delphi Tray 19 and insert into X115 "B5." Run the Dark Blue wire in its own conduit along the frame to the 7-way trailer connector at the bumper. Remove circuit 47 from the 7-way trailer connector terminal "C" and tape the bare terminal and attach to the harness. Attach terminal part number 12110853, located in Delphi Tray 4, to the other end of the Dark Blue wire and insert it into the 7-way trailer connector terminal "C." 3. ONLY For Vehicles Equipped with JL1 - The Red/Black wire, circuit 242, must be connected to stud #2 of the 30 Amp fuse of the underhood fuse block. This wire is located between the left fender and the underhood fuse block. Important This procedure will not result in any trailer brake related display messages to be set. However, ITBC diagnostics will continue to function. If an ITBC fault is detected, a "Service Trailer Brake System" message will be displayed on the driver information center (DIC) and an appropriate DTC will be stored in the ITBC module. The operator will still be able to adjust gain and access the "Trailer Gain / Output" display page in the DIC. However, the factory installed ITBC system will not sense a trailer connection and will not provide output to the trailer. 4. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 5. Pull the trailering wire harness down. 6. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 391 - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 7. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 8. Break the tape on the red/black wire and pull it toward the front of vehicle. 9. Remove the lid from the electrical center. Auxiliary Power (Applies to All LD and 2007-2009 HD's Only) Without JL1 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 392 Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers Trailer Brake Control Module: All Technical Service Bulletins Brakes - Aftermarket Trailer Brake Controllers INFORMATION Bulletin No.: 06-08-45-008D Date: July 12, 2010 Subject: Information on Auxiliary Power Wire at Trailer and Installation of Aftermarket Trailer Brake Controller - Towing, Tow Models: 2007-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2011 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2011 HUMMER H2 Supercede: This bulletin is being revised to add the 2011 model year and information about the orientation of the ringlet. Please discard Corporate Bulletin Number 06-08-45-008C (Section 08 Body and Accessories). Important Installation of an electric brake controller and the wiring connections outlined in this bulletin are the responsibility of the dealership or customer. These repairs should never be charged to warranty. If you have any questions, please consult with your District Service Manager. Some customers may have questions on how to connect an electric trailer brake controller or where the brake controller pigtail harness is located. Starting with the new 2007 full-size utilities and pickups and 2008 HUMMER H2, there is no longer an electric trailer brake controller pigtail harness. An aftermarket brake controller will need to be installed/connected to the blunt wires under the left side of the IP for vehicles built without JL1 - Integrated Brake Controller (full-size utilities and pickups). The following steps should be used to complete the installation. 1. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 2. Pull the trailering wire harness down. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 397 3. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 4. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 5. Break the tape on the red/black wire and pull it toward the front of vehicle. 6. Remove the lid from the electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 7. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. Auxiliary Power (Applies to All LD & 07-09 HD's Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Brakes and Traction Control > Trailer Brake Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Trailer Brake Control Module: > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 398 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 404 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 405 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 406 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 407 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 408 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 409 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 410 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 411 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 412 Radiator Cooling Fan Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 413 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 414 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 415 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 416 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 417 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 418 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 419 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 420 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 421 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 422 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 423 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 424 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 425 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 426 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 427 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 428 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 429 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 430 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 431 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 432 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 433 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 434 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 435 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 436 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 437 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 438 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 439 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 440 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 441 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 442 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 443 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 444 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 445 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 446 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 447 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 448 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 449 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 450 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 451 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 452 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 453 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 454 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 455 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 456 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 457 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 458 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 459 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 460 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 461 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 462 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 463 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 464 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 465 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 466 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 467 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 468 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 469 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 470 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 471 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 472 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 473 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 474 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 475 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 476 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 477 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 478 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 479 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 480 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 481 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 482 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 483 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 484 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 485 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 486 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 487 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 488 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 489 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 490 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 491 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 492 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 493 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 494 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 495 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Locations Radiator Cooling Fan Motor Relay: Locations Fuse Block - Underhood - Cooling Fan (10 Series) Fuse Block - Underhood - Cooling Fan (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Motor Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 501 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 502 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 503 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 504 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 505 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 506 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 507 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 508 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 509 Radiator Cooling Fan Motor Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 510 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 511 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 512 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 513 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 514 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 515 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 516 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 517 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 518 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 519 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 520 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 521 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 522 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 523 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 524 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 525 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 526 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 527 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 528 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 529 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 530 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 531 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 532 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 533 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 534 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 535 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 536 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 537 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 538 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 539 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 540 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 541 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 542 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 543 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 544 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 545 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 546 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 547 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 548 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 549 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 550 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 551 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 552 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 553 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 554 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 555 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 556 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 557 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 558 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 559 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 560 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 561 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 562 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 563 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 564 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 565 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 566 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 567 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 568 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 569 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 570 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 571 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 572 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 573 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 574 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 575 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 576 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 577 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 578 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 579 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 580 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 581 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 582 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 583 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 584 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 585 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 586 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 587 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 588 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 589 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 590 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 591 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 592 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Cruise Control > Cruise Control Module > Component Information > Locations Cruise Control Module: Locations Cruise Control Component Views Cruise Control Module (CCM) 1 - Cruise Control Module 2 - Cruise Control Module Electrical Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Compressor Clutch Relay > Component Information > Locations Compressor Clutch Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Compressor Clutch Relay > Component Information > Locations > Page 601 Compressor Clutch Relay: Service and Repair Compressor Relay Replacement Removal Procedure 1. Remove the cover from the underhood convenience center (1). 2. Remove the compressor relay (2). Installation Procedure 1. Install the compressor relay (2). 2. Install the cover to the underhood convenience center (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > Recalls: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously Control Module HVAC: Recalls Campaign - HVAC Blower Not Functional Runs Continuously SPECIAL COVERAGE Bulletin No.: 11046 Date: April 07, 2011 Subject: 11046 - Special Coverage Adjustment - Heating, Ventilation, and Air Conditioning Blower Not Fully Functional on All Blower Speeds, Inoperative, or Runs Continuously with the Ignition Off Models: 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Sierra Equipped with Manual HVAC (CJ3) or Heavy Duty Heater (C42) Due to part availability, owner letters will be released in phases starting with older model year first. Owners for model year vehicles not included in first phase owner mailing will receive an owner advisory letter. The letter will inform the customer that parts are not yet available and that another letter will be sent to them when parts become available. A copy of this letter will be attached to the dealer message announcing this bulletin. In the meantime, if a customer brings their vehicle to the dealership with the condition described in this bulletin, repair the vehicle using the parts called out in this bulletin. Condition On some 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual heating, ventilation, and air conditioning (HVAC) system (CJ3) or heavy duty heater (C42), the interface between the electrical terminals of the relay resistor module and the wiring connector that powers the module may be incapable of conducting higher current levels for sustained periods of blower motor operation. In addition, moisture and other contaminants may enter the fresh air intake plenum and contact the internal circuit of the module or corrode the terminals. Either of the above may cause the relay resistor module or wiring connector to overheat, resulting in one or more of the following symptoms: - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position In very rare events, if the above symptoms are ignored, a fire could occur. Special Coverage Adjustment This special coverage covers the condition described above for a period of 10 years or 240,000 km, whichever occurs first, from the date the vehicle was originally placed in service, regardless of ownership. Dealers are to install a new blower motor resistor and resistor module connector. The repairs will be made at no charge to the customer. For vehicles covered by Vehicle Service Contracts, all eligible claims with repair orders on or after April 8, 2011 are covered by this special coverage and must be submitted using the labor operation codes provided with this bulletin. Claims with repair orders prior to April 8, 2011 must be submitted to the Service Contract provider. Vehicles Involved Involved are certain 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual HVAC (CJ3) or heavy duty heater (C42). Important Dealers are to confirm vehicle eligibility prior to beginning repairs by using the Applicable Warranties section in the Global Warranty Management system. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > Recalls: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 610 Parts required to complete this special coverage are to be obtained from General Motors Customer Care and Aftersales (GMCC&A;). Service Procedure Note The resistor module connector and blower motor resistor will need to be replaced if one or more of the symptoms below is present. - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position Determine if one or more of the above symptoms is present. If required refer to HVAC diagnostic information in SI. Refer to Resistor Module Connector and Blower Motor Resistor Replacement in this bulletin if one or more of the symptoms is present. Other HVAC repairs are NOT covered in this product safety special coverage bulletin. Resistor Module Connector and Blower Motor Resistor Replacement 1. Remove the blower fuses (Htr A/C & HVAC 1 fuses). 2. Lower the close-out panel enough to gain access to the resistor module connector. 3. Disconnect the connector from the resistor module. Note Connector replacement is required even if the connector was replaced on a previous service repair. 4. Remove the tape from the wiring harness to expose the wiring. 5. Cut the wires back far enough from the connector to eliminate any melted insulation on the wire. Note Use the old connector as a map for splicing the wires for the new connector. Be sure to use the correct crimping tool from the terminal repair kit J 38125. Use only Duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. 6. Install the new connector. Use the yellow splice sleeves provided with the connector. 7. Install the new blower motor resistor. 8. Reinstall the fuses. Test the blower motor to make sure all speeds are functional. 9. Reinstall the hush panel/close-out panel. Customer Reimbursement Customer requests for reimbursement of previously paid repairs to correct the condition described in this bulletin are to be submitted to the dealer prior to or by December 31, 2012. Repairs must have occurred within the 10 years of the date the vehicle was originally placed in service, or 240,000 kilometres, whichever occurs first. When a customer requests reimbursement, they must provide the following: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > Recalls: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 611 - Proof of ownership at time of repair. - Original paid receipt confirming the amount of unreimbursed repair expense(s) (including Service Contract deductibles), a description of the repair, and the person or entity performing the repair. If the work was done by someone other than a GM dealership, the amount of reimbursement will be limited to the amount that the repair would have cost GM to have it completed by a GM dealership. Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Warranty Transaction Information Submit a transaction using the table below. * The amount identified in "Net Item" should represent the dollar amount reimbursed to the customer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > Customer Interest: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set Control Module HVAC: Customer Interest A/C - Defaults To Full Hot/Full Cold/DTC's Set TECHNICAL Bulletin No.: 08-01-39-009B Date: September 24, 2010 Subject: HVAC Automatic Climate Control Defaults to Full Cold or Full Hot Despite Controls Being Set to Other Parameters, DTCs B0228, B0413, B0423, B0433, B3779 or B3782 Set (Reprogram HVAC Control Module) Models: 2008-2009 Buick Enclave 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Acadia, Sierra, Yukon Models 2008 HUMMER H2 Models 2007-2009 Saturn OUTLOOK with Automatic Climate Control System (RPO CJ2) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 08-01-39-009A (Section 01 - HVAC). Condition Some customers may comment that the Heating, Ventilation and Air Conditioning (HVAC) automatic climate control system defaults to full hot and/or full cold, despite the HVAC controls being set to other parameters. This condition may not exist during the next ignition cycle and the system may operate normally. Technicians may find DTCs B0228, B0413, B0423, B0433, B3779 or B3782 set as Current or in History. Cause This condition may be caused by a software anomaly. Correction Important If the vehicle is a 2007-2009 GMC Acadia or Saturn OUTLOOK with an additional customer concern of an inaccurate ambient temperature display, then it may be necessary to reprogram the HVAC control module AND relocate the ambient air temperature (AAT) sensor. Refer to Corporate Bulletin Number 08-01-39-008A - HVAC Ambient Temperature Sensor Display In Instrument Panel Cluster (IPC) Inaccurate Or Too High for more information. Note The first step applies to the following vehicles: Avalanche, Escalade, Suburban, Tahoe, Yukon. 1. Inspect for an open HVAC-IGN Fuse in the underhood fuse block. ‹› If the fuse is open, repair the short to ground. 2. A revised calibration has been released to address this condition. Reprogram the HVAC control module using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the HVAC Control Module Programming and Setup procedure in SI. 3. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. 4. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. 5. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. 6. After reprogramming clear all DTCs. Operate the vehicle within the Conditions for Running the DTC and verify that DTCs B0228, B0413, B0423, B0433, B3779 or B3782 do not reset as Current. ‹› If DTCs B0228, B0413, B0423, B0433, B3779, or B3782 are set as Current, refer to the DTC diagnostic procedures in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > Customer Interest: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set > Page 617 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module HVAC: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously Control Module HVAC: All Technical Service Bulletins Campaign - HVAC Blower Not Functional Runs Continuously SPECIAL COVERAGE Bulletin No.: 11046 Date: April 07, 2011 Subject: 11046 - Special Coverage Adjustment - Heating, Ventilation, and Air Conditioning Blower Not Fully Functional on All Blower Speeds, Inoperative, or Runs Continuously with the Ignition Off Models: 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Sierra Equipped with Manual HVAC (CJ3) or Heavy Duty Heater (C42) Due to part availability, owner letters will be released in phases starting with older model year first. Owners for model year vehicles not included in first phase owner mailing will receive an owner advisory letter. The letter will inform the customer that parts are not yet available and that another letter will be sent to them when parts become available. A copy of this letter will be attached to the dealer message announcing this bulletin. In the meantime, if a customer brings their vehicle to the dealership with the condition described in this bulletin, repair the vehicle using the parts called out in this bulletin. Condition On some 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual heating, ventilation, and air conditioning (HVAC) system (CJ3) or heavy duty heater (C42), the interface between the electrical terminals of the relay resistor module and the wiring connector that powers the module may be incapable of conducting higher current levels for sustained periods of blower motor operation. In addition, moisture and other contaminants may enter the fresh air intake plenum and contact the internal circuit of the module or corrode the terminals. Either of the above may cause the relay resistor module or wiring connector to overheat, resulting in one or more of the following symptoms: - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position In very rare events, if the above symptoms are ignored, a fire could occur. Special Coverage Adjustment This special coverage covers the condition described above for a period of 10 years or 240,000 km, whichever occurs first, from the date the vehicle was originally placed in service, regardless of ownership. Dealers are to install a new blower motor resistor and resistor module connector. The repairs will be made at no charge to the customer. For vehicles covered by Vehicle Service Contracts, all eligible claims with repair orders on or after April 8, 2011 are covered by this special coverage and must be submitted using the labor operation codes provided with this bulletin. Claims with repair orders prior to April 8, 2011 must be submitted to the Service Contract provider. Vehicles Involved Involved are certain 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual HVAC (CJ3) or heavy duty heater (C42). Important Dealers are to confirm vehicle eligibility prior to beginning repairs by using the Applicable Warranties section in the Global Warranty Management system. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module HVAC: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 623 Parts required to complete this special coverage are to be obtained from General Motors Customer Care and Aftersales (GMCC&A;). Service Procedure Note The resistor module connector and blower motor resistor will need to be replaced if one or more of the symptoms below is present. - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position Determine if one or more of the above symptoms is present. If required refer to HVAC diagnostic information in SI. Refer to Resistor Module Connector and Blower Motor Resistor Replacement in this bulletin if one or more of the symptoms is present. Other HVAC repairs are NOT covered in this product safety special coverage bulletin. Resistor Module Connector and Blower Motor Resistor Replacement 1. Remove the blower fuses (Htr A/C & HVAC 1 fuses). 2. Lower the close-out panel enough to gain access to the resistor module connector. 3. Disconnect the connector from the resistor module. Note Connector replacement is required even if the connector was replaced on a previous service repair. 4. Remove the tape from the wiring harness to expose the wiring. 5. Cut the wires back far enough from the connector to eliminate any melted insulation on the wire. Note Use the old connector as a map for splicing the wires for the new connector. Be sure to use the correct crimping tool from the terminal repair kit J 38125. Use only Duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. 6. Install the new connector. Use the yellow splice sleeves provided with the connector. 7. Install the new blower motor resistor. 8. Reinstall the fuses. Test the blower motor to make sure all speeds are functional. 9. Reinstall the hush panel/close-out panel. Customer Reimbursement Customer requests for reimbursement of previously paid repairs to correct the condition described in this bulletin are to be submitted to the dealer prior to or by December 31, 2012. Repairs must have occurred within the 10 years of the date the vehicle was originally placed in service, or 240,000 kilometres, whichever occurs first. When a customer requests reimbursement, they must provide the following: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module HVAC: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 624 - Proof of ownership at time of repair. - Original paid receipt confirming the amount of unreimbursed repair expense(s) (including Service Contract deductibles), a description of the repair, and the person or entity performing the repair. If the work was done by someone other than a GM dealership, the amount of reimbursement will be limited to the amount that the repair would have cost GM to have it completed by a GM dealership. Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Warranty Transaction Information Submit a transaction using the table below. * The amount identified in "Net Item" should represent the dollar amount reimbursed to the customer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module HVAC: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set Control Module HVAC: All Technical Service Bulletins A/C - Defaults To Full Hot/Full Cold/DTC's Set TECHNICAL Bulletin No.: 08-01-39-009B Date: September 24, 2010 Subject: HVAC Automatic Climate Control Defaults to Full Cold or Full Hot Despite Controls Being Set to Other Parameters, DTCs B0228, B0413, B0423, B0433, B3779 or B3782 Set (Reprogram HVAC Control Module) Models: 2008-2009 Buick Enclave 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Acadia, Sierra, Yukon Models 2008 HUMMER H2 Models 2007-2009 Saturn OUTLOOK with Automatic Climate Control System (RPO CJ2) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 08-01-39-009A (Section 01 - HVAC). Condition Some customers may comment that the Heating, Ventilation and Air Conditioning (HVAC) automatic climate control system defaults to full hot and/or full cold, despite the HVAC controls being set to other parameters. This condition may not exist during the next ignition cycle and the system may operate normally. Technicians may find DTCs B0228, B0413, B0423, B0433, B3779 or B3782 set as Current or in History. Cause This condition may be caused by a software anomaly. Correction Important If the vehicle is a 2007-2009 GMC Acadia or Saturn OUTLOOK with an additional customer concern of an inaccurate ambient temperature display, then it may be necessary to reprogram the HVAC control module AND relocate the ambient air temperature (AAT) sensor. Refer to Corporate Bulletin Number 08-01-39-008A - HVAC Ambient Temperature Sensor Display In Instrument Panel Cluster (IPC) Inaccurate Or Too High for more information. Note The first step applies to the following vehicles: Avalanche, Escalade, Suburban, Tahoe, Yukon. 1. Inspect for an open HVAC-IGN Fuse in the underhood fuse block. ‹› If the fuse is open, repair the short to ground. 2. A revised calibration has been released to address this condition. Reprogram the HVAC control module using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the HVAC Control Module Programming and Setup procedure in SI. 3. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. 4. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. 5. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. 6. After reprogramming clear all DTCs. Operate the vehicle within the Conditions for Running the DTC and verify that DTCs B0228, B0413, B0423, B0433, B3779 or B3782 do not reset as Current. ‹› If DTCs B0228, B0413, B0423, B0433, B3779, or B3782 are set as Current, refer to the DTC diagnostic procedures in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module HVAC: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set > Page 629 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module HVAC: > 06-01-39-014 > Dec > 06 > A/C - HVAC Control Module Lockup During Reprogramming Control Module HVAC: All Technical Service Bulletins A/C - HVAC Control Module Lockup During Reprogramming Bulletin No.: 06-01-39-014 Date: December 06, 2006 INFORMATION Subject: Information On HVAC Control Module Lockup During Reprogramming Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models with Automatic Temperature Control HVAC System (RPO CJ2) The purpose of this bulletin is to alert technicians to a condition they may encounter while trying to reprogram a Heating, Ventilation and Air Conditioning (HVAC) control module. If the HVAC control module reprogramming event is interrupted, the control module may go into a "lock up" mode. This will cause the HVAC control module to disable communications and a second try at reprogramming will fail. The interruption may be caused by a software anomaly inside the HVAC control module. If the HVAC reprogramming event was interrupted and a subsequent reprogramming attempt fails, perform a battery reset. This can be accomplished by either removing and reinstalling the HVAC BATT fuse, located in the underhood fuse block, or by disconnecting and reconnecting the HVAC control module connector C2. Connector C2 is grey in color with 16 cavities. Once the battery reset has been performed, the HVAC control module will resume communications and will then be able to be reprogrammed. The Warranty Parts Center (WPC) has received HVAC control modules that have been returned and described as non-functional but were tested with no problems found. If the module has been replaced due to a failed second attempt at reprogramming caused by the lock up, the module will be returned and charged back to the dealer. Technicians must also remember that after a new HVAC control module has been installed into a vehicle, it must be programmed, otherwise it will not be functional. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Other Service Bulletins for Control Module HVAC: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set Control Module HVAC: All Technical Service Bulletins A/C - Defaults To Full Hot/Full Cold/DTC's Set TECHNICAL Bulletin No.: 08-01-39-009B Date: September 24, 2010 Subject: HVAC Automatic Climate Control Defaults to Full Cold or Full Hot Despite Controls Being Set to Other Parameters, DTCs B0228, B0413, B0423, B0433, B3779 or B3782 Set (Reprogram HVAC Control Module) Models: 2008-2009 Buick Enclave 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Acadia, Sierra, Yukon Models 2008 HUMMER H2 Models 2007-2009 Saturn OUTLOOK with Automatic Climate Control System (RPO CJ2) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 08-01-39-009A (Section 01 - HVAC). Condition Some customers may comment that the Heating, Ventilation and Air Conditioning (HVAC) automatic climate control system defaults to full hot and/or full cold, despite the HVAC controls being set to other parameters. This condition may not exist during the next ignition cycle and the system may operate normally. Technicians may find DTCs B0228, B0413, B0423, B0433, B3779 or B3782 set as Current or in History. Cause This condition may be caused by a software anomaly. Correction Important If the vehicle is a 2007-2009 GMC Acadia or Saturn OUTLOOK with an additional customer concern of an inaccurate ambient temperature display, then it may be necessary to reprogram the HVAC control module AND relocate the ambient air temperature (AAT) sensor. Refer to Corporate Bulletin Number 08-01-39-008A - HVAC Ambient Temperature Sensor Display In Instrument Panel Cluster (IPC) Inaccurate Or Too High for more information. Note The first step applies to the following vehicles: Avalanche, Escalade, Suburban, Tahoe, Yukon. 1. Inspect for an open HVAC-IGN Fuse in the underhood fuse block. ‹› If the fuse is open, repair the short to ground. 2. A revised calibration has been released to address this condition. Reprogram the HVAC control module using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the HVAC Control Module Programming and Setup procedure in SI. 3. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. 4. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. 5. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. 6. After reprogramming clear all DTCs. Operate the vehicle within the Conditions for Running the DTC and verify that DTCs B0228, B0413, B0423, B0433, B3779 or B3782 do not reset as Current. ‹› If DTCs B0228, B0413, B0423, B0433, B3779, or B3782 are set as Current, refer to the DTC diagnostic procedures in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Other Service Bulletins for Control Module HVAC: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set > Page 639 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Other Service Bulletins for Control Module HVAC: > 06-01-39-014 > Dec > 06 > A/C - HVAC Control Module Lockup During Reprogramming Control Module HVAC: All Technical Service Bulletins A/C - HVAC Control Module Lockup During Reprogramming Bulletin No.: 06-01-39-014 Date: December 06, 2006 INFORMATION Subject: Information On HVAC Control Module Lockup During Reprogramming Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models with Automatic Temperature Control HVAC System (RPO CJ2) The purpose of this bulletin is to alert technicians to a condition they may encounter while trying to reprogram a Heating, Ventilation and Air Conditioning (HVAC) control module. If the HVAC control module reprogramming event is interrupted, the control module may go into a "lock up" mode. This will cause the HVAC control module to disable communications and a second try at reprogramming will fail. The interruption may be caused by a software anomaly inside the HVAC control module. If the HVAC reprogramming event was interrupted and a subsequent reprogramming attempt fails, perform a battery reset. This can be accomplished by either removing and reinstalling the HVAC BATT fuse, located in the underhood fuse block, or by disconnecting and reconnecting the HVAC control module connector C2. Connector C2 is grey in color with 16 cavities. Once the battery reset has been performed, the HVAC control module will resume communications and will then be able to be reprogrammed. The Warranty Parts Center (WPC) has received HVAC control modules that have been returned and described as non-functional but were tested with no problems found. If the module has been replaced due to a failed second attempt at reprogramming caused by the lock up, the module will be returned and charged back to the dealer. Technicians must also remember that after a new HVAC control module has been installed into a vehicle, it must be programmed, otherwise it will not be functional. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Other Service Bulletins for Control Module HVAC: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously Control Module HVAC: All Technical Service Bulletins Campaign - HVAC Blower Not Functional Runs Continuously SPECIAL COVERAGE Bulletin No.: 11046 Date: April 07, 2011 Subject: 11046 - Special Coverage Adjustment - Heating, Ventilation, and Air Conditioning Blower Not Fully Functional on All Blower Speeds, Inoperative, or Runs Continuously with the Ignition Off Models: 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Sierra Equipped with Manual HVAC (CJ3) or Heavy Duty Heater (C42) Due to part availability, owner letters will be released in phases starting with older model year first. Owners for model year vehicles not included in first phase owner mailing will receive an owner advisory letter. The letter will inform the customer that parts are not yet available and that another letter will be sent to them when parts become available. A copy of this letter will be attached to the dealer message announcing this bulletin. In the meantime, if a customer brings their vehicle to the dealership with the condition described in this bulletin, repair the vehicle using the parts called out in this bulletin. Condition On some 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual heating, ventilation, and air conditioning (HVAC) system (CJ3) or heavy duty heater (C42), the interface between the electrical terminals of the relay resistor module and the wiring connector that powers the module may be incapable of conducting higher current levels for sustained periods of blower motor operation. In addition, moisture and other contaminants may enter the fresh air intake plenum and contact the internal circuit of the module or corrode the terminals. Either of the above may cause the relay resistor module or wiring connector to overheat, resulting in one or more of the following symptoms: - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position In very rare events, if the above symptoms are ignored, a fire could occur. Special Coverage Adjustment This special coverage covers the condition described above for a period of 10 years or 240,000 km, whichever occurs first, from the date the vehicle was originally placed in service, regardless of ownership. Dealers are to install a new blower motor resistor and resistor module connector. The repairs will be made at no charge to the customer. For vehicles covered by Vehicle Service Contracts, all eligible claims with repair orders on or after April 8, 2011 are covered by this special coverage and must be submitted using the labor operation codes provided with this bulletin. Claims with repair orders prior to April 8, 2011 must be submitted to the Service Contract provider. Vehicles Involved Involved are certain 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual HVAC (CJ3) or heavy duty heater (C42). Important Dealers are to confirm vehicle eligibility prior to beginning repairs by using the Applicable Warranties section in the Global Warranty Management system. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Other Service Bulletins for Control Module HVAC: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 649 Parts required to complete this special coverage are to be obtained from General Motors Customer Care and Aftersales (GMCC&A;). Service Procedure Note The resistor module connector and blower motor resistor will need to be replaced if one or more of the symptoms below is present. - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position Determine if one or more of the above symptoms is present. If required refer to HVAC diagnostic information in SI. Refer to Resistor Module Connector and Blower Motor Resistor Replacement in this bulletin if one or more of the symptoms is present. Other HVAC repairs are NOT covered in this product safety special coverage bulletin. Resistor Module Connector and Blower Motor Resistor Replacement 1. Remove the blower fuses (Htr A/C & HVAC 1 fuses). 2. Lower the close-out panel enough to gain access to the resistor module connector. 3. Disconnect the connector from the resistor module. Note Connector replacement is required even if the connector was replaced on a previous service repair. 4. Remove the tape from the wiring harness to expose the wiring. 5. Cut the wires back far enough from the connector to eliminate any melted insulation on the wire. Note Use the old connector as a map for splicing the wires for the new connector. Be sure to use the correct crimping tool from the terminal repair kit J 38125. Use only Duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. 6. Install the new connector. Use the yellow splice sleeves provided with the connector. 7. Install the new blower motor resistor. 8. Reinstall the fuses. Test the blower motor to make sure all speeds are functional. 9. Reinstall the hush panel/close-out panel. Customer Reimbursement Customer requests for reimbursement of previously paid repairs to correct the condition described in this bulletin are to be submitted to the dealer prior to or by December 31, 2012. Repairs must have occurred within the 10 years of the date the vehicle was originally placed in service, or 240,000 kilometres, whichever occurs first. When a customer requests reimbursement, they must provide the following: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > All Other Service Bulletins for Control Module HVAC: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 650 - Proof of ownership at time of repair. - Original paid receipt confirming the amount of unreimbursed repair expense(s) (including Service Contract deductibles), a description of the repair, and the person or entity performing the repair. If the work was done by someone other than a GM dealership, the amount of reimbursement will be limited to the amount that the repair would have cost GM to have it completed by a GM dealership. Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Warranty Transaction Information Submit a transaction using the table below. * The amount identified in "Net Item" should represent the dollar amount reimbursed to the customer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Technical Service Bulletins > Page 655 Control Module HVAC: Locations HVAC Component Views HVAC Control Module 1 - Instrument Panel 2 - HVAC Control Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Diagrams > HVAC System - Automatic Control Module HVAC: Diagrams HVAC System - Automatic HVAC Connector End Views Blower Motor Control Processor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Diagrams > HVAC System - Automatic > Page 658 Control Module HVAC: Diagrams HVAC System - Manual HVAC Connector End Views HVAC Control Module - C1 HVAC Control Module - C1 (Pin A1 - B7) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Diagrams > HVAC System - Automatic > Page 659 HVAC Control Module - C1 (Pin B8 - B12) HVAC Control Module - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Diagrams > Page 660 Control Module HVAC: Service and Repair Blower Motor Control Processor Replacement Removal Procedure 1. If equipped, remove the sound insulator panel. 2. Disconnect the electrical connector at the blower motor. 3. Disconnect the electrical connector (4) from the blower motor control processor (2). 4. Remove the blower motor control processor retaining screws (3) from the HVAC module (1). 5. Remove the blower motor control processor (2) from the HVAC module (1). Installation Procedure 1. Install the blower motor control processor (2) to the HVAC module (1). Notice: Refer to Fastener Notice. 2. Install the blower motor control processor retaining screws. Tighten the screws to 1.6 N.m (14 lb in). 3. Connect the electrical connector (4) to the blower motor control processor (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - HVAC > Control Module HVAC > Component Information > Diagrams > Page 661 4. Connect the electrical connector at the blower motor. 5. If equipped, install the sound insulator panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Daytime Running Lamp Relay > Component Information > Locations Daytime Running Lamp Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Exterior Lighting Module > Exterior Lighting Relay > Component Information > Diagrams Roof Beacon Relay (With RPO Code 5G4/TRW) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Fog/Driving Lamp Relay > Component Information > Locations > Underhood Fuse Block Fog/Driving Lamp Relay: Locations Underhood Fuse Block Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Fog/Driving Lamp Relay > Component Information > Locations > Underhood Fuse Block > Page 674 Fog/Driving Lamp Relay: Locations I/P Fuse Block Fuse Block - I/P Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > High Beam Relay > Component Information > Locations High Beam Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Horn Relay > Component Information > Locations Horn Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Low Beam Relay > Component Information > Locations Low Beam Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Lighting and Horns > Parking Lamp Relay > Component Information > Locations Parking Lamp Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Power Distribution Relay > Component Information > Service and Repair > Relay Replacement (Attached to Wire Harness) Power Distribution Relay: Service and Repair Relay Replacement (Attached to Wire Harness) RELAY REPLACEMENT (ATTACHED TO WIRE HARNESS) REMOVAL PROCEDURE 1. Locate the relay. 2. Remove any fasteners which hold the relay in place. 3. Remove any connector position assurance (CPA) devices or secondary locks. 4. IMPORTANT: Use care when removing a relay in a wiring harness when the relay is secured by fasteners or tape. Separate the relay (1) from the wire harness connector (2). INSTALLATION PROCEDURE 1. Connect the relay (1) to the wire harness connector (2). 2. Install any connector position assurance (CPA) devices or secondary locks. 3. Install the relay using any fasteners or tape that originally held the relay in place. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Power Distribution Relay > Component Information > Service and Repair > Relay Replacement (Attached to Wire Harness) > Page 692 Power Distribution Relay: Service and Repair Relay Replacement (Within an Electrical Center) RELAY REPLACEMENT (WITHIN AN ELECTRICAL CENTER) TOOLS REQUIRED J 43244 Relay Puller Pliers REMOVAL PROCEDURE 1. Remove the electrical center cover. 2. Locate the relay. 3. IMPORTANT: - Always note the orientation of the relay. - Ensure that the electrical center is secure, as not to put added stress on the wires or terminals. Using the J 43244 (1) position the tool on opposing corners of the relay (2). 4. Remove the relay (2) from the electrical center. NOTE: Use J43244 to pull the relay straight out from the electrical center terminals. The use of pliers or a flat bladed tool could damage the electrical center. INSTALLATION PROCEDURE 1. Install the relay (2) in the same position as removed. 2. Install the electrical center cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations C210 And Relay Block - I/P - C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 696 Relay Box: Diagrams Relay Block - I/P Top View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 697 Relay Block - I/P Bottom View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 698 Relay Block - I/P C1 (Pin A1 To B6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 699 Relay Block - I/P C1 (Pin B7 To E9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 700 Relay Block - I/P C1 (Pin E10 To F12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 701 Relay Block - I/P C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 702 Relay Block - I/P C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 703 Relay Block - I/P C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 704 Relay Block - I/P C7 (With RPO Code Z82) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 705 Relay Block - I/P C8 (With RPO Code 5G4/5X7/5Y0/TRW) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 706 Relay Block - I/P C9 (Pin A To L) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 707 Relay Block - I/P C9 (Pin M) Relay Block - I/P C10 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Power and Ground Distribution > Relay Box > Component Information > Locations > Page 708 Relay Box: Application and ID Relay Block - I/P Label Relay Block - I/P Label Usage Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: Customer Interest Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: Customer Interest Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 723 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Body Control Module: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: All Technical Service Bulletins Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Body Control Module: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module Body Control Module: All Technical Service Bulletins Body Controls - Unable To Reprogram Body Control Module INFORMATION Bulletin No.: 09-08-47-001A Date: June 14, 2010 Subject: Unable to Reprogram Body Control Module (BCM), BCM Reprogramming Did Not Complete - Revised Reprogramming Instructions Models: 2006-2010 Buick Lucerne 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, SRX 2008-2010 Cadillac CTS 2010 Cadillac CTS Wagon 2010 Chevrolet Camaro 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Impala 2007-2010 Chevrolet Avalanche, Equinox, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2007-2010 GMC Acadia, Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2008-2010 GMC Savana 2010 GMC Terrain 2007-2009 Pontiac Torrent 2008-2009 Pontiac G8 2008-2009 HUMMER H2 2007-2009 Saturn OUTLOOK 2008-2009 Saturn VUE Refer to GMVIS Supercede: This bulletin is being revised to update the models and the model years. Please discard Corporate Bulletin Number 09-08-47-001 (Section 08 - Body and Accessories). Some technicians may experience an unsuccessful body control module (BCM) reprogramming event, when choosing the Reprogram ECU selection on the Service Programming System (SPS). The technician may also notice that when attempting to reprogram the BCM again after this incident has occurred, the BCM may not complete the programming event. This condition may be caused by the following: - A reprogramming event that was interrupted due to a lack of communication between the vehicle and the TIS2WEB terminal. - The vehicle experienced low system voltage during the reprogramming event. Important Do not replace the BCM for this condition. SPS Programming Process Selection Perform this procedure first. 1. If reprogramming has failed during the initial reprogramming event, back out of the SPS application completely. 2. Re-select SPS from the TIS2WEB terminal application. 3. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 4. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Body Control Module: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module > Page 733 During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. BCM Still Fails to Reprogram If the BCM still fails to reprogram perform this procedure: 1. Turn OFF the ignition, and remove the key. 2. Remove the fuses that power up the following modules/components for a minimum of 2 minutes: - BCM - EBCM - ECM - IS LPS (located in the left IP fusebox) - TCM 3. Open and close the driver door. Allow enough time for the retained accessory power (RAP) to turn OFF. 4. Reinstall the fuses. 5. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 6. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Body Control Module: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: All Technical Service Bulletins Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Body Control Module: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 738 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module Body Control Module: All Technical Service Bulletins Body Controls - Unable To Reprogram Body Control Module INFORMATION Bulletin No.: 09-08-47-001A Date: June 14, 2010 Subject: Unable to Reprogram Body Control Module (BCM), BCM Reprogramming Did Not Complete - Revised Reprogramming Instructions Models: 2006-2010 Buick Lucerne 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, SRX 2008-2010 Cadillac CTS 2010 Cadillac CTS Wagon 2010 Chevrolet Camaro 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Impala 2007-2010 Chevrolet Avalanche, Equinox, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2007-2010 GMC Acadia, Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2008-2010 GMC Savana 2010 GMC Terrain 2007-2009 Pontiac Torrent 2008-2009 Pontiac G8 2008-2009 HUMMER H2 2007-2009 Saturn OUTLOOK 2008-2009 Saturn VUE Refer to GMVIS Supercede: This bulletin is being revised to update the models and the model years. Please discard Corporate Bulletin Number 09-08-47-001 (Section 08 - Body and Accessories). Some technicians may experience an unsuccessful body control module (BCM) reprogramming event, when choosing the Reprogram ECU selection on the Service Programming System (SPS). The technician may also notice that when attempting to reprogram the BCM again after this incident has occurred, the BCM may not complete the programming event. This condition may be caused by the following: - A reprogramming event that was interrupted due to a lack of communication between the vehicle and the TIS2WEB terminal. - The vehicle experienced low system voltage during the reprogramming event. Important Do not replace the BCM for this condition. SPS Programming Process Selection Perform this procedure first. 1. If reprogramming has failed during the initial reprogramming event, back out of the SPS application completely. 2. Re-select SPS from the TIS2WEB terminal application. 3. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 4. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module > Page 744 During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. BCM Still Fails to Reprogram If the BCM still fails to reprogram perform this procedure: 1. Turn OFF the ignition, and remove the key. 2. Remove the fuses that power up the following modules/components for a minimum of 2 minutes: - BCM - EBCM - ECM - IS LPS (located in the left IP fusebox) - TCM 3. Open and close the driver door. Allow enough time for the retained accessory power (RAP) to turn OFF. 4. Reinstall the fuses. 5. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 6. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 747 Body Control Module: Diagrams Body Control Module (BCM) - C2 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 748 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 749 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 750 Body Control Module: Diagrams Body Control Module (BCM) - C4 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 751 Body Control Module (BCM) - C4 (Pin B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 752 Body Control Module: Diagrams Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 753 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 754 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 755 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 756 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 757 Body Control Module (BCM) - C4 (Pin B12) Body Control Module (BCM) - C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 758 Body Control Module (BCM) - C6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 759 Body Control Module: Service and Repair BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cables. 2. Remove the knee bolster. 3. Disconnect the brown connector. 4. Disconnect all other connectors (1). 5. Remove the body control module (BCM) from the sliding bracket. INSTALLATION PROCEDURE 1. Slide the BCM onto the bracket. 2. Connect all the connectors (1) except the brown connector. 3. Connect the brown connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 760 4. Install the knee bolster. 5. Connect the negative battery cables. 6. Reprogram the BCM. Refer to Body Control Module Programming and Setup. 7. Perform the Passlock Learn Procedure. Refer to Programming Theft Deterrent System Components. 8. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Locations Throttle Actuator Control (TAC) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 Throttle Actuator Control (TAC) Module C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 > Page 766 Throttle Actuator Control (TAC) Module C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 767 Electronic Throttle Control Module: Service and Repair ELECTRONIC THROTTLE ACTUATOR CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the instrument panel (I/P) harness electrical connector (2). 2. Release the red connector position assurance (CPA) retainer. 3. Disconnect the engine wiring harness electrical connector (1). 4. Remove the throttle actuator control (TAC) module nuts. 5. Remove the TAC module. INSTALLATION PROCEDURE 1. Install the TAC module. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 768 NOTE: Refer to Fastener Notice. 2. Install the TAC module nuts. Tighten the nuts to 9 N.m (80 lb in). 3. Connect the engine wiring harness electrical connector (1). 4. Install the red CPA retainer. 5. Connect the I/P harness electrical connector (2). 6. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: Customer Interest Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: Customer Interest Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 781 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 04-06-04-054B > Nov > 10 > Engine Controls Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 04-06-04-054B > Nov > 10 > Engine Controls Aftermarket Accessory Usage > Page 787 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations > Page 792 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations > Page 793 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations > Page 794 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026B Date: April 07, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2010 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2010 model year and information about retrieving calibrations on a Global A vehicle. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine, transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations > Page 799 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations > Page 800 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations > Page 801 Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: All Technical Service Bulletins Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: All Technical Service Bulletins Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Control Module: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 810 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 04-06-04-054B > Nov > 10 > Engine Controls Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 04-06-04-054B > Nov > 10 > Engine Controls Aftermarket Accessory Usage > Page 816 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations > Page 821 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations > Page 822 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026C > Aug > 10 > Engine/Transmission Aftermarket Calibrations > Page 823 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026B Date: April 07, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2010 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2010 model year and information about retrieving calibrations on a Global A vehicle. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine, transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations > Page 828 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations > Page 829 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 09-06-04-026B > Apr > 10 > Engine/Transmission Aftermarket Calibrations > Page 830 Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Page 831 Left Front Of The Engine Compartment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 834 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 835 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 836 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 837 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 838 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 839 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 840 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 841 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 842 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 843 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 844 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 845 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 846 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 847 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 848 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 849 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 850 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 851 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 852 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 853 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 854 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 855 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 856 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 857 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 858 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 859 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 860 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 861 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 862 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 863 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 864 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 865 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 866 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 867 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 868 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 869 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 870 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 871 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 872 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 873 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 874 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 875 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 876 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 877 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 878 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 879 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 880 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 881 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 882 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 883 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 884 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 885 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 886 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 887 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 888 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 889 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 890 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 891 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 892 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 893 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 894 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 895 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 896 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 897 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 898 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 899 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 900 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 901 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 902 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 903 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 904 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 905 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 906 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 907 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 908 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 909 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 910 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 911 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 912 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 913 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 914 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 915 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 916 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 917 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 918 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 919 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 920 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 921 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 922 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 923 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 924 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 925 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 926 Engine Control Module: Connector Views Powertrain Control Module (PCM) C1 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 927 Powertrain Control Module (PCM) C1 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 928 Powertrain Control Module (PCM) C1 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 929 Powertrain Control Module (PCM) C2 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 930 Powertrain Control Module (PCM) C2 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 931 Powertrain Control Module (PCM) C2 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 932 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 933 Engine Control Module: Description and Operation POWERTRAIN CONTROL MODULE DESCRIPTION POWERTRAIN The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: The engine fueling - The ignition control (IC) - The knock sensor (KS) system - The evaporative emissions (EVAP) system - The secondary air injection (AIR) system (if equipped) - The exhaust gas recirculation (EGR) system - The automatic transmission functions - The generator - The A/C clutch control - The cooling fan control POWERTRAIN CONTROL MODULE FUNCTION The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. MALFUNCTION INDICATOR LAMP (MIL) OPERATION The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. - The MIL turns OFF after the engine is started if a diagnostic fault is not present. - The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 934 Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. - The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. - When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. - When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. TRIP A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). WARM-UP CYCLE The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. DIAGNOSTIC TROUBLE CODES (DTCS) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC STATUS When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) Indicates that this DTC failed during the present ignition cycle. Last Test Fail Indicates that this DTC failed the last time the test ran. MIL Request Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 935 Engine Control Module: Testing and Inspection FUEL COMPOSITION DIAGNOSIS SYSTEM DESCRIPTION When an E85 compatible vehicle is built, an engine control module (ECM) or powertrain control module (PCM) replaced, or when the learned alcohol content has been reset with a scan tool the fuel system will need to contain ASTM gasoline with 10 percent or less ethanol content. If the fuel in the fuel system needs to be drained and replaced with ASTM gasoline, the engine will need to run at operating temperature and consume at least 1 liter of fuel before the system will recognize the correct alcohol content. Either ASTM gasoline or ASTM E85 fuel can then be used TEST Step 1 - Step 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 936 Engine Control Module: Service and Repair POWERTRAIN CONTROL MODULE REPLACEMENT Service of the powertrain control module (PCM) should consist of either replacement of the PCM or programming of the electrically erasable programmable read only memory (EEPROM). If the diagnostic procedures call for the PCM to be replaced, the replacement PCM should be checked to ensure that the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. NOTE: - Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. - Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. - In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. - Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. - The replacement control module must be programmed. IMPORTANT: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Disconnect the negative battery cable. 3. If equipped with regular production option (RPO) NYS, remove the harness ground clip from the PCM cover. 4. If equipped with RPO HP2, remove the hybrid control module (HCM). 5. If vehicle is NOT equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 937 6. If vehicle is equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. 7. Loosen the PCM electrical connector bolts (2). NOTE: Refer to PCM and ESD Notice. - In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 8. Disconnect the PCM electrical connectors. 9. Release the spring latch from the PCM. 10. Release the PCM mounting tabs from the PCM. 11. Remove the PCM. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 938 1. Install the PCM.Ensure that the mounting tabs are engaged. 2. Secure the spring latch to the PCM. 3. Connect the PCM electrical connectors. NOTE: Refer to Fastener Notice. 4. Tighten the PCM electrical connector bolts (2). Tighten the bolts to 8 N.m (71 lb in). 5. If vehicle is equipped with RPO HP2, install the PCM cover. 6. If vehicle is NOT equipped with RPO HP2, install the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 939 7. If equipped with RPO HP2, install the HCM. 8. If equipped with RPO NYS, install the harness ground clip to the PCM cover. 9. Connect the negative battery cable. 10. If a NEW PCM was installed, program the PCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Locations Fuel Pump Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 946 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 947 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 948 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 949 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 950 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 951 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 952 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 953 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 954 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 955 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 956 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 957 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 958 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 959 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 960 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 961 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 962 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 963 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 964 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 965 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 966 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 967 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 968 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 969 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 970 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 971 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 972 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 973 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 974 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 975 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 976 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 977 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 978 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 979 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 980 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 981 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 982 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 983 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 984 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 985 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 986 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 987 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 988 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 989 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 990 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 991 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 992 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 993 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 994 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 995 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 996 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 997 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 998 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 999 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1000 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1001 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1002 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1003 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1004 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1005 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1006 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1007 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1008 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1009 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1010 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1011 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1012 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1013 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1014 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1015 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1016 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1017 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1018 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1019 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1020 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1021 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1022 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1023 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1024 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1025 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1026 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1027 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1028 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1029 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1030 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1031 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1032 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1033 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1034 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1035 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1036 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1037 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 1038 Fuel Pump (FP) Relay - Secondary (With RPO Code Dual Tanks) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations Ignition Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 1043 Ignition Relay: Testing and Inspection IGNITION RELAY DIAGNOSIS CIRCUIT DESCRIPTION The ignition relay is a normally open relay. The relay armature is held in the open position by spring tension. When the ignition switch is turned to the run or start position, current will flow through the relay coil. A wire connected to the other end of the relay coil completes the path to ground. The electomagnetic field created by the relay coil, overcomes the spring tension and moves the armature allowing the relay contacts to close. The closed relay contacts allow current to flow from the battery to the following fuses: The PCM 1 fuse - The ETC/ECM fuse - The INJ 1 fuse - The INJ 2 fuse - The SBA fuse, if equipped. When the ignition switch is turned to the OFF position, the electromagnetic field collapses. This action allows the spring tension to move the armature away from the relay contacts, which interrupts current flow to the fuses. If the ignition relay fails to close, the engine will crank, but will not run. The class 2 communications will be available with the use of a scan tool. The ignition relay table assumes that the vehicle battery is fully charged. Refer to Battery Inspection/Test (Non-HP2) Battery Inspection/Test (HP2). See: Starting and Charging/Testing and Inspection/Component Tests and General Diagnostics/Battery Inspection/Test (Non-HP2) TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 1044 Step 1 - Step 6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 1045 Step 7 - Step 16 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 1046 Step 17 - Step 24 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 1047 Step 25 - Step 31 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Customer Interest for Air Bag Control Module: > 08-09-41-002F > Jun > 10 > Restraints - Air Bag Lamp ON/Multiple DTC Set Air Bag Control Module: Customer Interest Restraints - Air Bag Lamp ON/Multiple DTC Set TECHNICAL Bulletin No.: 08-09-41-002F Date: June 10, 2010 Subject: Diagnostic Information for Supplemental Inflatable Restraint (SIR) System, Intermittent AIR BAG Indicator/Lamp Illuminated with DTC(s) B0012, B0013, B0015, B0016, B0019, B0020, B0022, B0023, B0026, B0033, B0040, B0042 or B0044 Set (Inspect and Replace Connector Position Assurance (CPA) Retainer) Models: 2005-2007 Buick Rainier 2006-2009 Buick Allure (Canada only), LaCrosse, Lucerne 2008-2010 Buick Enclave 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade Models 2008-2009 Cadillac SRX, XLR 2008-2010 Cadillac CTS, STS 2005-2006 Chevrolet SSR 2005-2009 Chevrolet TrailBlazer, TrailBlazer EXT 2005-2010 Chevrolet Cobalt 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Corvette, HHR, Impala, Malibu Models (includes Malibu Classic) 2007-2009 Chevrolet Equinox 2007-2010 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2005-2009 GMC Envoy Models 2007-2010 GMC Acadia, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 GMC Savana 2005-2006 Pontiac Pursuit 2005-2009 Pontiac G6 2006-2009 Pontiac Solstice 2007-2009 Pontiac G5, Torrent 2008-2009 Pontiac G8 2005-2009 Saab 9-7X 2007-2009 Saturn AURA, OUTLOOK, SKY 2008-2009 Saturn VUE 2008-2009 HUMMER H2 2007-2008 Daewoo G2X 2007-2009 Opel GT Supercede: This bulletin is being revised to update the Warranty Information and add Saab Warranty Information. Please discard Corporate Bulletin Number 08-09-41-002E (Section 09 Restraints). Condition - Some customers may comment on an intermittent or current AIR BAG indicator or lamp being illuminated on the instrument panel cluster (IPC). Important This bulletin only applies to the following DTCs: - Technicians may observe DTC(s) B0012 04, 0D, 0E; B0013 04, 0D, 0E; B0015 04, 0D, 0E; B0016 04, 0D, 0E; B0019 04, 0D, 0E; B0020 04, 0D, 0E; B0022, B0023 04, 0D, 0E; B0033 04, 0D, 0E; B0040 04, 0D, 0E; B0042 or B0044 set as Current or in History in the sensing and diagnostic module (SDM). Cause This condition may be caused by a loose, missing, or damaged connector position assurance (CPA) retainer at a supplemental inflatable restraint (SIR) module electrical connector, or a deployment loop wiring harness electrical connector. Correction Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Customer Interest for Air Bag Control Module: > 08-09-41-002F > Jun > 10 > Restraints - Air Bag Lamp ON/Multiple DTC Set > Page 1057 Caution When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Failure to observe the correct procedure could cause deployment of the SIR components. Serious injury can occur. Failure to observe the correct procedure could also result in unnecessary SIR system repairs. 1. Perform the Diagnostic System Check-Vehicle. 2. Identify the DTC that is set AND review the DTC Descriptor in the corresponding diagnostic procedure. Refer to Diagnostic Trouble Code (DTC) List-Vehicle in SI. 3. Using the information from the DTC Descriptor, determine the location of the affected electrical connector. Refer to SIR Identification Views and the Master Electrical Component List in SI. 4. Turn OFF the ignition and disable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 5. BEFORE removing, INSPECT the CPA retainer at the electrical connector. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. ‹› If the CPA retainer is loose, damaged, or will not seat in the connector, replace it with a new one. Reinstall the CPA correctly by first pushing the connector body in completely, and then pushing the CPA retainer in completely. ‹› If the CPA retainer is not loose or damaged and is properly seated, proceed to Step 6. 6. Remove the CPA retainer and disconnect the electrical connector. Inspect the terminals for the following conditions: - Corrosion - Contamination - Terminal tension - Damage Important The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. DO NOT substitute any other terminals for those in the repair kit. ‹› If the terminals are damaged, corrosion is observed, or have poor tension, repair or replace as necessary. Apply dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins and terminals when reassembling. Refer to SIR/SRS Wiring Repairs in SI. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. 7. Connect the electrical connector, and install the CPA retainer. 8. Enable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 9. Clear the DTC with a scan tool. 10. Verify that the DTC does not reset by performing the Diagnostic Repair Verification in SI. ‹› If any DTC resets, then refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. Parts Information Note If the CPA retainer P/N 54590003 (Orange CPA) cannot be located in the J-38125 SIR/SRS terminal repair kit, contact Kent Moore Tools and order P/N 54590003-PKG to obtain a package of 5. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Customer Interest for Air Bag Control Module: > 08-09-41-002F > Jun > 10 > Restraints - Air Bag Lamp ON/Multiple DTC Set > Page 1058 Warranty Information (excluding Saab U.S. Models) Important Select the appropriate Labor Operation for the repair that is performed. For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Bag Control Module: > 08-09-41-002F > Jun > 10 > Restraints - Air Bag Lamp ON/Multiple DTC Set Air Bag Control Module: All Technical Service Bulletins Restraints - Air Bag Lamp ON/Multiple DTC Set TECHNICAL Bulletin No.: 08-09-41-002F Date: June 10, 2010 Subject: Diagnostic Information for Supplemental Inflatable Restraint (SIR) System, Intermittent AIR BAG Indicator/Lamp Illuminated with DTC(s) B0012, B0013, B0015, B0016, B0019, B0020, B0022, B0023, B0026, B0033, B0040, B0042 or B0044 Set (Inspect and Replace Connector Position Assurance (CPA) Retainer) Models: 2005-2007 Buick Rainier 2006-2009 Buick Allure (Canada only), LaCrosse, Lucerne 2008-2010 Buick Enclave 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade Models 2008-2009 Cadillac SRX, XLR 2008-2010 Cadillac CTS, STS 2005-2006 Chevrolet SSR 2005-2009 Chevrolet TrailBlazer, TrailBlazer EXT 2005-2010 Chevrolet Cobalt 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Corvette, HHR, Impala, Malibu Models (includes Malibu Classic) 2007-2009 Chevrolet Equinox 2007-2010 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2005-2009 GMC Envoy Models 2007-2010 GMC Acadia, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 GMC Savana 2005-2006 Pontiac Pursuit 2005-2009 Pontiac G6 2006-2009 Pontiac Solstice 2007-2009 Pontiac G5, Torrent 2008-2009 Pontiac G8 2005-2009 Saab 9-7X 2007-2009 Saturn AURA, OUTLOOK, SKY 2008-2009 Saturn VUE 2008-2009 HUMMER H2 2007-2008 Daewoo G2X 2007-2009 Opel GT Supercede: This bulletin is being revised to update the Warranty Information and add Saab Warranty Information. Please discard Corporate Bulletin Number 08-09-41-002E (Section 09 Restraints). Condition - Some customers may comment on an intermittent or current AIR BAG indicator or lamp being illuminated on the instrument panel cluster (IPC). Important This bulletin only applies to the following DTCs: - Technicians may observe DTC(s) B0012 04, 0D, 0E; B0013 04, 0D, 0E; B0015 04, 0D, 0E; B0016 04, 0D, 0E; B0019 04, 0D, 0E; B0020 04, 0D, 0E; B0022, B0023 04, 0D, 0E; B0033 04, 0D, 0E; B0040 04, 0D, 0E; B0042 or B0044 set as Current or in History in the sensing and diagnostic module (SDM). Cause This condition may be caused by a loose, missing, or damaged connector position assurance (CPA) retainer at a supplemental inflatable restraint (SIR) module electrical connector, or a deployment loop wiring harness electrical connector. Correction Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Bag Control Module: > 08-09-41-002F > Jun > 10 > Restraints - Air Bag Lamp ON/Multiple DTC Set > Page 1064 Caution When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Failure to observe the correct procedure could cause deployment of the SIR components. Serious injury can occur. Failure to observe the correct procedure could also result in unnecessary SIR system repairs. 1. Perform the Diagnostic System Check-Vehicle. 2. Identify the DTC that is set AND review the DTC Descriptor in the corresponding diagnostic procedure. Refer to Diagnostic Trouble Code (DTC) List-Vehicle in SI. 3. Using the information from the DTC Descriptor, determine the location of the affected electrical connector. Refer to SIR Identification Views and the Master Electrical Component List in SI. 4. Turn OFF the ignition and disable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 5. BEFORE removing, INSPECT the CPA retainer at the electrical connector. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. ‹› If the CPA retainer is loose, damaged, or will not seat in the connector, replace it with a new one. Reinstall the CPA correctly by first pushing the connector body in completely, and then pushing the CPA retainer in completely. ‹› If the CPA retainer is not loose or damaged and is properly seated, proceed to Step 6. 6. Remove the CPA retainer and disconnect the electrical connector. Inspect the terminals for the following conditions: - Corrosion - Contamination - Terminal tension - Damage Important The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. DO NOT substitute any other terminals for those in the repair kit. ‹› If the terminals are damaged, corrosion is observed, or have poor tension, repair or replace as necessary. Apply dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins and terminals when reassembling. Refer to SIR/SRS Wiring Repairs in SI. Note The connector and connector position assurance (CPA) may seat independent of each other. Both the connector and CPA should seat with an audible and/or tactile click. The CPA isolates the shorting-bars within the connector allowing the deployment circuit to operate properly. 7. Connect the electrical connector, and install the CPA retainer. 8. Enable the supplemental inflatable restraint (SIR) system. Refer to SIR Disabling and Enabling in SI. 9. Clear the DTC with a scan tool. 10. Verify that the DTC does not reset by performing the Diagnostic Repair Verification in SI. ‹› If any DTC resets, then refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. Parts Information Note If the CPA retainer P/N 54590003 (Orange CPA) cannot be located in the J-38125 SIR/SRS terminal repair kit, contact Kent Moore Tools and order P/N 54590003-PKG to obtain a package of 5. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Bag Control Module: > 08-09-41-002F > Jun > 10 > Restraints - Air Bag Lamp ON/Multiple DTC Set > Page 1065 Warranty Information (excluding Saab U.S. Models) Important Select the appropriate Labor Operation for the repair that is performed. For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Page 1066 Air Bag Control Module: Locations SIR Component Views Below Driver Seat - SIR Wiring 1 - Inflatable Restraint Sensing and Diagnostic Module (SDM) Connector 2 - Power Seat Electrical Connector 3 - Inflatable Restraint Sensing and Diagnostic Module (SDM) 4 - Instrument Panel Harness Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Page 1067 Air Bag Control Module: Diagrams SIR Connector End Views Inflatable Restraint Sensing and Diagnostic Module (SDM) Inflatable Restraint Sensing And Diagnostic Module (SDM) (Pin 1 To 21) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Page 1068 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Page 1069 Air Bag Control Module: Service and Repair Inflatable Restraint Sensing and Diagnostic Module Replacement Removal Procedure Caution: Do not strike or jolt the inflatable restraint sensing and diagnostic module (SDM). Before applying power to the SDM, make sure that it is securely fastened with the arrow facing toward the front of the vehicle. Failure to observe the correct installation procedure could cause SIR deployment, personal injury, or unnecessary SIR system repairs. Caution: Refer to SIR Caution. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the driver seat. 3. Remove the driver side door sill plate. 4. Fold back the carpet to access the inflatable restraint sensing and diagnostic module (SDM). 5. Remove the connector position assurance (CPA) (1) from the inflatable restraint SDM wiring harness connector (2). 6. Push down the flex lock button (3) and slide the connector locking cover (4) to the open position. 7. Disconnect the SDM wiring harness connector (1) from the SDM (3). 8. Remove the SDM mounting fasteners. 9. Remove the SDM from the vehicle. Important: The following repair procedures should only be used in the event that the inflatable restraint SDM mounting studs and/or fasteners are damaged to the extent that the SDM may no longer be properly mounted. 10. Repair the fasteners using the following procedure: 1. Remove the stripped nut and discard the nut. 2. Drill out the weld spots to the weld stud from the floor pan side, then remove and discard the stud. 3. Condition the floor panel attaching surface where the new stud is to be installed. 4. Install new weld stud GM P/N 115115602 and clamp the weld stud. 5. Migweld the stud at the drilled holes from above or below the floor pan, as required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Restraint Systems > Air Bag Control Module > Component Information > Technical Service Bulletins > Page 1070 6. Apply body sealer GM P/N 9984248 around any exposed openings. 7. Install a new fastener GM P/N 11515933. Installation Procedure 1. Remove any dirt, grease, or other contaminants from the mounting surface. 2. Install the SDM (3) horizontally to the vehicle. 3. Point the arrow on the SDM toward the front of the vehicle. Notice: Refer to Fastener Notice. 4. Install the SDM mounting fasteners. Tighten fasteners to 10 N.m (89 lb in). 5. Connect the SDM wiring harness connector (1) to the SDM. 6. Push down the flex lock button (3) and slide the connector locking cover (4) to the close position. 7. Install the CPA (1) to the inflatable restraint SDM wiring harness connector (2). 8. Position the carpet to cover the inflatable restraint SDM. 9. Install the door sill plate. 10. Install the driver seat. Important: The AIR BAG indicator may remain ON after the SDM has been replaced. DTC B1001 may set requiring the SDM part number to be set in multiple modules. If the indicator remains ON after enabling the SIR system, perform the diagnostic system check and follow the steps thoroughly to ensure that the SDM is set properly. 11. Enable the SIR system. Refer to SIR Disabling and Enabling. Important: Use the scan tool to perform the vehicle theft deterrent (VTD) relearn. Do not use the 30 minute manual learn procedure. 12. Reprogram the VTD system. Refer to Programming Theft Deterrent System Components. 13. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Auxiliary Battery Relay > Component Information > Diagrams Auxiliary Battery Relay: Diagrams Engine Electrical Connector End Views Auxiliary Battery Relay (TP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Auxiliary Battery Relay > Component Information > Diagrams > Page 1075 Auxiliary Battery Relay: Service and Repair Auxiliary Battery Relay Replacement Removal Procedure Caution: Refer to Battery Disconnect Caution. 1. Disconnect the auxiliary battery negative cable. 2. Reposition the boot (3) to expose the stud. 3. Remove the auxiliary battery positive cable nut (2). 4. Remove the auxiliary battery positive cable from the auxiliary battery relay. 5. Reposition the boot to expose the stud. 6. Remove the auxiliary battery positive cable nut. 7. Remove the auxiliary battery positive cable from the auxiliary battery relay. 8. Disconnect the auxiliary battery relay electrical connector (1). 9. Remove the auxiliary battery relay nuts. 10. Remove the auxiliary battery relay. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Auxiliary Battery Relay > Component Information > Diagrams > Page 1076 Installation Procedure 1. Install the auxiliary battery relay. Notice: Refer to Fastener Notice. 2. Install the auxiliary battery relay nuts. Tighten the nuts to 9 N.m (80 lb in). 3. Connect the auxiliary battery relay electrical connector (1). 4. Install the auxiliary battery positive cable to the auxiliary battery relay. 5. Install the auxiliary battery positive cable nut. Tighten the nut to 9 N.m (80 lb in). 6. Position the boot to cover the stud. 7. Install the auxiliary battery positive cable to the auxiliary battery relay. 8. Install the auxiliary battery positive cable nut (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Auxiliary Battery Relay > Component Information > Diagrams > Page 1077 Tighten the nut to 9 N.m (80 lb in). 9. Position the boot (3) to cover the stud. 10. Connect the auxiliary battery negative cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Battery Control Module > Component Information > Locations Battery Control Module: Locations Engine Electrical Component Views Left Front Corner of Engine Compartment - 10 Series Except HP2 1 - Battery - Left 2 - Negative Battery Cable 3 - Generator Battery Control Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Battery Control Module > Component Information > Locations > Page 1081 Battery Control Module: Diagrams Engine Electrical Connector End Views Generator Battery Control Module - (10 Series Except HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Battery Control Module > Component Information > Locations > Page 1082 Battery Control Module: Service and Repair Generator Battery Control Module Replacement Removal Procedure 1. Disconnect the engine harness electrical connector from the generator battery control module. 2. Remove the negative battery cable. 3. Cut the tie straps and electrical tape attaching the generator battery control module to the battery cable. 4. Squeeze the negative battery cable branches together. Important: Note the orientation of the generator battery control module prior to removal. 5. Slide the generator battery control module off of the negative battery cable. Installation Procedure Important: Prior to installation, ensure that the orientation of the generator battery control module (once completely installed on the negative battery cable) will be such that the module's connector will be closest to the battery's negative terminal as shown in the above graphic. The orientation of the module on the negative battery cable is critical to the proper functionality of the module once installed in the vehicle. 1. Slide the NEW generator battery control module up onto the negative battery cable. 2. Using NEW tie straps and electrical tape, attach the generator battery control module to the negative battery cable. 3. Install the negative battery cable. 4. Connect the engine harness electrical connector to the generator battery control module. 5. Program the generator battery control module. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Starting and Charging > Starter Relay > Component Information > Locations Starter Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Steering and Suspension > Relays and Modules - Wheels and Tires > Tire Pressure Module > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Module: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Steering and Suspension > Relays and Modules - Wheels and Tires > Tire Pressure Module > Component Information > Technical Service Bulletins > Page 1092 Tire Pressure Module: Diagrams Tire Pressure Monitoring System Connector End Views Tire Pressure Monitor (TPM) Module Tire Pressure Monitor (TPM) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Steering and Suspension > Relays and Modules - Wheels and Tires > Tire Pressure Module > Component Information > Technical Service Bulletins > Page 1093 Tire Pressure Module: Service and Repair Control Module Setup Passenger Door Module (PDM) Setup After passenger door module (PDM) switch assembly replacement, the following procedures must be performed in the order that they appear for the Tire Pressure Monitor (TPM) System to function properly. The PDM also requires keyless entry transmitter programming after replacement. Refer to Transmitter Synchronization. TPM System Enable The service replacement PDM switch assembly comes with the TPM System disabled to allow the same part number PDM to be used in both TPM and non-TPM equipped vehicles. Once the TPM option is enabled in the PDM, it cannot be disabled. Before proceeding with the steps below, ensure the vehicle is equipped with TPM (UJ6). Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. With the scan tool, select Chassis. 4. Select Tire Pressure Monitor. 5. Select Special Functions. 6. Select TPM Option Enable. 7. Press the exit key to escape. Tire Type/Pressure Selection Since there are different tire types and pressure combinations for different vehicles, it is necessary to select the correct tire type and tire pressures for the vehicle being serviced. 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. With the scan tool, select Chassis. 4. Select Tire Pressure Monitor. 5. Select Special Functions. 6. Select Tire Type/Pressure Selection. 7. Select P-Metric Standard. 8. Select the front tire pressure as noted on the vehicle driver door placard sticker. 9. Select the rear tire pressure as noted on the vehicle driver door placard sticker. 10. Verify the selections made are correct and press the enter key. The scan tool will flash Procedure in Progress, then display Procedure Complete. 11. Press the exit key to escape. Tire Pressure Sensor Learn After PDM switch assembly replacement, each of the tire pressure sensors unique identification codes must be learned into the PDM memory. Refer to Tire Pressure Sensor Learn. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Steering and Suspension > Relays and Modules - Wheels and Tires > Tire Pressure Monitor Receiver / Transponder > Component Information > Technical Service Bulletins > Tire Monitor System - TPM Sensor Information Tire Pressure Monitor Receiver / Transponder: Technical Service Bulletins Tire Monitor System TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Customer Interest for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Control Module: Customer Interest A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Customer Interest for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 1108 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Customer Interest for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 1109 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Customer Interest for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 1110 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Customer Interest for Control Module: > 10-07-30-003 > Jan > 10 > A/T - Harsh 1-2 Shift at Light Throttle Control Module: Customer Interest A/T - Harsh 1-2 Shift at Light Throttle TECHNICAL Bulletin No.: 10-07-30-003 Date: January 25, 2010 Subject: Harsh 1-2 Shift at Light Throttle (Follow Bulletin Diagnostic Steps then Reprogram TCM, if Necessary) Models: 2007-2008 Chevrolet Avalanche, Silverado, Suburban 2007-2008 GMC Sierra, Yukon XL All Equipped with 6.0L Engine (RPO L76) and 4L70E Automatic Transmission (RPO M70) Please Refer to GMVIS Condition Some customers may comment about a harsh 1-2 shift at light throttle. Cause This condition may be caused by excessive adapt pressure added to the lowest shift adapt cells (0-3), which cannot be viewed using the Tech 2(R). Correction A new calibration has been developed to correct this condition. Follow the procedure below. 1. Verify the customer's concern by driving the vehicle between 1-7% throttle. 2. If shifts are harsh in this throttle range, clear adapts. Adapts for shifts at these light throttles do not appear on the Tech 2(R). 3. If shifts are still harsh after clearing adapts, this calibration will not help resolve the issue. Follow normal diagnostic procedures outlined in SI under Slipping or Harsh 1-2 Shift. 4. If shifts are improved after clearing adapts, flash the vehicle's Transmission Control Module. A revised transmission calibration has been developed to address these issues. Reprogram the transmission control module (TCM) with updated calibration files using the TIS2WEB Service Programming System (SPS) application. Select SEQ Programming Sequence ECM/TCM from the Supported Controllers screen. Refer to SI and Service Programming System (SPS) documentation for programming instructions, if required. 5. Confirm the new calibration in vehicle by performing at least ten (10) 1-2 shifts at 1-7% throttle with no recurrence of the issue. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Control Module: All Technical Service Bulletins A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 1120 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 1121 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 1122 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Control Module: > 10-07-30-003 > Jan > 10 > A/T - Harsh 1-2 Shift at Light Throttle Control Module: All Technical Service Bulletins A/T - Harsh 1-2 Shift at Light Throttle TECHNICAL Bulletin No.: 10-07-30-003 Date: January 25, 2010 Subject: Harsh 1-2 Shift at Light Throttle (Follow Bulletin Diagnostic Steps then Reprogram TCM, if Necessary) Models: 2007-2008 Chevrolet Avalanche, Silverado, Suburban 2007-2008 GMC Sierra, Yukon XL All Equipped with 6.0L Engine (RPO L76) and 4L70E Automatic Transmission (RPO M70) Please Refer to GMVIS Condition Some customers may comment about a harsh 1-2 shift at light throttle. Cause This condition may be caused by excessive adapt pressure added to the lowest shift adapt cells (0-3), which cannot be viewed using the Tech 2(R). Correction A new calibration has been developed to correct this condition. Follow the procedure below. 1. Verify the customer's concern by driving the vehicle between 1-7% throttle. 2. If shifts are harsh in this throttle range, clear adapts. Adapts for shifts at these light throttles do not appear on the Tech 2(R). 3. If shifts are still harsh after clearing adapts, this calibration will not help resolve the issue. Follow normal diagnostic procedures outlined in SI under Slipping or Harsh 1-2 Shift. 4. If shifts are improved after clearing adapts, flash the vehicle's Transmission Control Module. A revised transmission calibration has been developed to address these issues. Reprogram the transmission control module (TCM) with updated calibration files using the TIS2WEB Service Programming System (SPS) application. Select SEQ Programming Sequence ECM/TCM from the Supported Controllers screen. Refer to SI and Service Programming System (SPS) documentation for programming instructions, if required. 5. Confirm the new calibration in vehicle by performing at least ten (10) 1-2 shifts at 1-7% throttle with no recurrence of the issue. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Page 1127 Control Module: Locations Automatic Transmission Electronic Component Views Transmission Control Module (MW7) 1 - Transmission Control Module 2 - Transmission Control Module Connector 3 - Radiator Fan Shroud Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Page 1128 Control Module: Adjustments Automatic Transmission Electronic Component Views Transmission Control Module (MW7) 1 - Transmission Control Module 2 - Transmission Control Module Connector 3 - Radiator Fan Shroud Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Page 1129 Engine Harness to Transmission 1 - Turbine Sensor Harness Connector 2 - Power Take-Off (PTO) Connector 3 - Output Speed Sensor Harness Connector 4 - Transfer Case Selector Shift Control Switch 5 - Transmission Connector Harness 6 - Allison Transmission 7 - Engine Harness 8 - Automatic Transmission Input Shaft Speed (ISS) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Page 1130 Control Module: Service and Repair Transmission Control Module Replacement Removal Procedure Important: ^ Remove any debris from the transmission control module (TCM) connector surfaces before servicing the TCM. Inspect the TCM module connector gaskets when diagnosing or replacing the TCM. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the TCM. ^ The ignition must be OFF when disconnecting or reconnecting power to the TCM. 1. Disconnect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection (Auxiliary Battery) Battery Negative Cable Disconnection and Connection (Single Battery). 2. Remove the TCM cover bolts (1) located on the left side of the radiator shroud. 3. Pull the cover and TCM up and away from the radiator shroud. 4. Push up on the retainers (1) in order to remove the TCM from the cover. 5. Disconnect the TCM electrical connectors (2) and remove the TCM from the vehicle. Installation Procedure 1. Connect the TCM electrical connectors (2) to the TCM. 2. Install the TCM to the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Transmission and Drivetrain > Relays and Modules - A/T > Control Module, A/T > Component Information > Technical Service Bulletins > Page 1131 3. Using the alignment tabs (1), install the cover and module to the radiator shroud. 4. Notice: Refer to Fastener Notice. Install the TCM cover bolts (1) to the radiator shroud. Tighten the bolts to 9 Nm (80 inch lbs.). 5. Connect the negative battery cable. Refer to Battery Negative Cable Disconnection and Connection (Auxiliary Battery) Battery Negative Cable Disconnection and Connection (Single Battery). 6. Reprogram the TCM. Refer to Control Module References. 7. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Windows and Glass > Heated Glass Element Relay > Component Information > Locations Heated Glass Element Relay: Locations Relay Block - I/P Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Windows and Glass > Power Window Control Module > Component Information > Service and Repair > Front Side Door Window Module Replacement Power Window Control Module: Service and Repair Front Side Door Window Module Replacement FRONT SIDE DOOR WINDOW MODULE REPLACEMENT REMOVAL PROCEDURE 1. Raise and support the window. 2. Remove the trim panel. 3. Remove the water deflector. 4. Disconnect the wiring harness from the window motor assembly. 5. Remove the 2 bolts holding the window to the regulator. 6. Remove the bolts from the window regulator. 7. Remove the window regulator assembly from the door folding both sides together. INSTALLATION PROCEDURE 1. Install the regulator to the door. 2. NOTE: Refer to Fastener Notice. Install the bolts to the window regulator. Tighten the bolts to 9 N.m (80 lb in). 3. Align the window to the regulator and install the bolts holding the window to the regulator. Tighten the bolts to 9 N.m (80 lb in). 4. Connect the wiring harness to the window motor assembly. 5. Install the water deflector. 6. Install the trim panel. 7. Lower the window. Inspect the window operation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Windows and Glass > Power Window Control Module > Component Information > Service and Repair > Front Side Door Window Module Replacement > Page 1140 Power Window Control Module: Service and Repair Rear Side Door Window Module Replacement REAR SIDE DOOR WINDOW MODULE REPLACEMENT REMOVAL PROCEDURE 1. Remove the trim panel. 2. Remove the water deflector. 3. Remove the window glass. 4. Remove the window sash. 5. Remove the glass weatherstrip. 6. Remove the module from the door. INSTALLATION PROCEDURE 1. Install the module to the door. 2. Install the glass weatherstrip. 3. Install the window sash. 4. Install the window glass. 5. Install the water deflector. 6. Install the trim panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Relays and Modules > Relays and Modules - Wiper and Washer Systems > Windshield Washer Relay > Component Information > Locations Windshield Washer Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Integrated Accessory Switch Assembly > Component Information > Service and Repair Integrated Accessory Switch Assembly: Service and Repair Accessory Switch Replacement Removal Procedure 1. Remove the IP trim bezel. 2. Grasp the accessory switch assembly and pull outwards to remove the button assembly. 3. Disconnect the electrical connectors for the switches in the assembly. 4. Remove the switches and the button assembly. Installation Procedure 1. Connect the electrical connectors to the switches in the assembly 2. Install the accessory switch assembly into the IP till it snaps into place. 3. Install the IP trim bezel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Lock Cylinder Switch > Component Information > Locations Lock Cylinder Switch: Locations Immobilizer Component Views Upper Steering Column 1 - Passlock Sensor 2 - Ignition Key Alarm Switch 3 - Ignition Lock Cylinder Control Actuator 4 Ignition Switch 5 - Ignition Key Cylinder 6 - Horn Switch 7 - Inflatable Restraint Steering Wheel Module 8 - Turn Signal/Multifunction Switch 9 - Hazard Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Lock Cylinder Switch > Component Information > Diagrams > Door Latch Assembly Door Latch Assembly (Key Cylinder Switch) - Driver C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Lock Cylinder Switch > Component Information > Diagrams > Door Latch Assembly > Page 1155 Lock Cylinder Switch: Diagrams Immobilizer Connector End Views Immobilizer Connector End Views Passlock Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Lock Cylinder Switch > Component Information > Diagrams > Door Latch Assembly > Page 1156 Lock Cylinder Switch: Diagrams Theft Deterrent System Connector End Views Theft Deterrent System Connector End Views Passlock Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Parking Assist Distance Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set Parking Assist Distance Sensor: Customer Interest Park Assist System - Inoperative/Lamp ON/DTC's Set TECHNICAL Bulletin No.: 08-08-127-001B Date: June 10, 2010 Subject: Park Assist System Inoperative, Service Park Assist Message Displayed on Driver Information Center (DIC), DTC B1E3A and/or B0954, B0955, B0956, B0957, B0958, B0959, B0960, B0961 Set (Replace Appropriate Object Sensor or Repair Harness) Models: 2006-2008 Buick Lucerne 2008-2009 Buick Enclave 2006-2008 Cadillac DTS 2007-2009 Cadillac Escalade, SRX 2008-2010 Cadillac CTS 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2009 Chevrolet Traverse 2007-2009 GMC Acadia, Sierra, Yukon, Yukon XL 2007-2009 Saturn OUTLOOK Equipped with Parking Assist (RPO UD7 or UFR) Supercede: This bulletin is being revised to clarify the text in the Condition, Cause and Correction sections and update the Warranty Information. Please discard Corporate Bulletin Number 08-08-127-001A (Section 08 - Body and Accessories). Condition - Some customers may comment on a Service Park Assist message being displayed on the driver information center (DIC). - The technician may observe with a scan tool DTC B1E3A and/or B0954, B0955, B0956, B0957, B0958, B0959, B0960, B0961 set as Current or in History. Cause - This condition may be caused by a malfunctioning object sensor or a circuit fault on the 8 volt reference circuit. Note The 8 volt reference circuit serves all of the object sensors in parallel. A fault anywhere on the circuit or in any single sensor will affect all of the sensors. - When a single sensor malfunctions, the shared 8 volt reference circuit may be compromised, resulting in a DTC for each sensor. Correction Important DO NOT replace all of the object sensors and/or the object alarm module. If normal diagnosis does not reveal any concerns with the park assist system, perform the following diagnostic procedure: 1. Turn OFF the ignition. Note Depending on the model year of the vehicle the park assist system sensors are referred to as: object sensor or object alarm sensor. 2. Disconnect the harness connector at each of the object sensors. For the locations of the object sensors, refer to Master Electrical Component List in SI. 3. Turn ON the ignition, with the engine OFF. Important With all of the object sensor harness connectors disconnected, multiple sensor DTCs will set and will not clear. Ignore these DTCs for now. 4. Clear any DTCs that may be present. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Parking Assist Distance Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set > Page 1165 5. Verify that DTC B1E3A does not reset as Current. Important Ensure each leg of the circuit is tested since the 8 volt reference circuit feeds all the sensors in parallel. ‹› If DTC B1E3A does set, test the 8 volt reference circuit for a short to voltage, short to ground or an open/high resistance. Repair the circuit as necessary. Depending on the model year of the vehicle, refer to Body > Wiring Systems > Diagnostic Information and Procedures > Wiring Repairs OR Power and Signal Distribution > Wiring Systems and Power Management > Diagnostic Information and Procedures > Wiring Repairs in SI. ‹› If DTC B1E3A does not set proceed to Step 6. 6. Install each object sensor harness connector one at a time, checking for DTCs immediately after each sensor is connected. Verify DTC B1E3A does not set as Current. ‹› If DTC B1E3A does set, replace the object sensor that was connected immediately before the DTC set. 7. Perform the diagnostic repair verification after completing the diagnostic procedure. Refer to Diagnostic Repair Verification in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Parking Assist Distance Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Parking Assist Distance Sensor: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set Parking Assist Distance Sensor: All Technical Service Bulletins Park Assist System Inoperative/Lamp ON/DTC's Set TECHNICAL Bulletin No.: 08-08-127-001B Date: June 10, 2010 Subject: Park Assist System Inoperative, Service Park Assist Message Displayed on Driver Information Center (DIC), DTC B1E3A and/or B0954, B0955, B0956, B0957, B0958, B0959, B0960, B0961 Set (Replace Appropriate Object Sensor or Repair Harness) Models: 2006-2008 Buick Lucerne 2008-2009 Buick Enclave 2006-2008 Cadillac DTS 2007-2009 Cadillac Escalade, SRX 2008-2010 Cadillac CTS 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2009 Chevrolet Traverse 2007-2009 GMC Acadia, Sierra, Yukon, Yukon XL 2007-2009 Saturn OUTLOOK Equipped with Parking Assist (RPO UD7 or UFR) Supercede: This bulletin is being revised to clarify the text in the Condition, Cause and Correction sections and update the Warranty Information. Please discard Corporate Bulletin Number 08-08-127-001A (Section 08 - Body and Accessories). Condition - Some customers may comment on a Service Park Assist message being displayed on the driver information center (DIC). - The technician may observe with a scan tool DTC B1E3A and/or B0954, B0955, B0956, B0957, B0958, B0959, B0960, B0961 set as Current or in History. Cause - This condition may be caused by a malfunctioning object sensor or a circuit fault on the 8 volt reference circuit. Note The 8 volt reference circuit serves all of the object sensors in parallel. A fault anywhere on the circuit or in any single sensor will affect all of the sensors. - When a single sensor malfunctions, the shared 8 volt reference circuit may be compromised, resulting in a DTC for each sensor. Correction Important DO NOT replace all of the object sensors and/or the object alarm module. If normal diagnosis does not reveal any concerns with the park assist system, perform the following diagnostic procedure: 1. Turn OFF the ignition. Note Depending on the model year of the vehicle the park assist system sensors are referred to as: object sensor or object alarm sensor. 2. Disconnect the harness connector at each of the object sensors. For the locations of the object sensors, refer to Master Electrical Component List in SI. 3. Turn ON the ignition, with the engine OFF. Important With all of the object sensor harness connectors disconnected, multiple sensor DTCs will set and will not clear. Ignore these DTCs for now. 4. Clear any DTCs that may be present. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Parking Assist Distance Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Parking Assist Distance Sensor: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set > Page 1171 5. Verify that DTC B1E3A does not reset as Current. Important Ensure each leg of the circuit is tested since the 8 volt reference circuit feeds all the sensors in parallel. ‹› If DTC B1E3A does set, test the 8 volt reference circuit for a short to voltage, short to ground or an open/high resistance. Repair the circuit as necessary. Depending on the model year of the vehicle, refer to Body > Wiring Systems > Diagnostic Information and Procedures > Wiring Repairs OR Power and Signal Distribution > Wiring Systems and Power Management > Diagnostic Information and Procedures > Wiring Repairs in SI. ‹› If DTC B1E3A does not set proceed to Step 6. 6. Install each object sensor harness connector one at a time, checking for DTCs immediately after each sensor is connected. Verify DTC B1E3A does not set as Current. ‹› If DTC B1E3A does set, replace the object sensor that was connected immediately before the DTC set. 7. Perform the diagnostic repair verification after completing the diagnostic procedure. Refer to Diagnostic Repair Verification in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Parking Assist Distance Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Parking Assist Distance Sensor: > 07-08-49-014A > Jul > 08 > Parking Assist System - 'Park Assist Off' Message on DIC Parking Assist Distance Sensor: All Technical Service Bulletins Parking Assist System - 'Park Assist Off' Message on DIC INFORMATION Bulletin No.: 07-08-49-014A Date: July 30, 2008 Subject: Diagnostic Information for Park Assist Off Message on Driver Information Center (DIC) Models: 2007-2009 Cadillac Escalade Models 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Yukon Models Supercede: This bulletin is being revised to add the 2008 and 2009 model years. Please discard Corporate Bulletin Number 07-08-49-014 (Section 08 - Body and Accessories). Some customers may comment that a "Park Assist Off" message is appearing on the Driver Information center (DIC) at times. There are several factors listed above that can cause this message to appear. A Tech 2 can be used to access the latest entry into the Park Assist Module history buffer to help determine a cause. Engineering has received multiple inhibited Rear park Assist Modules through warranty parts return with attached object stored in the latest history buffer. If a vehicle has a trailer hitch installed into the trailer hitch receiver, it is possible for the rear park assist to be disabled. Once the trailer hitch is removed, the message should go away. Other possible causes may be dirty sensors. Keep the rear bumper free of mud, dirt, snow, ice and slush. Important: Please note that any object that is installed in the receiver hitch, extending from the rear of the vehicle, or blocking the sensors can disable the Parking Assist, resulting in the message "Park Assist Off". Please remove the object or obstruction from the vehicle to re-enable the system. This is normal operation of the system. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Parking Assist Distance Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Parking Assist Distance Sensor: > 07-08-49-014A > Jul > 08 > Parking Assist System - 'Park Assist Off' Message on DIC Parking Assist Distance Sensor: All Technical Service Bulletins Parking Assist System - 'Park Assist Off' Message on DIC INFORMATION Bulletin No.: 07-08-49-014A Date: July 30, 2008 Subject: Diagnostic Information for Park Assist Off Message on Driver Information Center (DIC) Models: 2007-2009 Cadillac Escalade Models 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Yukon Models Supercede: This bulletin is being revised to add the 2008 and 2009 model years. Please discard Corporate Bulletin Number 07-08-49-014 (Section 08 - Body and Accessories). Some customers may comment that a "Park Assist Off" message is appearing on the Driver Information center (DIC) at times. There are several factors listed above that can cause this message to appear. A Tech 2 can be used to access the latest entry into the Park Assist Module history buffer to help determine a cause. Engineering has received multiple inhibited Rear park Assist Modules through warranty parts return with attached object stored in the latest history buffer. If a vehicle has a trailer hitch installed into the trailer hitch receiver, it is possible for the rear park assist to be disabled. Once the trailer hitch is removed, the message should go away. Other possible causes may be dirty sensors. Keep the rear bumper free of mud, dirt, snow, ice and slush. Important: Please note that any object that is installed in the receiver hitch, extending from the rear of the vehicle, or blocking the sensors can disable the Parking Assist, resulting in the message "Park Assist Off". Please remove the object or obstruction from the vehicle to re-enable the system. This is normal operation of the system. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Pedal Positioning Sensor > Component Information > Diagrams Pedal Positioning Sensor: Diagrams Power Steering Connector End Views Brake Pedal Position Sensor Brake Pedal Position Sensor Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Pedal Positioning Sensor > Component Information > Diagrams > Page 1184 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Pedal Positioning Sensor > Component Information > Diagrams > Page 1185 Electro-Hydraulic Power Steering (EHPS) C2 Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Pedal Positioning Sensor > Component Information > Diagrams > Page 1186 Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Remote Switch, Audio - Stereo > Component Information > Technical Service Bulletins > Audio - Inadvertent Steering Wheel Button Activation Remote Switch: Technical Service Bulletins Audio - Inadvertent Steering Wheel Button Activation INFORMATION Bulletin No.: 08-08-44-028 Date: August 28, 2008 Subject: Information On Inadvertent Steering Wheel Control (SWC) Button Press Causing Radio Anomalies Models: 2009 and Prior GM Passenger Cars and Trucks (Including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X All Vehicles with Steering Wheel Controls This bulletin is being issued to provide a recommendation for vehicles with a customer concern of the radio station tuning changing by itself, volume changing by itself, radio changing by itself, or radio muting or going silent when driving and turning the steering wheel. The switches on the right hand side of the steering wheel are easily pressed and may inadvertently be pressed when turning the steering wheel. These concerns may be affected by the location of the steering wheel controls. Recommendation Do Not Replace The Radio 1. Please determine that the switch controls on the steering wheel are functioning correctly. 2. Ask the customer if their hand was in close proximity to the steering wheel controls when the condition happened. Explain to the customer that bumping the controls would have caused this undesired action. Explain to the customer the proper use and function of the steering wheel controls. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views Steering Mounted Controls Assembly: Diagrams Secondary/Configurable Control Connector End Views Secondary/Configurable Control Connector End Views Steering Wheel Control Switch Assembly-Lower Left (UK3) Steering Wheel Controls - Right (UK3) Steering Wheel Control Switch Assembly-Lower Right (UK3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1195 Steering Wheel Control Switch Assembly-Upper Left (UK3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1196 Steering Wheel Control Switch Assembly-Upper Right (UK3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1197 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1198 Steering Mounted Controls Assembly: Diagrams Entertainment/Communication Connector End Views Entertainment/Communication Connector End Views Steering Wheel Control Switch Assembly - Upper Left (UK3) Steering Wheel Control Switch Assembly - Upper Right (UK3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1199 Steering Wheel Control Switch Assembly - Lower Left (UK3) Steering Wheel Controls - Right (UK3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1200 Steering Wheel Control Switch Assembly - Lower Right (UK3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Secondary/Configurable Control Connector End Views > Page 1201 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Page 1202 Steering Mounted Controls Assembly: Service and Repair Steering Wheel Control Switch Assembly Replacement Removal Procedure 1. Remove the steering wheel. 2. Remove the shroud retaining screws from the back of the steering wheel. 3. Remove the shroud from the steering wheel. 4. Position a blunt-ended tool into the wire harness cavity (1) and apply moderate pressure in order to partially remove the steering wheel control switch from the steering wheel. 5. Disconnect the steering wheel control switch electrical connector. Important: The bulbs in the steering wheel control switches are not serviceable. The switches should be replaced only as an assembly. 6. Remove the steering wheel control switch from the steering wheel. Installation Procedure 1. Position the steering wheel control switch to the steering wheel. 2. Connect the electrical connector to the steering wheel control switch. 3. Install the steering wheel control switch into the steering wheel, ensuring the retaining tabs are fully seated. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Accessories and Optional Equipment > Steering Mounted Controls Assembly > Component Information > Diagrams > Page 1203 4. Install the shroud to the steering wheel. Notice: Refer to Fastener Notice. 5. Install the shroud retaining screws to the steering wheel. Tighten the screws to 2 N.m (18 lb in). 6. Install the steering wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Pedal Positioning Sensor > Component Information > Diagrams Pedal Positioning Sensor: Diagrams Power Steering Connector End Views Brake Pedal Position Sensor Brake Pedal Position Sensor Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Pedal Positioning Sensor > Component Information > Diagrams > Page 1208 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Pedal Positioning Sensor > Component Information > Diagrams > Page 1209 Electro-Hydraulic Power Steering (EHPS) C2 Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Pedal Positioning Sensor > Component Information > Diagrams > Page 1210 Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Diagrams Power Door Lock Switch: Diagrams Door Lock Switch - Driver (Base Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Diagrams > Page 1214 Door Lock Switch - Passenger (Base Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Service and Repair > Door Lock and Side Window Switch Replacement - Driver Side Power Door Lock Switch: Service and Repair Door Lock and Side Window Switch Replacement Driver Side DOOR LOCK AND SIDE WINDOW SWITCH REPLACEMENT - DRIVER SIDE REMOVAL PROCEDURE 1. Remove the front door trim panel. 2. Disconnect the electrical connectors. 3. Remove the screw that retains the switch panel bezel (1) from the front door panel. 4. Remove the switch panel bezel from the door panel using a flat-bladed tool. 5. Using a wide plastic flat-bladed tool, release the retaining clips on both sides of the door module. 6. Remove the door module from the switch panel bezel. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Service and Repair > Door Lock and Side Window Switch Replacement - Driver Side > Page 1217 1. Install the door module into the switch panel bezel until it snaps into place. 2. Install the switch panel bezel and module to the door panel. 3. NOTE: Refer to Fastener Notice. Install the screw that retains the switch panel bezel (1) to the front door panel. Tighten the screw to 2 N.m (18 lb in). 4. Connect the electrical connectors. 5. Install the front door trim panel. 6. If equipped with camper mirrors, program the door module. Refer to Door Control Module Programming and Setup. 7. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Service and Repair > Door Lock and Side Window Switch Replacement - Driver Side > Page 1218 Power Door Lock Switch: Service and Repair Door Lock and Side Window Switch Replacement Passenger Side DOOR LOCK AND SIDE WINDOW SWITCH REPLACEMENT - PASSENGER SIDE REMOVAL PROCEDURE 1. Remove the front door trim panel. 2. Remove the screw (2) that retains the switch panel bezel (1) to the front door trim panel. 3. Remove the switch panel bezel from the door panel using a flat-bladed tool. 4. Using a wide plastic flat-bladed tool, release the retaining clips on both sides of the door module. 5. Remove the door module from the switch panel bezel. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Service and Repair > Door Lock and Side Window Switch Replacement - Driver Side > Page 1219 1. Install the door module into the switch panel bezel until it snaps into place. 2. Install the switch panel bezel and module into the door trim panel. 3. NOTE: Refer to Fastener Notice. Install the screw (2) that retains the switch panel bezel (1) to the front door trim panel. Tighten the screw (2) to 2 N.m (18 lb in). 4. Install the front door trim panel. 5. Perform the necessary setup and programming procedures. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Door Lock Switch > Component Information > Service and Repair > Door Lock and Side Window Switch Replacement - Driver Side > Page 1220 Power Door Lock Switch: Service and Repair Door Lock Switch Replacement - Front DOOR LOCK SWITCH REPLACEMENT - FRONT Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Mirror Position Switch/Sensor > Component Information > Technical Service Bulletins > Customer Interest for Power Mirror Position Switch/Sensor: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter Power Mirror Position Switch/Sensor: Customer Interest Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter TECHNICAL Bulletin No.: 06-08-64-027I Date: April 12, 2011 Subject: Left or Right Outside Rearview Mirror Glass Shake or Flutter (Relearn Power Mirrors and Replace Mirror, If Necessary) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon XL, Yukon Denali All Equipped with Power Folding Mirrors RPO DL3 Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-08-64-027H (Section 08 - Body and Accessories). Condition Some customers may comment that the left or right outside rearview mirror glass shakes or flutters at normal driving speeds. Cause - The mirror may have been accidentally pushed in manually or obstructed while folding. - The mirror actuator screws may be loose, allowing the mirror to move. - The metal spring may not have enough tension to hold the mirror from moving. Correction Follow the procedure below to correct this condition. 1. The power folding mirrors should be cycled three complete times to relearn the mirror positions. Then perform a road test and check the mirror glass for stability. If stability is not corrected, proceed to Step 2. 2. Remove the mirror glass. Refer to Mirror Face Replacement in SI. 3. Verify the torque on the four retaining screws on the actuator. Tighten Tighten the screws to 1.13-1.6 Nm (10-14 lb in). 4. Bend the metal spring up to increase the tension engagement to the mirror housing 13 mm (1/2 in). 5. Install the glass assembly by pressing firmly, taking care not to allow the spring finger to unseat from its intended track in the mirror housing. Road test the vehicle. If stability is not improved, replace the mirror assembly. Refer to Power Mirror Replacement in SI. Parts Information If replacing the mirror assembly, see Mirror in Group 16.068 of the appropriate Parts Catalog for part numbers and usage. Warranty Information Important Only one Labor Operation should be claimed depending on the actual repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Mirror Position Switch/Sensor > Component Information > Technical Service Bulletins > Customer Interest for Power Mirror Position Switch/Sensor: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter > Page 1229 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Mirror Position Switch/Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Power Mirror Position Switch/Sensor: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter Power Mirror Position Switch/Sensor: All Technical Service Bulletins Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter TECHNICAL Bulletin No.: 06-08-64-027I Date: April 12, 2011 Subject: Left or Right Outside Rearview Mirror Glass Shake or Flutter (Relearn Power Mirrors and Replace Mirror, If Necessary) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon XL, Yukon Denali All Equipped with Power Folding Mirrors RPO DL3 Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-08-64-027H (Section 08 - Body and Accessories). Condition Some customers may comment that the left or right outside rearview mirror glass shakes or flutters at normal driving speeds. Cause - The mirror may have been accidentally pushed in manually or obstructed while folding. - The mirror actuator screws may be loose, allowing the mirror to move. - The metal spring may not have enough tension to hold the mirror from moving. Correction Follow the procedure below to correct this condition. 1. The power folding mirrors should be cycled three complete times to relearn the mirror positions. Then perform a road test and check the mirror glass for stability. If stability is not corrected, proceed to Step 2. 2. Remove the mirror glass. Refer to Mirror Face Replacement in SI. 3. Verify the torque on the four retaining screws on the actuator. Tighten Tighten the screws to 1.13-1.6 Nm (10-14 lb in). 4. Bend the metal spring up to increase the tension engagement to the mirror housing 13 mm (1/2 in). 5. Install the glass assembly by pressing firmly, taking care not to allow the spring finger to unseat from its intended track in the mirror housing. Road test the vehicle. If stability is not improved, replace the mirror assembly. Refer to Power Mirror Replacement in SI. Parts Information If replacing the mirror assembly, see Mirror in Group 16.068 of the appropriate Parts Catalog for part numbers and usage. Warranty Information Important Only one Labor Operation should be claimed depending on the actual repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Mirror Position Switch/Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Power Mirror Position Switch/Sensor: > 06-08-64-027I > Apr > 11 > Body - LH/RH Outside Rearview Mirror Glass Shake/Flutter > Page 1235 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Locations Power Seat Motor Position Sensor: Locations Driver Seat (2 Of 2) (With RPO Codes AG1 And AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Locations > Page 1239 Driver Seat (1 Of 2) (With RPO Codes AG1 And AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1242 Seat Front Vertical Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1243 Seat Horizontal Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1244 Seat Lumbar Motor/Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1245 Power Seat Motor Position Sensor: Diagrams Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1246 Seat Front Vertical Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1247 Seat Horizontal Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1248 Seat Lumbar Motor/Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1249 Seat Rear Vertical Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Motor Position Sensor > Component Information > Diagrams > Seat Bolster Motor/Position Sensor - Driver (With RPO Code AN3) > Page 1250 Seat Recliner Motor Position Sensor - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Customer Interest: > 09-08-50-011A > Apr > 11 > Body Sticking/Binding Door Mounted Seat Switches Power Seat Switch: Customer Interest Body - Sticking/Binding Door Mounted Seat Switches TECHNICAL Bulletin No.: 09-08-50-011A Date: April 13, 2011 Subject: Sticking/Binding Door Mounted Seat Switches (Align Switch) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali All Equipped with RPOs AN3, KA1, KB6 Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 09-08-50-011 (Section 08 - Body and Accessories). Condition Some customers may comment that the door mounted memory/ heated/ cool seat switch buttons are sticking or binding. Cause This condition may be caused by the switch being out of alignment in the bezel, creating a hard contact between the switch button and the inside release handle bezel. Correction 1. Remove the door trim. Refer to Front Side Door Trim Panel Replacement in SI. 2. Loosen both screws (1) holding the switch to the inside release handle bezel. 3. Using a flat-bladed tool (1), carefully shift the position of the switch to create a nominal gap all around its perimeter within the bezel. Tighten the two screws holding the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Customer Interest: > 09-08-50-011A > Apr > 11 > Body Sticking/Binding Door Mounted Seat Switches > Page 1259 4. Confirm that the switch buttons are free moving, and there is a nominal gap (1) all around its perimeter within the bezel. 5. Reinstall the door trim. Refer to Front Side Door Trim Panel Replacement in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-50-011A > Apr > 11 > Body - Sticking/Binding Door Mounted Seat Switches Power Seat Switch: All Technical Service Bulletins Body - Sticking/Binding Door Mounted Seat Switches TECHNICAL Bulletin No.: 09-08-50-011A Date: April 13, 2011 Subject: Sticking/Binding Door Mounted Seat Switches (Align Switch) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali All Equipped with RPOs AN3, KA1, KB6 Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 09-08-50-011 (Section 08 - Body and Accessories). Condition Some customers may comment that the door mounted memory/ heated/ cool seat switch buttons are sticking or binding. Cause This condition may be caused by the switch being out of alignment in the bezel, creating a hard contact between the switch button and the inside release handle bezel. Correction 1. Remove the door trim. Refer to Front Side Door Trim Panel Replacement in SI. 2. Loosen both screws (1) holding the switch to the inside release handle bezel. 3. Using a flat-bladed tool (1), carefully shift the position of the switch to create a nominal gap all around its perimeter within the bezel. Tighten the two screws holding the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-50-011A > Apr > 11 > Body - Sticking/Binding Door Mounted Seat Switches > Page 1265 4. Confirm that the switch buttons are free moving, and there is a nominal gap (1) all around its perimeter within the bezel. 5. Reinstall the door trim. Refer to Front Side Door Trim Panel Replacement in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > All Other Service Bulletins for Power Seat Switch: > 06-04-17-002A > Jan > 07 > Drivetrain - Rear Drive Axle Whine Noise Universal Joint: All Technical Service Bulletins Drivetrain - Rear Drive Axle Whine Noise Bulletin No.: 06-04-17-002A Date: January 12, 2007 TECHNICAL Subject: Rear Drive Axle Whine Noise (Replace Slip Yoke Assembly) Models: 2004-2007 Chevrolet Silverado (Classic) 1500 Series 2WD Crew Cab Models (C15543) 2004-2007 GMC Sierra (Classic) 1500 Series 2WD Crew Cab Models (C15543) Supercede: This bulletin is being revised to include additional model information. Please discard Corporate Bulletin Number 06-04-17-002 (Section 04 - Driveline/Axle). Condition Some customers may comment on a slight axle whine noise heard only at certain speeds, typically on coast conditions between 72-96 km/h (45-60 mph). Cause "Inherent" ring and pinion gear whine. All gear driven units, such as automotive rear axles, produce some level of noise that cannot be eliminated with conventional adjustments and repairs. "Inherent" axle noise can be described as a slight noise heard only at a certain speed (typically between 72-96 km/h (45-60 mph) on most General Motors(R) trucks). The presence of this noise is not indicative of a functional concern with the axle assembly. However, some customers may find that this inherent axle noise is unacceptable. Correction Using the service procedures in SI, replace the propshaft front slip yoke and u-joint with a tuned damper slip yoke with u-joint assembly, P/N 19151749, ONLY after diagnosis concludes that it is an "inherent" rear axle noise and no physical damage or incorrect adjustment exists. Do NOT replace the propshaft assembly. If the noise is not correctly diagnosed as "inherent" and having a peak in the narrow speed range of 72-96 km/h (45-60 mph), the addition of a tuned damper slip yoke and u-joint can aggravate the perceptible noise level. It is extremely important to first diagnose the rear axle noise as "inherent". Refer to the following diagnostic information and procedure for rear axle noise in SI: Diagnostic Starting Point - Rear Drive Axle Symptoms - Rear Drive Axle Rear Drive Axle Noises Noisy in Drive Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > All Other Service Bulletins for Power Seat Switch: > 06-04-17-002A > Jan > 07 > Drivetrain - Rear Drive Axle Whine Noise > Page 1271 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > All Other Service Bulletins for Power Seat Switch: > 06-04-17-002A > Jan > 07 > Drivetrain - Rear Drive Axle Whine Noise > Page 1277 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1278 Power Seat Switch: Locations Driver Seat (1 Of 2) (With RPO Codes AG1 And AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1279 Passenger Seat (1 Of 2) (With RPO Code AG2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1280 Power Seat Switch: Diagrams Seat Adjuster Switch - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1281 Seat Adjuster Switch - Driver (With RPO Code AG1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1282 Seat Adjuster Switch - Passenger (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1283 Seat Bolster/Lumbar Switch - Driver (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Technical Service Bulletins > Page 1284 Seat Bolster/Lumbar Switch - Passenger (With RPO Code AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Service and Repair > Power Seat Switch Replacement Power Seat Switch: Service and Repair Power Seat Switch Replacement POWER SEAT SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the power seat switch bezel from the seat. 2. Remove the power seat switch to bezel screws. 3. Remove the power seat switch. INSTALLATION PROCEDURE NOTE: Refer to Fastener Notice. 1. Install the power seat switch to bezel screws. Tighten the screws to 2 N.m (18 lb in). 2. Install the power seat switch bezel to the seat. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Service and Repair > Power Seat Switch Replacement > Page 1287 Power Seat Switch: Service and Repair Driver Seat Adjuster Memory Switch Replacement DRIVER SEAT ADJUSTER MEMORY SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the front door trim panel. 2. Disconnect the electrical connector. 3. Release the front seat memory switch assembly retaining clips in order to remove the switch. 4. Remove the front seat memory switch assembly. INSTALLATION PROCEDURE 1. Install the front seat memory switch assembly to the front trim panel by pressing into place until fully seated. 2. Connect the electrical connector to the front seat memory switch assembly. 3. Install the front trim panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Power Seat Switch > Component Information > Service and Repair > Power Seat Switch Replacement > Page 1288 Power Seat Switch: Service and Repair Lumbar Switch Replacement LUMBAR SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the power seat switch bezel containing the lumbar switch (1) from the seat. 2. Remove the lumbar switch screws from the power seat switch bezel. 3. Remove the lumbar switch. INSTALLATION PROCEDURE 1. Install the lumbar switch to the power seat switch bezel. 2. NOTE: Refer to Fastener Notice. Install the lumbar switch screws. Tighten the screws to 2 N.m (18 lb in). 3. Install the power seat switch bezel (1) to the seat. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations Seat Heater Switch: Locations Driver Door Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations > Page 1292 Passenger Door Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations > Page 1293 Seat Heater Switch: Diagrams Driver Door Module (DDM) - C5 (Memory/Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations > Page 1294 Passenger Door Module (PDM) - C5 (Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations > Page 1295 Driver Door Module (DDM) - C5 (Memory/Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations > Page 1296 Passenger Door Module (PDM) - C5 (Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Heater Switch > Component Information > Locations > Page 1297 Seat Heater Switch: Service and Repair FRONT SEAT HEATER SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the front door trim panel. 2. Disconnect the electrical connector. 3. Release the retaining clips for the front seat heater switch assembly in order to remove the switch. 4. Remove the front seat heater switch assembly. INSTALLATION PROCEDURE 1. Install the front seat heater switch assembly to the front trim panel by pressing the switch into place until the switch is completely seated. 2. Connect the electrical connector to the front seat heater switch assembly. 3. Install the front trim panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Memory Switch > Component Information > Diagrams Driver Door Module (DDM) - C5 (Memory/Heated Seat Switch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Seat Memory Switch > Component Information > Diagrams > Page 1301 Seat Memory Switch: Service and Repair DRIVER SEAT ADJUSTER MEMORY SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the front door trim panel. 2. Disconnect the electrical connector. 3. Release the front seat memory switch assembly retaining clips in order to remove the switch. 4. Remove the front seat memory switch assembly. INSTALLATION PROCEDURE 1. Install the front seat memory switch assembly to the front trim panel by pressing into place until fully seated. 2. Connect the electrical connector to the front seat memory switch assembly. 3. Install the front trim panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Sunroof / Moonroof Switch > Component Information > Locations Sunroof Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Sunroof / Moonroof Switch > Component Information > Locations > Page 1305 Sunroof Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Body and Frame > Sunroof / Moonroof Switch > Component Information > Locations > Page 1306 Sunroof / Moonroof Switch: Service and Repair SUNROOF SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the roof console assembly. 2. Disconnect the electrical connector. 3. Remove the switch by unsnapping from roof console assembly. INSTALLATION PROCEDURE 1. Install the switch to roof console assembly by snapping into place. 2. Connect the electrical connector. 3. Install the roof console assembly. 4. Synchronize the sunroof motor. Refer to Sunroof Motor/Actuator Synchronization. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Brake Fluid Level Sensor/Switch > Component Information > Locations Brake Fluid Level Sensor/Switch: Locations Hydraulic Brake Component Views Brake Fluid Level Switch (Except JC4) 1 - Hydraulic Brake Line 2 - Bracket for Chassis Harness Studs 3 - LH Front Lower Dash Panel 4 Bracket for Chassis Harness 5 - Inline Connector 6 - Inline Connector 7 - Fuse Block - Underhood Connector 8 - Fuse Block - Underhood Eyelet Connector 9 - Brake Fluid Level Switch Connector 10 - Brake Fluid Level Switch 11 - Brake Fluid Reservoir Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Brake Fluid Level Sensor/Switch > Component Information > Locations > Page 1311 Brake Fluid Level Sensor/Switch: Diagrams Brake Fluid Level Switch (Except JC4) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Brake Fluid Level Sensor/Switch > Component Information > Locations > Page 1312 Brake Fluid Level Sensor/Switch: Service and Repair Master Cylinder Fluid Level Sensor Replacement Removal Procedure 1. Disconnect the electrical connector from the fluid level sensor. 2. Using needle nose pliers, compress the locking tabs at the opposite side of the master cylinder. 3. Remove the fluid level sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Brake Fluid Level Sensor/Switch > Component Information > Locations > Page 1313 1. Install the fluid level sensor until the locking tabs snap into place. 2. Connect the electrical connector to the fluid level sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Brake Fluid Pressure Sensor/Switch > Component Information > Locations Brake Fluid Pressure Sensor/Switch: Locations Hydraulic Brake Component Views Brake Pressure Differential Switch (JC4) 1 - Supplemental Brake Assist Pump Motor 2 - Chassis Harness 3 - Brake Pressure Differential Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Brake Fluid Pressure Sensor/Switch > Component Information > Locations > Page 1317 Brake Fluid Pressure Sensor/Switch: Diagrams Brake Pressure Differential Switch (JC4) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Braking Sensor/Switch > Component Information > Diagrams Braking Sensor/Switch: Diagrams Power Steering Connector End Views Brake Pedal Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Braking Sensor/Switch > Component Information > Diagrams > Page 1321 Braking Sensor/Switch: Adjustments Brake Pedal Position Sensor Calibration Calibration Criteria The brake pedal position (BPP) sensor receives a low reference signal and a 5 volt reference signal from the electro hydraulic power steering (EHPS) module. Whenever the brake pedal is pressed, the brake pedal position sensor applies a variable voltage signal to the EHPS module through the BPP sensor signal circuit. Brake pedal position sensor calibration must be performed after the brake pedal position sensor or EHPS system have been serviced. The calibration procedure will set brake pedal position sensor home value. This value is used by the EHPS module to determine the brake pedal position and the brake pedal rate. These two outputs are provided to the hybrid control module (HCM) via GMLAN. Calibration Procedure 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. Important: Make sure the brake pedal is not pressed before sending the BPP sensor calibration command. Navigate to the Special Functions screen on the scan tool and select BPP Sensor Calibration in order to perform the brake pedal position sensor calibration. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Parking Brake Warning Switch > Component Information > Locations Parking Brake Warning Switch: Locations Park Brake Switch Park Brake Switch 1 - Park Brake Switch Connector 2 - Body Harness 3 - Park Brake Switch 4 - Park Brake Lever 5 Cowel Side Inner Panel Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Parking Brake Warning Switch > Component Information > Locations > Page 1325 Parking Brake Warning Switch: Diagrams Park Brake Switch Park Brake Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Parking Brake Warning Switch > Component Information > Locations > Page 1326 Parking Brake Warning Switch: Service and Repair Park Brake Warning Lamp Switch Replacement Removal Procedure 1. Caution: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. Remove the MID-bussed electrical center from the bracket. 3. Disconnect the park brake warning lamp switch electrical connector. 4. Remove the park brake warning lamp switch mounting bolt. 5. Remove the park brake warning lamp switch. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Parking Brake Warning Switch > Component Information > Locations > Page 1327 1. Install the park brake warning lamp switch. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the park brake warning lamp switch mounting bolt. Tighten the bolt to 3 Nm (25 inch lbs.). 3. Connect the park brake warning lamp switch electrical connector. 4. Install the MID-bussed electrical center to the bracket. 5. Connect the negative battery cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Traction Control Switch > Component Information > Locations Traction Control Switch: Locations Antilock Brake System Component Views Traction Control Switch (NW7) 1 - Traction Control Switch 2 - Instrument Panel Outer Air Outlet Housing Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Traction Control Switch > Component Information > Locations > Page 1331 Traction Control Switch: Diagrams Traction Control Switch (NW7) Transfer Case Shift Control Switch - C1 Traction Control Switch (NW7) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Traction Control Switch > Component Information > Locations > Page 1332 Traction Control Switch: Service and Repair Electronic Traction Control Switch Replacement Removal Procedure 1. Remove the instrument panel (I/P) bezel. 2. Gently lift the retaining tabs (2) and remove the stabilitrak switch (3) from the I/P assembly (1). 3. Disconnect the harness connector from the stabilitrak switch. Installation Procedure 1. Connect the harness connector to the stabilitrak switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Traction Control Switch > Component Information > Locations > Page 1333 2. Install the stabilitrak switch (3) into the I/P assembly (1) 3. Ensure that the switch is secure into both retaining tabs (2). 4. Install the I/P bezel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Technical Service Bulletins > Customer Interest for Wheel Speed Sensor: > 03-05-25-007D > May > 09 > Brakes - Low Speed ABS Activation/No DTC's Set Wheel Speed Sensor: Customer Interest Brakes - Low Speed ABS Activation/No DTC's Set TECHNICAL Bulletin No.: 03-05-25-007D Date: May 01, 2009 Subject: Antilock Brake (ABS) Activation At Low Speeds (Clean Wheel Speed Sensor Mounting Surface) Models: 2002-2006 Cadillac Escalade, Escalade EXT 2003-2006 Cadillac Escalade ESV 1999-2006 Chevrolet Silverado 2001-2006 Chevrolet Suburban, Tahoe 2002-2006 Chevrolet Avalanche 2003-2006 Chevrolet Express 2007 Chevrolet Silverado Classic 1999-2006 GMC Sierra 2001-2006 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2003-2006 GMC Savana 2007 GMC Sierra Classic 2003-2006 HUMMER H2 .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to add the 2007 Silverado/Sierra Classic models. Please discard Corporate Bulletin Number 03-05-25-007C (Section 05 - Brakes). .............................................................................................................................................................. .................................................................................. Condition Some customers may comment on ABS activation at low speeds, usually below 8 km/h (5 mph). Upon investigation, the technician will find no DTCs set. Cause The cause of this condition may be an increased air gap between the wheel speed sensor and the hub reluctor ring due to rust and debris built up on the sensor mounting surface. Correction Measure AC voltage and clean the wheel speed sensor mounting surfaces. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in the General Information sub-section of the Service Manual. 2. Disconnect both the front wheel speed sensor connectors at the frame and harness. 3. Place a Digital Volt Meter (DVM) across the terminals of each wheel speed sensor connector. 4. Rotate the wheel clockwise approximately one revolution per second. The minimum reading should be at least 350 ACmV's. If the reading is less than 350 ACmV's, remove the wheel speed sensor. Refer to the applicable Wheel Speed Sensor Replacement procedure in the ABS sub-section of the Service Manual. 5. Plug the wheel speed sensor bore in order to prevent debris from falling into the hub during service. 6. Clean the wheel speed sensor mounting surface using a wire brush, sand paper, emery cloth, scotch brite, or other suitable material. Be sure to thoroughly clean the wheel speed sensor surface. There should be no rust or corrosion. 7. Check the sensor head to determine if it has been warped/distorted due to the corrosion build up or other causes. Check the mounting surface on the sensor head for flatness by placing it on the edge of a metal machinists scale or other suitable straight edge to measure the flatness. Check the sensor for flatness in multiple (minimum 3) positions/directions. If the sensor head is distorted, replace the sensor. 8. Apply (spray) two thin coats of the specified rust penetrating lubricant (corrosion inhibitor) to the complete sensor mounting surface on the bearing hub. Allow to dry for 3-5 minutes between coats. Use ONLY Rust Penetrating Lubricant, P/N 89022217 (in Canada, P/N 89022218). 9. When the corrosion inhibitor is dry to the touch (about 10 minutes), apply a thin layer of bearing grease to the hub surface and sensor O-ring prior to sensor installation. Use ONLY Wheel Bearing Lubricant, P/N 01051344 (in Canada, P/N 993037). 10. Install either the original sensor or a new one in the hub. Ensure that the sensor is seated flush against the hub. Refer to the applicable Wheel Speed Sensor Replacement procedure in the ABS sub-section of the Service Manual. 11. Place the DVM across the sensor terminals and recheck the voltage while rotating the wheel. The voltage should now read at least 350 ACmV's. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Technical Service Bulletins > Customer Interest for Wheel Speed Sensor: > 03-05-25-007D > May > 09 > Brakes - Low Speed ABS Activation/No DTC's Set > Page 1342 Parts Information Place unused material on dealer shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheel Speed Sensor: > 03-05-25-007D > May > 09 > Brakes - Low Speed ABS Activation/No DTC's Set Wheel Speed Sensor: All Technical Service Bulletins Brakes - Low Speed ABS Activation/No DTC's Set TECHNICAL Bulletin No.: 03-05-25-007D Date: May 01, 2009 Subject: Antilock Brake (ABS) Activation At Low Speeds (Clean Wheel Speed Sensor Mounting Surface) Models: 2002-2006 Cadillac Escalade, Escalade EXT 2003-2006 Cadillac Escalade ESV 1999-2006 Chevrolet Silverado 2001-2006 Chevrolet Suburban, Tahoe 2002-2006 Chevrolet Avalanche 2003-2006 Chevrolet Express 2007 Chevrolet Silverado Classic 1999-2006 GMC Sierra 2001-2006 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2003-2006 GMC Savana 2007 GMC Sierra Classic 2003-2006 HUMMER H2 .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to add the 2007 Silverado/Sierra Classic models. Please discard Corporate Bulletin Number 03-05-25-007C (Section 05 - Brakes). .............................................................................................................................................................. .................................................................................. Condition Some customers may comment on ABS activation at low speeds, usually below 8 km/h (5 mph). Upon investigation, the technician will find no DTCs set. Cause The cause of this condition may be an increased air gap between the wheel speed sensor and the hub reluctor ring due to rust and debris built up on the sensor mounting surface. Correction Measure AC voltage and clean the wheel speed sensor mounting surfaces. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in the General Information sub-section of the Service Manual. 2. Disconnect both the front wheel speed sensor connectors at the frame and harness. 3. Place a Digital Volt Meter (DVM) across the terminals of each wheel speed sensor connector. 4. Rotate the wheel clockwise approximately one revolution per second. The minimum reading should be at least 350 ACmV's. If the reading is less than 350 ACmV's, remove the wheel speed sensor. Refer to the applicable Wheel Speed Sensor Replacement procedure in the ABS sub-section of the Service Manual. 5. Plug the wheel speed sensor bore in order to prevent debris from falling into the hub during service. 6. Clean the wheel speed sensor mounting surface using a wire brush, sand paper, emery cloth, scotch brite, or other suitable material. Be sure to thoroughly clean the wheel speed sensor surface. There should be no rust or corrosion. 7. Check the sensor head to determine if it has been warped/distorted due to the corrosion build up or other causes. Check the mounting surface on the sensor head for flatness by placing it on the edge of a metal machinists scale or other suitable straight edge to measure the flatness. Check the sensor for flatness in multiple (minimum 3) positions/directions. If the sensor head is distorted, replace the sensor. 8. Apply (spray) two thin coats of the specified rust penetrating lubricant (corrosion inhibitor) to the complete sensor mounting surface on the bearing hub. Allow to dry for 3-5 minutes between coats. Use ONLY Rust Penetrating Lubricant, P/N 89022217 (in Canada, P/N 89022218). 9. When the corrosion inhibitor is dry to the touch (about 10 minutes), apply a thin layer of bearing grease to the hub surface and sensor O-ring prior to sensor installation. Use ONLY Wheel Bearing Lubricant, P/N 01051344 (in Canada, P/N 993037). 10. Install either the original sensor or a new one in the hub. Ensure that the sensor is seated flush against the hub. Refer to the applicable Wheel Speed Sensor Replacement procedure in the ABS sub-section of the Service Manual. 11. Place the DVM across the sensor terminals and recheck the voltage while rotating the wheel. The voltage should now read at least 350 ACmV's. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheel Speed Sensor: > 03-05-25-007D > May > 09 > Brakes - Low Speed ABS Activation/No DTC's Set > Page 1348 Parts Information Place unused material on dealer shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Technical Service Bulletins > Page 1349 Wheel Speed Sensor: Locations Antilock Brake System Component Views Wheel Speed Sensor (WSS) - RF and LF 1 - Wheel Speed Sensor (WSS) - RF 2 - Wheel Speed Sensor (WSS) - LF Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Diagrams > Wheel Speed Sensor (WSS) Left Front Wheel Speed Sensor: Diagrams Wheel Speed Sensor (WSS) Left Front Wheel Speed Sensor (WSS) Left Front Wheel Speed Sensor (WSS) Left Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Diagrams > Wheel Speed Sensor (WSS) Left Front > Page 1352 Wheel Speed Sensor: Diagrams Wheel Speed Sensor (WSS) Right Front Wheel Speed Sensor (WSS) Right Front Wheel Speed Sensor (WSS) Right Front Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Diagrams > Page 1353 Wheel Speed Sensor: Service and Repair Front Wheel Speed Sensor Replacement (2 Wheel Drive) Caution: Refer to Brake Dust Caution. Removal Procedure 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire and wheel. 3. Remove the brake rotor (2) shown on the 1500 Series. 4. Remove the wheel speed sensor (WSS) cable mounting clip from the knuckle. 5. Remove the WSS cable mounting clip from the upper control arm. 6. Remove the WSS cable mounting clip from the frame attachment point. 7. Remove the WSS cable electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Diagrams > Page 1354 8. Remove the WSS mounting bolt. 9. NOTICE: Carefully remove the sensor by pulling it straight out of the bore. DO NOT use a screwdriver, or other device to pry the sensor out of the bore. Prying will cause the sensor body to break off in the bore. Remove the WSS (5) from the hub/bearing assembly (4) shown on the 2500/3500 series. Installation Procedure 1. Plug the WSS bore to prevent debris from falling into the hub. 2. Using a wire brush or equivalent, clean the WSS mounting surface on the hub to remove any rust or corrosion. 3. Apply a thin layer of wheel bearing lubricant, GM P/N 01051344 to the hub surface and the sensor O-ring prior to sensor installation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Diagrams > Page 1355 4. Install the WSS (5) into the hub/bearing assembly (4) shown on the 2500/3500 series. Ensure that the sensor is seated flat against the hub. 5. Notice: Refer to Fastener Notice in Service Precautions. Install the WSS mounting bolt. Tighten the WSS mounting bolt to 18 Nm (13 ft. lbs.). 6. Install the WSS cable mounting clip to the knuckle. 7. Install the WSS cable mounting clip to the upper control arm. 8. Install the WSS cable mounting clip to the frame attachment point. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Brakes and Traction Control > Wheel Speed Sensor > Component Information > Diagrams > Page 1356 9. Connect the WSS cable electrical connector. 10. Install the brake rotor (2) shown on the 1500 Series. 11. Install the tire and wheel. 12. Perform the Diagnostic System Check - Vehicle. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Coolant Level Sensor > Component Information > Locations Coolant Level Sensor: Locations Cooling System Component Views 1 - Auxiliary Battery Relay (TP2) 2 - A/C Accumulator 3 - A/C Low Pressure Switch 4 - Inner Wheel Well 5 - Coolant Level Switch Connector Diesel and 8.1L 6 - Mass Air Flow (MAF) Sensor 7 - Air Cleaner Assembly 8 - Engine Coolant Recovery Reservoir 9 - Auxiliary Battery Relay Electrical Connector (TP2) 10 - Battery Right (TP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1370 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1371 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1372 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1373 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1379 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1380 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1381 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1382 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller Trailer Brake Control Module: All Technical Service Bulletins Accessories - Aftermarket Trailer Brake Controller INFORMATION Bulletin No.: 07-08-45-001F Date: November 09, 2010 Subject: Procedure for Installation of an Aftermarket Trailer Brake Controller Models: 2007-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2011 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2010 HUMMER H2 with Integrated Trailer Brake Controller Supercede: This bulletin is being revised to combine information from bulletins 06-08-45-008D and 07-08-45-001E. Please discard Corporate Bulletin Numbers 07-08-45-001E and 06-08-45-008D (Section 08 - Body and Accessories). Important Installation of an electric brake controller and the wiring connections outlined in this bulletin are the responsibility of the dealership or customer. These repairs should never be charged to warranty. If you have any questions, please consult with your District Service Manager. Some customers may request to have an aftermarket trailer brake controller added to their vehicle, OR in lieu of the factory integrated trailer brake controller (ITBC) (RPO JL1). Installation Instructions Starting with the new 2007 full-size utilities and pickups and 2008 HUMMER H2, there is no longer an electric trailer brake controller pigtail harness. To install an aftermarket trailer brake controller, use the four blunt cut wires located near the data link connector. The following steps should be used to complete the installation. Important Ensure that the ringlets are not interfering with the UBEC cover. 1. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. 2. ONLY For Vehicles Equipped with JL1 - Locate connector X126 or X115 (varies with vehicle build; refer to SI) near the underhood fuse block. Refer to SI Document ID# 1849049 - I/P Harness-Engine Compartment. Circuit 47 from the blunt cut wires near the data link connector will end Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 1388 at connector X126 terminal "G" or X115 terminal "B5." Obtain enough Dark Blue 12 gauge wire to run from X126/X115 to the 7-way trailer connector at the bumper. On one end of the Dark Blue wire attach terminal part number 15304732, located in Delphi Tray 8 and insert into X126 "G" or terminal part number 15304720 located in Delphi Tray 19 and insert into X115 "B5." Run the Dark Blue wire in its own conduit along the frame to the 7-way trailer connector at the bumper. Remove circuit 47 from the 7-way trailer connector terminal "C" and tape the bare terminal and attach to the harness. Attach terminal part number 12110853, located in Delphi Tray 4, to the other end of the Dark Blue wire and insert it into the 7-way trailer connector terminal "C." 3. ONLY For Vehicles Equipped with JL1 - The Red/Black wire, circuit 242, must be connected to stud #2 of the 30 Amp fuse of the underhood fuse block. This wire is located between the left fender and the underhood fuse block. Important This procedure will not result in any trailer brake related display messages to be set. However, ITBC diagnostics will continue to function. If an ITBC fault is detected, a "Service Trailer Brake System" message will be displayed on the driver information center (DIC) and an appropriate DTC will be stored in the ITBC module. The operator will still be able to adjust gain and access the "Trailer Gain / Output" display page in the DIC. However, the factory installed ITBC system will not sense a trailer connection and will not provide output to the trailer. 4. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 5. Pull the trailering wire harness down. 6. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 1389 - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 7. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 8. Break the tape on the red/black wire and pull it toward the front of vehicle. 9. Remove the lid from the electrical center. Auxiliary Power (Applies to All LD and 2007-2009 HD's Only) Without JL1 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 1390 Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers Trailer Brake Control Module: All Technical Service Bulletins Brakes - Aftermarket Trailer Brake Controllers INFORMATION Bulletin No.: 06-08-45-008D Date: July 12, 2010 Subject: Information on Auxiliary Power Wire at Trailer and Installation of Aftermarket Trailer Brake Controller - Towing, Tow Models: 2007-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2011 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2011 HUMMER H2 Supercede: This bulletin is being revised to add the 2011 model year and information about the orientation of the ringlet. Please discard Corporate Bulletin Number 06-08-45-008C (Section 08 Body and Accessories). Important Installation of an electric brake controller and the wiring connections outlined in this bulletin are the responsibility of the dealership or customer. These repairs should never be charged to warranty. If you have any questions, please consult with your District Service Manager. Some customers may have questions on how to connect an electric trailer brake controller or where the brake controller pigtail harness is located. Starting with the new 2007 full-size utilities and pickups and 2008 HUMMER H2, there is no longer an electric trailer brake controller pigtail harness. An aftermarket brake controller will need to be installed/connected to the blunt wires under the left side of the IP for vehicles built without JL1 - Integrated Brake Controller (full-size utilities and pickups). The following steps should be used to complete the installation. 1. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 2. Pull the trailering wire harness down. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 1395 3. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 4. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 5. Break the tape on the red/black wire and pull it toward the front of vehicle. 6. Remove the lid from the electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 7. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. Auxiliary Power (Applies to All LD & 07-09 HD's Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 1396 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-05-22-004 > Nov > 09 > Electrical - 'No Trailer Connected' Message On DIC Trailer Brake Control Module: All Technical Service Bulletins Electrical - 'No Trailer Connected' Message On DIC TECHNICAL Bulletin No.: 09-05-22-004 Date: November 05, 2009 Subject: No "Trailer Connected" Message on Driver Information Center (DIC) at Startup When Trailer is Connected (Reprogram ITBCM) Models: 2007-2008 Chevrolet Silverado 2007-2008 GMC Sierra Equipped with Integrated Trailer Brake (RPO JL1) Condition Some customers may comment that when they connect their trailer, with the engine off, and after they start the engine, the Trailer Connected message is not displayed on the DIC. With the engine running, if the trailer connector is cycled, the vehicle will detect the trailer and display Trailer Connected. This concern should only affect trailers equipped with trailer brakes on a single axle. Cause The trailer brake control system is only compatible with trailers equipped with electric trailer brakes. The system will not work or detect trailers equipped with any other types of brakes such as surge, air or electric-over-hydraulic trailer brake systems. When a trailer is connected, the Trailer Brake Control Module (TBCM) performs a test to determine if the trailer is equipped with electric trailer brakes. If the trailer wiring or electric trailer brake magnets have additional resistance (caused by poor connections, corrosion, improper splices, etc.), the TBCM may not be able to detect the trailer. Correction A revised calibration has been developed to address these issues. Reprogram the Integrated Trailer Brake Control Module (ITBCM) with updated calibration files using the TIS2WEB Service Programming System (SPS) application. Refer to SI and Service Programming System (SPS) documentation for programming instructions, if required. Refer to Trailer Brake Control Module Programming and Setup in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 1406 at connector X126 terminal "G" or X115 terminal "B5." Obtain enough Dark Blue 12 gauge wire to run from X126/X115 to the 7-way trailer connector at the bumper. On one end of the Dark Blue wire attach terminal part number 15304732, located in Delphi Tray 8 and insert into X126 "G" or terminal part number 15304720 located in Delphi Tray 19 and insert into X115 "B5." Run the Dark Blue wire in its own conduit along the frame to the 7-way trailer connector at the bumper. Remove circuit 47 from the 7-way trailer connector terminal "C" and tape the bare terminal and attach to the harness. Attach terminal part number 12110853, located in Delphi Tray 4, to the other end of the Dark Blue wire and insert it into the 7-way trailer connector terminal "C." 3. ONLY For Vehicles Equipped with JL1 - The Red/Black wire, circuit 242, must be connected to stud #2 of the 30 Amp fuse of the underhood fuse block. This wire is located between the left fender and the underhood fuse block. Important This procedure will not result in any trailer brake related display messages to be set. However, ITBC diagnostics will continue to function. If an ITBC fault is detected, a "Service Trailer Brake System" message will be displayed on the driver information center (DIC) and an appropriate DTC will be stored in the ITBC module. The operator will still be able to adjust gain and access the "Trailer Gain / Output" display page in the DIC. However, the factory installed ITBC system will not sense a trailer connection and will not provide output to the trailer. 4. Locate the trailer brake control circuits that are looped and taped to the main harness under the instrument panel. 5. Pull the trailering wire harness down. 6. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 1407 - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 7. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 8. Break the tape on the red/black wire and pull it toward the front of vehicle. 9. Remove the lid from the electrical center. Auxiliary Power (Applies to All LD and 2007-2009 HD's Only) Without JL1 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-45-001F > Nov > 10 > Accessories - Aftermarket Trailer Brake Controller > Page 1408 Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 1413 3. Match the vehicle harness label circuit functions to the trailer brake controller jumper harness functions. Important The color or wires to be joined together may not match. - Dark Blue Wire: switched power from controller to trailer brakes - Red with Black Stripe: fused vehicle power to electrical brake controller - Light Blue with White Stripe: Brake switch input to power electric brake controller - White: ground - Orange: CHMSL (Center High Mounted Stop Lamp) - not required with most systems 4. After completing the under dash connections to the electric brake controller, open the hood and locate the red wire that is taped to the harness between the underhood electrical center and the driver side front fender. 5. Break the tape on the red/black wire and pull it toward the front of vehicle. 6. Remove the lid from the electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 7. Place the terminal on the larger of the two studs at the front of the electrical center and secure with an M8 nut. This is circuit #242 to stud #2, to power the aftermarket trailer brake controller. Important The fuse is already present in the vehicle to power the electrical trailer brake controller system. Auxiliary Power (Applies to All LD & 07-09 HD's Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 06-08-45-008D > Jul > 10 > Brakes - Aftermarket Trailer Brake Controllers > Page 1414 Circuit #742 for Auxiliary Power at the 7-way trailer connector is no longer connected by the GM Assembly Plant. If the customer desires auxiliary power at the trailer connector location (i.e. refrigeration, battery charger or interior light in the trailer), complete the following steps to connect circuit #742: 1. Locate the red/black wire, looped and taped to the chassis harness, below the brake master cylinder. 2. Break the tape and route the wire to the front of the underhood electrical center. Important Ensure that the ringlets are not interfering with the UBEC cover. 3. Place the terminal on the smaller of the two studs on the electrical center and secure with an M6 fastener. This is circuit #742 to stud #1 for auxiliary power to the 7-way trailer connector. 4. ONLY for vehicles without RPO TP2 - Auxiliary Battery, install a 40 amp fuse to power the circuit. Important For vehicles equipped with RPO TP2 - Devices powered by this fuse will drain the vehicle battery if left connected with the vehicle not running. Warranty Information This installation procedure is to be performed at the customer's request and at their expense. It is not a warranty repair and a claim should not be submitted for reimbursement. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1419 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1420 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1421 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1422 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1423 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Level Sensor > Component Information > Service and Repair Oil Level Sensor: Service and Repair Engine Oil Level Sensor and/or Switch Replacement Removal Procedure 1. Drain the engine oil. Refer to Engine Oil and Oil Filter Replacement. 2. Disconnect the oil level sensor electrical connector (3). 3. Remove the oil level sensor from the oil pan. Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install the oil level sensor to the oil pan. Tighten the sensor to 13 Nm (115 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Level Sensor > Component Information > Service and Repair > Page 1428 2. Connect the oil level sensor electrical connector (3). 3. Fill the engine oil. Refer to Engine Oil and Oil Filter Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sender > Component Information > Diagrams Oil Pressure Sender: Diagrams Displays and Gages Connector End Views Engine Oil Pressure (EOP) Sensor - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 1443 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 1449 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm Seat Heater Control Module: All Technical Service Bulletins Seats - Driver/Passenger Heated Seats Inop./Slow to Warm TECHNICAL Bulletin No.: 10-08-50-008B Date: January 13, 2011 Subject: Driver or Passenger Heated Seat Inoperative, Slow to Warm, DTC(s) Set (Repair Connector, Re-Route Harness) Models: 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2010 Chevrolet Silverado, Suburban, Tahoe 2011 Chevrolet Silverado Heavy Duty 2007-2010 GMC Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2011 GMC Sierra Heavy Duty All Equipped with Heated Front Seat (RPO AN3, KA1) or Heated and Cooled Seat (RPO KB6) and/or Luxury Package (RPO PCK) Supercede: This bulletin is being revised to update the RPOs. Please discard Corporate Bulletin Number 10-08-50-008A (Section 08 - Body and Accessories). Condition Some customers may comment that the driver or passenger heated seat system exhibits the following symptoms: - Heated seat turns on and then turns off within 1 to 10 minutes (at any 60 second interval). - The system doesn't get warm enough, or gets warm very slowly. - The heated seat system is completely inoperative. Upon further review, DTCs B2430 0D and/or B2180 0D may be set as a current or history code if the vehicle is equipped with heated seats only (RPO KA1). Also, the LED indicator for the heated seats may come On and then flash after approximately 1 minute, then go out. If the vehicle is equipped with heated and cooled seats (KB6), the switch LED indicator may stay On, but the heated and cooled seat is inoperative. The fan will continue to blow air. Cause Heated Seats (RPO AN3, KA1) The heated seat control circuit terminal and/or ground terminal in harness connector X1 to the memory seat module (MSM) may have lost tension and is loose. The reduced terminal tension increases resistance in the connector, which may result in the symptoms described above. Heated and Cooled Seats (RPO KB6) The thermo-electric device (TED) in the seat cushion/seat back ventilation heating and cooling module may have become inoperative. Correction Heated Seats (RPO AN3, KA1) Follow the steps below to correct the concern with the heated seats. Note This repair requires a unique anti-abrasion electrical tape and harness clip from Kent Automotive. Refer to the Parts Information below. 1. Access and remove the seat bolts/nuts. 2. Adjust the seat rearward about halfway. Adjust the seat recline full forward. 3. Tilt the seat backward to access the bottom of the seat. Prop the seat up with a suitable tool if required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1455 4. Disconnect seat harness connectors (1) X1, X2, X3 and X4 from the MSM. 5. Identify connector X1. Refer to Component Connector End Views in SI. 6. Perform a terminal drag test on connector X1, paying special attention to terminals 1, 4, 6, 11 and 14. Using an equivalent male terminal from the J-38125, test that the retention force is significantly different between a good terminal and a suspect terminal. Refer to Testing for Intermittent Conditions and Poor Connections in SI. 7. Replace any terminal in question including connector X1 terminals 1, 4, 6, 11 and 14 if necessary. Refer to Repairing Connector Terminals in SI. 8. Identify connector X4. Refer to Component Connector End Views in SI. 9. Perform the terminal drag test described in step 6, paying special attention to terminal 14. 10. Replace any terminal in question including connector X4 terminal 14 if necessary. Refer to Repairing Connector Terminals in SI. 11. Remove the harness clip (1) from the plastic carrier. 12. Cut the electrical tape holding the harness in the plastic carrier using a sharp utility knife in the area shown (1). 13. Free the harness from the carrier back to the area shown (1). 14. Obtain "*Woven Polyester (PET) Electrical Tape" (Special Order P/N RZ97156A00) from Kent Automotive. Refer to Parts Information below. Important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1456 DO NOT substitute with vinyl electrical tape or friction tape. Use only the tape specified above. 15. Tape the harness starting at the MSM connectors (1) extending back to the new break-out location (2) in the plastic carrier. 16. Install a plastic tie strap around the harness and the plastic carrier at the break-out point (1). 17. Install the new harness edge clip (1) 10 mm (0.4 in) further from the connectors and the existing harness clip. Ensure the clip is installed in the orientation shown. 18. Install the harness with the new harness clip in the location shown (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1457 19. Reinstall the harness connectors (1) to the MSM. 20. Reinstall the seat to the vehicle. Heated and Cooled Seats (RPO KB6) Follow the steps below to correct the concern with the heated and cooled seats. 1. Inspect the ventilation heating and cooling module for a concern with the TED. Refer to Seat Heating and Cooling, Diagnostic Information and Procedures in SI. Note If the heated and cooled seat function is inoperative, but the heat switch indicators are On, the MSM is functioning properly and the concern is with the TED. 2. If the TED is found to be the concern, replace the seat cushion or seat back ventilation heating and cooling module. Refer to Driver or Passenger Seat Back Ventilation Heating and Cooling Blower Replacement or Driver or Passenger Seat Cushion Ventilation Heating and Cooling Blower Replacement in SI. If the TED is not the concern, follow normal diagnostics and repair in SI. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Use the appropriate Labor Operation based on the repair completed. Heated Seats (RPO AN3, KA1) For vehicles repaired under warranty, use: Heated and Cooled Seats (RPO KB6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1458 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1464 4. Disconnect seat harness connectors (1) X1, X2, X3 and X4 from the MSM. 5. Identify connector X1. Refer to Component Connector End Views in SI. 6. Perform a terminal drag test on connector X1, paying special attention to terminals 1, 4, 6, 11 and 14. Using an equivalent male terminal from the J-38125, test that the retention force is significantly different between a good terminal and a suspect terminal. Refer to Testing for Intermittent Conditions and Poor Connections in SI. 7. Replace any terminal in question including connector X1 terminals 1, 4, 6, 11 and 14 if necessary. Refer to Repairing Connector Terminals in SI. 8. Identify connector X4. Refer to Component Connector End Views in SI. 9. Perform the terminal drag test described in step 6, paying special attention to terminal 14. 10. Replace any terminal in question including connector X4 terminal 14 if necessary. Refer to Repairing Connector Terminals in SI. 11. Remove the harness clip (1) from the plastic carrier. 12. Cut the electrical tape holding the harness in the plastic carrier using a sharp utility knife in the area shown (1). 13. Free the harness from the carrier back to the area shown (1). 14. Obtain "*Woven Polyester (PET) Electrical Tape" (Special Order P/N RZ97156A00) from Kent Automotive. Refer to Parts Information below. Important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1465 DO NOT substitute with vinyl electrical tape or friction tape. Use only the tape specified above. 15. Tape the harness starting at the MSM connectors (1) extending back to the new break-out location (2) in the plastic carrier. 16. Install a plastic tie strap around the harness and the plastic carrier at the break-out point (1). 17. Install the new harness edge clip (1) 10 mm (0.4 in) further from the connectors and the existing harness clip. Ensure the clip is installed in the orientation shown. 18. Install the harness with the new harness clip in the location shown (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1466 19. Reinstall the harness connectors (1) to the MSM. 20. Reinstall the seat to the vehicle. Heated and Cooled Seats (RPO KB6) Follow the steps below to correct the concern with the heated and cooled seats. 1. Inspect the ventilation heating and cooling module for a concern with the TED. Refer to Seat Heating and Cooling, Diagnostic Information and Procedures in SI. Note If the heated and cooled seat function is inoperative, but the heat switch indicators are On, the MSM is functioning properly and the concern is with the TED. 2. If the TED is found to be the concern, replace the seat cushion or seat back ventilation heating and cooling module. Refer to Driver or Passenger Seat Back Ventilation Heating and Cooling Blower Replacement or Driver or Passenger Seat Cushion Ventilation Heating and Cooling Blower Replacement in SI. If the TED is not the concern, follow normal diagnostics and repair in SI. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Warranty Information Use the appropriate Labor Operation based on the repair completed. Heated Seats (RPO AN3, KA1) For vehicles repaired under warranty, use: Heated and Cooled Seats (RPO KB6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 10-08-50-008B > Jan > 11 > Seats - Driver/Passenger Heated Seats Inop./Slow to Warm > Page 1467 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 1468 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 1469 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Ambient Temperature Sensor / Switch HVAC > Component Information > Diagrams Ambient Temperature Sensor / Switch HVAC: Diagrams HVAC Connector End Views Ambient Air Temperature Sensor Air Temperature Sensor - Lower Left Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Ambient Temperature Sensor / Switch HVAC > Component Information > Diagrams > Page 1474 Air Temperature Sensor - Lower Right Air Temperature Sensor - Upper Left Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Ambient Temperature Sensor / Switch HVAC > Component Information > Diagrams > Page 1475 Air Temperature Sensor - Upper Right Air Temperature Sensor Assembly - Inside Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Ambient Temperature Sensor / Switch HVAC > Component Information > Diagrams > Page 1476 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Ambient Temperature Sensor / Switch HVAC > Component Information > Diagrams > Page 1477 Ambient Temperature Sensor / Switch HVAC: Service and Repair Ambient Air Temperature Sensor Replacement Removal Procedure 1. Remove the park/turn signal. 2. Disconnect the electrical connector from the ambient air temperature sensor (3). 3. Remove the ambient air temperature sensor (3). Installation Procedure 1. Install the ambient air temperature sensor (3). 2. Connect the electrical connector to the ambient air temperature sensor (3). 3. Install the park/turn signal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Cabin Temperature Sensor / Switch > Component Information > Service and Repair Cabin Temperature Sensor / Switch: Service and Repair Inside Air Temperature Sensor Assembly Replacement Removal Procedure 1. Remove the left windshield garnish molding. 2. Remove the left center pillar assist handle. 3. Remove the left center pillar garnish molding. 4. Remove the left sunshade. 5. Gently pull down the headliner. 6. Disconnect the electrical connector from the inside air temperature sensor. 7. Partially remove the inside air temperature sensor from the headliner. 8. Remove the sensor grille from the inside air temperature sensor. 9. Remove the inside air temperature sensor from the headliner. Installation Procedure 1. Install the new sensor grille to the headliner. 2. Install the inside air temperature sensor to the headliner and sensor grille. 3. Connect the electrical connector to the inside air temperature sensor. 4. Install the left sunshade. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Cabin Temperature Sensor / Switch > Component Information > Service and Repair > Page 1481 5. Install the left center pillar garnish molding. 6. Install the left center assist handle. 7. Install the left windshield garnish molding. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Locations > Air Temperature Sensors - Upper Left and Right Discharge Air Temperature Sensor / Switch: Locations Air Temperature Sensors - Upper Left and Right HVAC Component Views Air Temperature Sensors - Upper Left and Right 1 - Instrument Panel 2 - Air Temperature Sensor Connector - Upper Right 3 - Air Temperature Sensor Connector - Upper Left 4 - Air Temperature Sensor - Upper Left 5 - Air Temperature Sensor - Upper Right Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Locations > Air Temperature Sensors - Upper Left and Right > Page 1486 Discharge Air Temperature Sensor / Switch: Locations Air Temperature Sensor - Lower Left HVAC Component Views Air Temperature Sensor - Lower Left 1 - Mode Actuator 2 - HVAC Module Assembly 3 - Lower Left Air Duct 4 - Air Temperature Sensor Lower Left Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Locations > Air Temperature Sensors - Upper Left and Right > Page 1487 Discharge Air Temperature Sensor / Switch: Locations Air Temperature Sensor - Lower Right HVAC Component Views Air Temperature Sensor - Lower Right 1 - HVAC Module Assembly 2 - Air Temperature Actuator - Left 3 - Air Temperature Sensor - Lower Right Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Service and Repair > Air Temperature Sensor Replacement - Lower Left Side Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Lower Left Side Air Temperature Sensor Replacement - Lower Left Side Removal Procedure 1. Disconnect the electrical connector from the lower left air temperature sensor (1). 2. Remove the lower left air temperature sensor (1) from the HVAC module (2). Installation Procedure 1. Install the lower left air temperature sensor (1) to the HVAC module (2). 2. Connect the electrical connector to the lower left air temperature sensor (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Service and Repair > Air Temperature Sensor Replacement - Lower Left Side > Page 1490 Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Lower Right Side Air Temperature Sensor Replacement - Lower Right Side Removal Procedure 1. Remove the I/P lower closeout panel. 2. Remove the right floor duct. 3. Remove the center console. 4. Disconnect the electrical connector from the lower right air temperature sensor (1). 5. Remove the lower right air temperature sensor (1). Installation Procedure 1. Install the lower right air temperature sensor (1). 2. Connect the electrical connector to the lower right air temperature sensor (1). 3. Install the center console. 4. Install the right floor duct. 5. Install the I/P lower closeout panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Service and Repair > Air Temperature Sensor Replacement - Lower Left Side > Page 1491 Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Upper Right Side Air Temperature Sensor Replacement - Upper Right Side Removal Procedure 1. Remove the I/P upper trim panel. 2. Disconnect the electrical connector (1) from the upper right air temperature sensor (2). 3. Remove the upper right air temperature sensor (1) from the air distributor duct (3). Installation Procedure 1. Install the upper right air temperature sensor (1) to the air distributor duct (3). 2. Connect the electrical connector (1) from the upper right air temperature sensor (2). 3. Install the I/P upper trim panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Discharge Air Temperature Sensor / Switch, HVAC > Component Information > Service and Repair > Air Temperature Sensor Replacement - Lower Left Side > Page 1492 Discharge Air Temperature Sensor / Switch: Service and Repair Air Temperature Sensor Replacement - Upper Left Side Air Temperature Sensor Replacement - Upper Left Side Removal Procedure 1. Remove the upper left air temperature sensor (2) from the air distributor duct (1). 2. Disconnect the electrical connector (3) from the upper left air temperature sensor (2). Installation Procedure 1. Install the upper left air temperature sensor (2) to the air distributor duct (1). 2. Connect the electrical connector (3) to the upper left air temperature sensor (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Refrigerant Pressure Sensor / Switch, HVAC > Low Pressure Sensor / Switch, HVAC > Component Information > Technical Service Bulletins > Air Conditioning - Diagnose A/C Low Pressure Switch Low Pressure Sensor / Switch: Technical Service Bulletins Air Conditioning - Diagnose A/C Low Pressure Switch INFORMATION Bulletin No.: 04-01-38-010A Date: January 21, 2010 Subject: Diagnostic Information to Accurately Diagnose A/C Low Pressure Switch Using Kent Moore Special Tool GE-47742 Models: 2002-2006 Cadillac Escalade, Escalade EXT 2003-2006 Cadillac Escalade ESV 1999-2007 Chevrolet Silverado 2000-2006 Chevrolet Suburban, Tahoe 2002-2007 Chevrolet Avalanche 1999-2007 GMC Sierra 2000-2006 GMC Yukon, Yukon XL 2001-2006 GMC Yukon Denali XL 2001-2007 GMC Sierra Denali, Yukon Denali XL 2003-2008 HUMMER H2 with Air Conditioning Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 04-01-38-010 (Section 01 - HVAC). Currently, technicians cannot accurately determine the air conditioning (A/C) low pressure switch open/close pressure point by measuring pressure at the low side service port. This is because the evaporator is between the low side service port and the A/C low pressure switch. Correlating pressures measured at the low side service port to actual pressures at the A/C low pressure switch port is difficult because of the multiple variables that impact pressure drop across the evaporator. Providing a pressure range that would take into account all these variables would result in a pressure range that would be too broad to be useful for diagnostic purposes. Kent Moore special tool GE-47742 will allow technicians to monitor the actual pressures at which the A/C low pressure switch opens and closes under actual operating conditions. Technicians are to use the following steps to install and use Kent Moore special tool GE-47742 to measure A/C low pressure switch opening and closing pressures: 1. Disconnect the wire harness from the A/C low pressure switch. 2. Remove the A/C low pressure switch from the accumulator. 3. Install the A/C low pressure switch, using the threaded port with an O-ring, onto special tool GE-47742. 4. Install special tool GE-47742, with the A/C low pressure switch attached, onto the accumulator. Important Removing the seal from the A/C low pressure switch wire harness connector is required. Failure to remove the seal before plugging it into the switch will lead to misdiagnosis. The "plunger effect" of plugging the connector with a seal into the A/C low pressure switch induces a pressure on the back side of the switch. This pressure will skew the opening/closing characteristics of the switch 34-69 kPa (5-10 psi) until the pressure bleeds off. The time required for the connection induced pressure to bleed off can be 20 minutes or longer. 5. Remove the seal from the A/C low pressure switch wire harness connector. 6. Connect the wire harness, without the seal, to the A/C low pressure switch. 7. Connect the low side service hose from the ACR2000(R) or GE-48800 to the service port on special tool GE-47742. 8. Connect a Tech2(R) to the vehicle. 9. Start the vehicle and maintain an engine speed of 1500 RPM. Set the HVAC controls as follows: - Set the A/C control switch to ON. - Set the mode control switch to A/C and engage recirculation mode. - Set the blower motor speed to LOW. - Set the temperature control to full cold. - Set the auxiliary blower motor speed to LOW. If equipped. - Set the auxiliary temperature control to full cold. If equipped. - The vehicle must be operating with no sun load (in the shade). 10. Use the Tech2(R) to determine the A/C low pressure switch status and the ACR2000(R) or GE-48800 to determine the A/C low side pressure. Simultaneously monitor the switch status and the pressure at which the A/C low pressure switch opens and closes. The Tech2(R) will display switch status as "Normal" for Closed and "Low Pressure" for Open. A properly operating switch should open between 138-172 kPa (20-25 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Refrigerant Pressure Sensor / Switch, HVAC > Low Pressure Sensor / Switch, HVAC > Component Information > Technical Service Bulletins > Air Conditioning - Diagnose A/C Low Pressure Switch > Page 1498 and close between 275-317 kPa (40-46 psi). 11. Remove special tool GE-47742 after diagnosis is complete. 12. Install a new O-ring on the A/C low pressure switch port on the accumulator. Lightly coat the new O-ring seal with mineral base 525 viscosity refrigerant oil. 13. Install the A/C low pressure switch onto the accumulator. Tighten Tighten the A/C low pressure switch to 6 Nm (44 lb in). Important Remember to install the seal back onto the A/C low pressure switch wire harness connector. Failure to replace the seal could result in terminal corrosion. 14. Reconnect the wire harness to the A/C low pressure switch. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Refrigerant Pressure Sensor / Switch, HVAC > Low Pressure Sensor / Switch, HVAC > Component Information > Technical Service Bulletins > Page 1499 Low Pressure Sensor / Switch: Locations HVAC Component Views A/C Low Pressure Switch and A/C Accumulator 1 - Auxiliary Battery Relay 2 - A/C Accumulator 3 - A/C Low Pressure Switch 4 - Inner Wheel Well 5 - Coolant Level Switch Connector 6 - Mass Air Flow (MAF) Sensor 7 - Air Cleaner Assembly 8 Engine Coolant Recovery Reservoir 9 - Auxiliary Battery Relay Electrical Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Refrigerant Pressure Sensor / Switch, HVAC > Low Pressure Sensor / Switch, HVAC > Component Information > Diagrams > HVAC System - Manual Low Pressure Sensor / Switch: Diagrams HVAC System - Manual HVAC Connector End Views A/C Low Pressure Switch Reverse Lockout Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Refrigerant Pressure Sensor / Switch, HVAC > Low Pressure Sensor / Switch, HVAC > Component Information > Diagrams > HVAC System - Manual > Page 1502 Low Pressure Sensor / Switch: Diagrams HVAC System - Automatic HVAC Connector End Views A/C Low Pressure Switch Reverse Lockout Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Refrigerant Pressure Sensor / Switch, HVAC > Low Pressure Sensor / Switch, HVAC > Component Information > Diagrams > Page 1503 Low Pressure Sensor / Switch: Service and Repair Air Conditioning (A/C) Low Pressure Switch Replacement Removal Procedure 1. Disconnect the electrical connector from the A/C low pressure switch. 2. Remove the A/C low pressure switch from the accumulator. 3. Remove the O-ring and discard. Installation Procedure 1. Lightly coat the NEW O-ring seal with mineral base 525 viscosity refrigerant oil. 2. Install the NEW O-ring seal to the switch. Notice: Refer to Fastener Notice. 3. Install the A/C low pressure switch to the accumulator. Tighten the switch to 6 N.m (53 lb in). 4. Connect the electrical connector to the A/C low pressure switch. 5. Leak test the fittings of the components using the J 39400-A. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Solar Sensor, HVAC > Component Information > Locations Solar Sensor: Locations HVAC Connector End Views Ambient Light/Sunload Sensor Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - HVAC > Solar Sensor, HVAC > Component Information > Locations > Page 1507 Solar Sensor: Service and Repair Sun Load Sensor Replacement Removal Procedure 1. Remove the instrument panel (I/P) upper trim panel. 2. Remove the sun load sensor (2) from the upper trim panel. 3. Disconnect the electrical connector. Installation Procedure 1. Connect the electrical connector. 2. Install the sun load sensor (2) to the upper trim panel. 3. Install the I/P upper trim panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Dimmer Switch > Component Information > Locations Instrument Panel Switches - LH Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) Door Switch: Diagrams Door Latch Assembly (Door Jamb Switch) Door Latch Assembly (Door Jamb Switch) - Driver - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1516 Door Latch Assembly (Door Jamb Switch) - Passenger - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1517 Door Latch Assembly (Door Jamb Switch) - Driver C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1518 Door Latch Assembly (Door Jamb Switch) - Passenger C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1519 Door Switch: Diagrams Door Latch Assembly (Door Jamb Switch) - (Crew Cab Only) Door Latch Assembly (Door Jamb Switch) - Left Rear - C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1520 Door Latch Assembly (Door Jamb Switch) - Right Rear - C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1521 Door Latch Assembly (Door Jamb Switch) - Left Rear C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1522 Door Latch Assembly (Door Jamb Switch) - Right Rear C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Fuel Gauge Sender > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Gauge Sender: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Fuel Gauge Sender > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 1527 Fuel Gauge Sender: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Fuel Gauge Sender > Component Information > Diagrams > Page 1528 Fuel Gauge Sender: Service and Repair FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 4. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. IMPORTANT: Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Fuel Gauge Sender > Component Information > Diagrams > Page 1529 7. Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Outside Temperature Display Sensor > Component Information > Diagrams Ambient Air Temperature Sensor (With RPO Code DF5) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Outside Temperature Display Sensor > Component Information > Diagrams > Page 1533 Outside Temperature Display Sensor: Service and Repair Ambient Air Temperature Sensor Replacement Removal Procedure 1. Remove the radiator grille from the vehicle. 2. Remove the push pin retainer from the sensor mounted on the radiator support brace. 3. Disconnect the electrical connector from the sensor. Installation Procedure 1. Connect the electrical connector to the sensor. 2. Install the sensor to the radiator support brace and install the push pin retainer. 3. Install the radiator grille to the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Parking Brake Warning Switch > Component Information > Locations Parking Brake Warning Switch: Locations Park Brake Switch Park Brake Switch 1 - Park Brake Switch Connector 2 - Body Harness 3 - Park Brake Switch 4 - Park Brake Lever 5 Cowel Side Inner Panel Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Parking Brake Warning Switch > Component Information > Locations > Page 1537 Parking Brake Warning Switch: Diagrams Park Brake Switch Park Brake Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Parking Brake Warning Switch > Component Information > Locations > Page 1538 Parking Brake Warning Switch: Service and Repair Park Brake Warning Lamp Switch Replacement Removal Procedure 1. Caution: Refer to Battery Disconnect Caution. Disconnect the negative battery cable. 2. Remove the MID-bussed electrical center from the bracket. 3. Disconnect the park brake warning lamp switch electrical connector. 4. Remove the park brake warning lamp switch mounting bolt. 5. Remove the park brake warning lamp switch. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Instrument Panel > Parking Brake Warning Switch > Component Information > Locations > Page 1539 1. Install the park brake warning lamp switch. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the park brake warning lamp switch mounting bolt. Tighten the bolt to 3 Nm (25 inch lbs.). 3. Connect the park brake warning lamp switch electrical connector. 4. Install the MID-bussed electrical center to the bracket. 5. Connect the negative battery cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Ambient Light Sensor > Component Information > Diagrams Ambient Light Sensor: Diagrams HVAC Connector End Views Ambient Light/Sunload Sensor Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Ambient Light Sensor > Component Information > Diagrams > Page 1544 Ambient Light Sensor (With RPO Code CJ3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Ambient Light Sensor > Component Information > Diagrams > Page 1545 Ambient Light / Sunload Sensor Assembly (With RPO Code CJ2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Ambient Light Sensor > Component Information > Diagrams > Page 1546 Ambient Light Sensor: Service and Repair AMBIENT LIGHT SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the instrument panel (I/P) top cover. 2. Disconnect the electrical connector (1) to the ambient light sensor on the underside of the I/P top cover. 3. Turn the ambient light sensor 1/4 turn and remove it from the I/P top cover. INSTALLATION PROCEDURE 1. Install the ambient light sensor to the underside of the I/P top cover, turning it 1/4 turn to secure it in place. 2. Connect the electrical connector (1) to the ambient light sensor on the underside of the I/P top cover. 3. Install the I/P top cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Backup Lamp Switch > Component Information > Locations Manual Transmission - NV 3500 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Backup Lamp Switch > Component Information > Locations > Page 1550 Backup Lamp - Switch (M/T) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Backup Lamp Switch > Component Information > Service and Repair > NV 3500 - Manual Transmission Backup Lamp Switch: Service and Repair NV 3500 - Manual Transmission Backup Lamp Switch Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the backup lamp switch electrical connector (3). 3. Remove the backup lamp switch. Installation Procedure 1. Notice: Refer to Fastener Notice. Important: The backup lamp switch has pre-applied thread sealant on the threads. Install the backup lamp switch. Tighten the switch to 37 Nm (27 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Backup Lamp Switch > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 1553 2. Connect the backup lamp switch electrical connector (3). 3. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Backup Lamp Switch > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 1554 Backup Lamp Switch: Service and Repair NV 4500 - Manual Transmission Backup Lamp Switch Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the backup lamp switch electrical connector (1). 3. Remove the backup lamp switch and seal. Installation Procedure 1. Ensure the seal is installed on the switch. Notice: Refer to Fastener Notice. 2. Install the backup lamp switch. Tighten the switch to 28 Nm (21 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Backup Lamp Switch > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 1555 3. Connect the backup lamp switch electrical connector (1). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Brake Light Switch > Component Information > Technical Service Bulletins > Customer Interest for Brake Light Switch: > 08-08-42-003A > Aug > 09 > Lighting - Brake Lamps Turn Off After Stop/Pedal Applied Brake Light Switch: Customer Interest Lighting - Brake Lamps Turn Off After Stop/Pedal Applied TECHNICAL Bulletin No.: 08-08-42-003A Date: August 14, 2009 Subject: Stop Lamps Intermittently Turn Off After Coming to a Complete Stop While Still Having Pressure on Brake Pedal (Replace Stop Lamp Switch) Models: 2007-2008 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Supercede: This bulletin is being revised to provide a new part number. Please discard Corporate Bulletin Number 08-08-42-003 (Section 08 - Body & Accessories). Condition Some customers may comment on the stop lamps turning off prior to the brake pedal reaching the fully released position. Some customers may also comment on the stop lamps turning off while having light pressure on the brake pedal. Some customers with Integrated Trailer Brake Control (ITBC) may comment that the electronic trailer brakes disengage after the vehicle has come to a complete stop. This disengaging of the trailer brakes coincides with the stop lamps turning off. Cause This condition may be caused by not enough pressure being applied to the stop lamp switch to keep the brake lights on. Correction Technicians are to replace the stop lamp switch. The new stop lamp switch has a reduced internal spring apply force, which will allow the lamps to stay on with less applied brake force. 1. Refer to SI for Stop Lamp Switch replacement procedures. 2. Use the new Stop Lamp Switch, P/N 25981009. Parts Information Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Brake Light Switch > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Brake Light Switch: > 08-08-42-003A > Aug > 09 > Lighting - Brake Lamps Turn Off After Stop/Pedal Applied Brake Light Switch: All Technical Service Bulletins Lighting - Brake Lamps Turn Off After Stop/Pedal Applied TECHNICAL Bulletin No.: 08-08-42-003A Date: August 14, 2009 Subject: Stop Lamps Intermittently Turn Off After Coming to a Complete Stop While Still Having Pressure on Brake Pedal (Replace Stop Lamp Switch) Models: 2007-2008 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Supercede: This bulletin is being revised to provide a new part number. Please discard Corporate Bulletin Number 08-08-42-003 (Section 08 - Body & Accessories). Condition Some customers may comment on the stop lamps turning off prior to the brake pedal reaching the fully released position. Some customers may also comment on the stop lamps turning off while having light pressure on the brake pedal. Some customers with Integrated Trailer Brake Control (ITBC) may comment that the electronic trailer brakes disengage after the vehicle has come to a complete stop. This disengaging of the trailer brakes coincides with the stop lamps turning off. Cause This condition may be caused by not enough pressure being applied to the stop lamp switch to keep the brake lights on. Correction Technicians are to replace the stop lamp switch. The new stop lamp switch has a reduced internal spring apply force, which will allow the lamps to stay on with less applied brake force. 1. Refer to SI for Stop Lamp Switch replacement procedures. 2. Use the new Stop Lamp Switch, P/N 25981009. Parts Information Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Brake Light Switch > Component Information > Technical Service Bulletins > Page 1569 Stop Lamp Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Brake Light Switch > Component Information > Technical Service Bulletins > Page 1570 Stop Lamp Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Brake Light Switch > Component Information > Technical Service Bulletins > Page 1571 Brake Light Switch: Service and Repair STOP LAMP SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the electrical connector from the stop lamp switch (2). 2. Remove the pushrod retaining clip (4). 3. Remove the stop lamp switch (2). INSTALLATION PROCEDURE 1. Install the stop lamp switch (2). 2. Install the pushrod retaining clip (4). 3. Connect the electrical connector to the stop lamp switch (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Cargo Lamp Switch > Component Information > Locations Instrument Panel Switches - LH Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Cargo Lamp Switch > Component Information > Locations > Page 1575 Cargo Lamp Switch: Service and Repair FOG LAMP AND CARGO LAMP SWITCH ASSEMBLY REPLACEMENT REMOVAL PROCEDURE 1. Remove the instrument cluster bezel. 2. Remove the fog lamp switch and cargo switch from the housing. 3. Disconnect the electrical connector(s) from the fog lamp switch. 4. Remove the fog lamp and cargo lamp switch from the housing. INSTALLATION PROCEDURE 1. Connect the electrical connector(s) to the fog lamp and cargo lamp switch. 2. Install the fog lamp switch into the housing. 3. Install the IP trim bezel to the instrument panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Combination Switch > Component Information > Diagrams > Multifunction Accessory Switch Multifunction Accessory Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Combination Switch > Component Information > Diagrams > Multifunction Accessory Switch > Page 1580 Combination Switch: Diagrams Turn Signal Multifunction Switch Turn Signal Multifunction Switch - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Combination Switch > Component Information > Diagrams > Multifunction Accessory Switch > Page 1581 Turn Signal Multifunction Switch - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Combination Switch > Component Information > Diagrams > Multifunction Accessory Switch > Page 1582 Turn Signal Multifunction Switch - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Combination Switch > Component Information > Diagrams > Multifunction Accessory Switch > Page 1583 Turn Signal Multifunction Switch - C4 (With RPO Code K34) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) Door Switch: Diagrams Door Latch Assembly (Door Jamb Switch) Door Latch Assembly (Door Jamb Switch) - Driver - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1588 Door Latch Assembly (Door Jamb Switch) - Passenger - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1589 Door Latch Assembly (Door Jamb Switch) - Driver C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1590 Door Latch Assembly (Door Jamb Switch) - Passenger C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1591 Door Switch: Diagrams Door Latch Assembly (Door Jamb Switch) - (Crew Cab Only) Door Latch Assembly (Door Jamb Switch) - Left Rear - C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1592 Door Latch Assembly (Door Jamb Switch) - Right Rear - C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1593 Door Latch Assembly (Door Jamb Switch) - Left Rear C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Door Switch > Component Information > Diagrams > Door Latch Assembly (Door Jamb Switch) > Page 1594 Door Latch Assembly (Door Jamb Switch) - Right Rear C2 (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Fog/Driving Lamp Switch > Component Information > Locations Fog/Driving Lamp Switch: Locations Instrument Panel Switches - LH Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Fog/Driving Lamp Switch > Component Information > Locations > Page 1598 Accessory Switch Housing Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Fog/Driving Lamp Switch > Component Information > Service and Repair > Fog Lamp and Cargo Lamp Switch Assembly Replacement Fog/Driving Lamp Switch: Service and Repair Fog Lamp and Cargo Lamp Switch Assembly Replacement FOG LAMP AND CARGO LAMP SWITCH ASSEMBLY REPLACEMENT REMOVAL PROCEDURE 1. Remove the instrument cluster bezel. 2. Remove the fog lamp switch and cargo switch from the housing. 3. Disconnect the electrical connector(s) from the fog lamp switch. 4. Remove the fog lamp and cargo lamp switch from the housing. INSTALLATION PROCEDURE 1. Connect the electrical connector(s) to the fog lamp and cargo lamp switch. 2. Install the fog lamp switch into the housing. 3. Install the IP trim bezel to the instrument panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Fog/Driving Lamp Switch > Component Information > Service and Repair > Fog Lamp and Cargo Lamp Switch Assembly Replacement > Page 1601 Fog/Driving Lamp Switch: Service and Repair Rear Fog Lamp Switch Replacement REAR FOG LAMP SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the instrument panel bezel. 2. Pull out the accessory switch housing. 3. Disconnect the electrical connectors. 4. Remove the fog lamp switch from the accessory switch housing. INSTALLATION PROCEDURE 1. Install the fog lamp switch into accessory switch housing. 2. Connect the electrical connectors. 3. Install the accessory switch housing. 4. Install the instrument panel bezel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Glove Box Lamp Switch > Component Information > Service and Repair Glove Box Lamp Switch: Service and Repair INSTRUMENT PANEL COMPARTMENT LAMP SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Lower the instrument panel storage compartment door by pressing in the tab. 2. With one hand holding the plunger of the switch, use a small screw driver to push in the tabs on each side while pulling outwards. 3. Pull the switch assembly from the I/P. 4. Disconnect the electrical connector. 5. Remove the bulb (1). INSTALLATION PROCEDURE 1. Install the bulb (1) into the socket. 2. Connect the electrical connector. 3. Install the switch until the tabs (1) click in place. 4. Close the compartment door. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Hazard Warning Switch > Component Information > Diagrams Roof Beacon Switch (With RPO Codes 5X7, 5G4, TRW, Or 5Y0) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Headlamp Switch > Component Information > Locations Instrument Panel Switches - LH Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Headlamp Switch > Component Information > Locations > Page 1611 Headlamp Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Headlamp Switch > Component Information > Locations > Page 1612 Headlamp Switch: Service and Repair HEADLAMP SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Remove the instrument cluster bezel. 2. Unsnap the switch from the housing. 3. Disconnect the electrical connectors. 4. Remove the switch. INSTALLATION PROCEDURE 1. Connect the electrical connectors. 2. Install the headlamp switch by snapping the headlamps switch into place. 3. Install the bezel to the instrument panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Horn Switch > Component Information > Locations Steering Wheel And Column Sub-System Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Horn Switch > Component Information > Locations > Page 1616 Horn Switch: Service and Repair HORN SWITCH REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Servicing the SIR System Caution. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the inflatable restraint steering wheel module. 3. Remove the horn plunger from the steering column by pressing inward to the stop and rotating the horn plunger 90 degrees. 4. Disconnect the captured screws (1,4) to the horn contact plate (2) from the steering wheel (3). 5. Remove the horn switch (2) from the steering wheel (3). INSTALLATION PROCEDURE 1. Install the horn switch (2) to the steering wheel (3). 2. NOTE: Refer to Fastener Notice. Connect the captured screws (1,4) from the horn contact plate (2) to the steering wheel (3). Tighten the screws to 5.5 N.m (50 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Horn Switch > Component Information > Locations > Page 1617 3. Install the horn plunger to the steering column. 4. Install the inflator module. 5. Enable the SIR system. Refer to SIR Disabling and Enabling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams Turn Signal Switch: Diagrams Turn Signal Multifunction Switch - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams > Page 1621 Turn Signal Multifunction Switch - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams > Page 1622 Turn Signal Multifunction Switch - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams > Page 1623 Turn Signal Multifunction Switch - C4 (With RPO Code K34) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams > Page 1624 Turn Signal Switch: Service and Repair Turn Signal Multifunction Switch Replacement Removal Procedure 1. Caution: Refer to SIR Caution. Disable the SIR system. 2. Remove the upper and lower trim covers. 3. Important: The abrasion sleeve located on the steering column wire harness assembly must be reinstalled. Make note of what connector is coming out of the abrasion sleeve for installation purposes. Remove the wire harness assembly (1) from the wire harness strap (2). 4. Disconnect the turn signal and multifunction switch assembly connector from the SIR system coil connector. 5. Slide the 2 connectors (2) of the turn signal and multifunction switch assembly out of the bulkhead connector (1). 6. Remove the 2 pan head tapping screws (1) and (3) from the turn signal and multifunction switch assembly (2). 7. Remove the turn signal and multifunction switch assembly (2) from the steering column tilt head assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams > Page 1625 Installation Procedure 1. Install the turn signal and multifunction switch assembly (2) onto the steering column tilt head assembly. 2. Notice: Refer to Fastener Notice. Important: Be sure that the electrical contact of the turn signal and multifunction switch assembly (2) rests on the turn signal cancel cam assembly. Screw the 2 pan head tapping screws (1) and (3) into the turn signal and multifunction assembly (2). ^ Tighten the top pan head tapping screw (1) to 3 Nm (27 inch lbs.) for Domestic Column Shift. ^ Tighten the top pan head tapping screw (1) to 7 Nm (62 inch lbs.) for Domestic Floor Shift and Export Column Shift. ^ Tighten the side pan head tapping screw (3) to 7 Nm (62 inch lbs.) for all. 3. Slide the 2 connectors (2) of the turn signal and multifunction switch assembly into the bulkhead connector (1). 4. Connect the turn signal and multifunction switch assembly connector to the SIR coil connector. 5. Important: The abrasion sleeve must be installed back onto the steering column wire harness assembly. The ignition lock cylinder case wires and connector must be hanging out of the middle of the abrasion sleeve. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Lighting and Horns > Turn Signal Switch > Component Information > Diagrams > Page 1626 Install the wire harness assembly (1) into the wire harness strap (2). 6. Install the upper and lower trim covers. 7. Enable the SIR system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 1632 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 1633 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 1634 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 1635 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1641 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1642 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1643 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1644 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1645 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1646 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1647 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1648 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1649 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1650 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1651 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1652 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1653 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1654 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1655 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1656 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1657 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1658 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1659 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1660 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1661 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1662 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1663 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1664 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1665 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1666 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1667 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1668 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1669 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1670 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1671 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1672 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1673 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1674 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1675 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1676 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1677 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1678 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1679 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1680 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1681 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1682 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1683 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1684 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1685 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1686 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1687 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1688 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1689 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1690 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1691 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1692 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1693 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1694 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1695 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1696 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1697 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1698 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1699 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1700 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1701 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1702 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1703 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1704 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1705 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1706 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1707 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1708 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1709 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1710 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1711 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1712 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1713 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1714 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1715 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1716 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1717 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1718 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1719 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1720 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1721 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1722 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1723 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1724 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1725 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1726 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1727 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1728 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1729 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1730 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1731 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1732 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1733 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 1734 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 1735 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Battery Current Sensor > Component Information > Diagrams Battery Current Sensor: Diagrams Engine Electrical Connector End Views Current Sensor (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1743 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1744 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1745 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1746 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1747 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1748 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1749 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1750 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1751 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1752 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1753 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1754 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1755 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1756 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1757 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1758 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1759 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1760 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1761 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1762 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1763 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1764 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1765 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1766 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1767 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1768 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1769 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1770 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1771 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1772 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1773 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1774 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1775 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1776 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1777 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1778 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1779 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1780 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1781 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1782 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1783 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1784 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1785 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1786 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1787 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1788 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1789 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1790 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1791 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1792 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1793 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1794 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1795 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1796 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1797 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1798 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1799 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1800 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1801 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1802 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1803 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1804 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1805 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1806 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1807 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1808 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1809 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1810 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1811 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1812 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1813 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1814 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1815 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1816 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1817 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1818 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1819 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1820 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1821 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1822 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1823 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1824 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1825 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1826 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1827 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1828 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1829 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1830 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1831 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1832 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1833 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1834 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1835 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Page 1836 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Clutch Switch, ECM > Component Information > Diagrams Clutch Switch: Diagrams Engine Electrical Connector End Views Clutch Pedal Position (CPP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1848 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1849 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1850 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1851 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1857 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1858 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1859 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 1860 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1861 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1862 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1863 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1864 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 1865 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1870 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1871 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1872 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1873 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1874 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1875 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1876 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1877 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1878 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1879 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1880 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1881 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1882 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1883 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1884 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1885 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1886 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1887 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1888 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1889 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1890 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1891 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1892 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1893 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1894 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1895 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1896 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1897 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1898 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1899 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1900 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1901 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1902 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1903 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1904 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1905 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1906 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1907 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1908 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1909 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1910 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1911 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1912 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1913 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1914 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1915 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1916 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1917 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1918 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1919 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1920 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1921 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1922 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1923 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1924 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1925 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1926 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1927 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1928 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1929 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1930 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1931 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1932 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1933 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1934 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1935 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1936 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1937 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1938 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1939 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1940 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1941 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1942 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1943 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1944 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1945 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1946 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1947 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1948 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1949 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1950 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1951 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1952 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1953 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1954 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1955 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1956 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1957 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1958 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1959 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1960 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1961 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1962 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 1965 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 1966 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 1972 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement 1 FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 4. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. 7. IMPORTANT: - Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 1975 Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 1976 Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement FUEL LEVEL SENSOR REPLACEMENT (4.8L, 5.3L, AND 6.0L ENGINES) REMOVAL PROCEDURE 1. Remove the sending unit. 2. Disconnect the fuel pump electrical connector. 3. Remove the fuel lever sensor electrical connector retaining clip. 4. Disconnect the fuel level sensor electrical connector. 5. Remove the fuel level sensor retaining clip. 6. Remove the fuel level sensor (1). INSTALLATION PROCEDURE 1. Install the fuel level sensor (1). 2. Install the fuel level sensor retaining clip. 3. Connect the fuel level sensor electrical connector. 4. Install the fuel lever sensor electrical connector retaining clip. 5. Connect the fuel pump electrical connector. 6. Install the sending unit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 1980 Fuel Tank Pressure (FTP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 1981 Fuel Tank Pressure Sensor: Service and Repair FUEL TANK PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Using a slight rocking motion, while pulling straight up, remove the fuel tank pressure sensor (1). INSTALLATION PROCEDURE 1. Install the fuel tank pressure sensor (1). 2. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 1985 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 1986 Intake Air Temperature Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 1987 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1993 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1994 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1995 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1996 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1997 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1998 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 1999 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2000 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2001 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2002 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2003 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2004 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2005 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2006 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2007 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2008 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2009 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2010 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2011 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2012 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2013 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2014 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2015 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2016 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2017 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2018 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2019 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2020 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2021 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2022 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2023 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2024 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2025 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2026 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2027 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2028 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2029 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2030 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2031 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2032 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2033 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2034 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2035 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2036 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2037 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2038 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2039 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2040 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2041 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2042 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2043 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2044 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2045 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2046 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2047 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2048 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2049 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2050 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2051 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2052 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2053 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2054 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2055 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2056 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2057 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2058 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2059 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2060 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2061 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2062 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2063 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2064 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2065 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2066 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2067 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2068 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2069 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2070 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2071 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2072 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2073 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2074 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2075 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2076 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2077 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2078 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2079 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2080 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2081 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2082 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2083 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2084 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2085 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2086 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 2087 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 2088 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 2089 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations Top of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 2093 Manifold Absolute Pressure (MAP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 2094 Manifold Pressure/Vacuum Sensor: Service and Repair MANIFOLD ABSOLUTE PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the engine sight shield. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector (1). 3. Remove the MAP sensor (1). INSTALLATION PROCEDURE IMPORTANT: Lightly coat the MAP sensor seal with clean engine oil before installing the sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 2095 1. Install the MAP sensor (1). 2. Connect the MAP sensor electrical connector (1). 3. Install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 2107 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 2113 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Transmission Mode Switch: All Technical Service Bulletins A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 2119 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 2120 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 2121 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 2127 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 2128 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 2129 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 2130 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 2131 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Locations Heated Oxygen Sensors (HO2S) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2137 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2138 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2139 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2140 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2141 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2142 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2143 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2144 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2145 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2146 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2147 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2148 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2149 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2150 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2151 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2152 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2153 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2154 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2155 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2156 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2157 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2158 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2159 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2160 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2161 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2162 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2163 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2164 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2165 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2166 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2167 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2168 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2169 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2170 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2171 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2172 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2173 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2174 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2175 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2176 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2177 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2178 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2179 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2180 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2181 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2182 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2183 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2184 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2185 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2186 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2187 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2188 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2189 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2190 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2191 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2192 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2193 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2194 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2195 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2196 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2197 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2198 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2199 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2200 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2201 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2202 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2203 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2204 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2205 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2206 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2207 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2208 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2209 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2210 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2211 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2212 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2213 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2214 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2215 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2216 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2217 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2218 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2219 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2220 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2221 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2222 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2223 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2224 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2225 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2226 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2227 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2228 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2229 Oxygen Sensor: Connector Views Heated Oxygen Sensor (HO2S) Bank 1 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2230 Heated Oxygen Sensor (HO2S) Bank 1 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2231 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2232 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice > Page 2235 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If necessary, unbolt the front propeller shaft from the front differential. Refer to Front Propeller Shaft Replacement. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. Remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (1). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (1). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2238 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (1). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (1). 5. Install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If necessary, bolt the front propeller shaft to the front differential. Refer to Front Propeller Shaft Replacement. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2239 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If equipped, disconnect the fuel composition sensor electrical connector. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a fuel composition sensor, remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (2). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (2). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2240 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (2). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (2). 5. If equipped with a fuel composition sensor, install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If equipped, connect the fuel composition sensor electrical connector. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2241 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. 3. Remove the heated oxygen sensor (HO2S) from the clips NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2242 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S to the clips 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2243 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 3. Remove the heated oxygen sensor (HO2S) connector clip from the frame. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 2244 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S connector clip to the frame. 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2249 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2250 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2251 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2252 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2253 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2254 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2255 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2256 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2257 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2258 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2259 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2260 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2261 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2262 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2263 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2264 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2265 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2266 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2267 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2268 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2269 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2270 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2271 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2272 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2273 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2274 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2275 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2276 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2277 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2278 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2279 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2280 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2281 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2282 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2283 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2284 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2285 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2286 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2287 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2288 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2289 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2290 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2291 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2292 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2293 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2294 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2295 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2296 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2297 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2298 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2299 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2300 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2301 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2302 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2303 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2304 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2305 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2306 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2307 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2308 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2309 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2310 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2311 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2312 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2313 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2314 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2315 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2316 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2317 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2318 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2319 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2320 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2321 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2322 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2323 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2324 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2325 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2326 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2327 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2328 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2329 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2330 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2331 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2332 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2333 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2334 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2335 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2336 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2337 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2338 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2339 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2340 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70-E 2 - Park/Neutral Position (PNP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range Switch, Wiring Harness Side Transmission Range Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2346 Transmission Position Switch/Sensor: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range (TR) Switch Connector, Wiring Harness Side Transmission Range (TR) Switch Connector, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Adjustments 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the PNP switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the park/neutral position (PNP) switch bolts. 4. With the vehicle in the neutral (N) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine off. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2349 Transmission Position Switch/Sensor: Adjustments 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the shift lever in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the PNP switch bolts. 4. With the vehicle in neutral (N), rotate the PNP switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the manual shaft lever nut. 7. Remove the transmission control lever from the manual shaft. 8. Remove the PNP switch bolts. 9. Remove the PNP switch from the manual shaft. If the PNP switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2352 1. Install the PNP switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a NEW PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. 4. Install J 41364-A onto the PNP switch. Ensure that the two slots on the switch where the manual shaft is inserted are lined up with the lower two tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the transmission control lever to the manual shaft with the nut. Tighten the nut to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2353 8. Connect the PNP switch electrical connector (2). 9. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 10. Lower the vehicle. 11. Check the switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2354 Transmission Position Switch/Sensor: Service and Repair 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the range selector cable end (2) from the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2355 7. Remove the control lever to the manual shaft nut. 8. Remove the control lever from the manual shaft. 9. Remove the PNP switch bolts. 10. Remove the PNP switch from the manual shaft. If the PNP switch does not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the PNP switch to the manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a new PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2356 4. Position the J 41364-A onto the PNP switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate J 41364-A until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove J 41364-A from the PNP switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the control lever to the manual shaft with the nut. 8. Install the manual shaft nut. Tighten the nut to 25 Nm (18 ft. lbs.). 9. Install the range selector cable end (2) to the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2357 10. Connect the PNP switch electrical connector (2). 11. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 12. Lower the vehicle. 13. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2358 Transmission Position Switch/Sensor: Service and Repair Allison - Automatic Transmission Manual Shift Shaft, Detent Lever, and Position Switch Assembly Replacement Removal Procedure 1. Remove the control valve assembly from the transmission. Refer to Control Valve Body Replacement. 2. Important: The detent lever/IMS retaining bolt contains patch lock material on the threads. Do not reuse the retaining bolt. Remove the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit and discard the retaining bolt. 3. Notice: DO NOT mar the transmission case surface around the spherical pin when removing or installing the spherical pin. An unmarred surface is required to maintain the seal between the control valve assembly and the transmission case. Notice: DO NOT twist the spherical pin when removing the pin from the transmission case. Damage to the transmission case can occur. Place a protective plate on the transmission case surface around the spherical pin (3). Remove the spherical pin (3) from the transmission case. 4. Slide the manual shift shaft (5) through the detent lever/IMS assembly (4) and through the manual shift shaft seal. 5. Rotate the detent lever/IMS assembly to disengage the park pawl apply assembly (2). Remove the detent lever/IMS assembly (4). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2359 1. Place the new detent lever/IMS assembly (4) in position in the transmission case. Rotate the detent lever/IMS assembly to engage the park pawl apply assembly (2). Reinstall the manual shift shaft (5) through the manual shift shaft seal and through the detent lever/IMS assembly (4). 2. Notice: Refer to Fastener Notice in Service Precautions. Push the manual shift shaft (5) into the final position in the transmission case. 3. Install the spherical pin (3) into the transmission case that retains the manual shift shaft. 4. Install the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit. Tighten the bolt (1) to 10 Nm (92 inch lbs.). 5. Install the control valve assembly. Refer to Control Valve Body Replacement. 6. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Vehicle Speed Sensor Assembly, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2364 Vehicle Speed Sensor: Diagrams NV 3500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2365 Vehicle Speed Sensor: Diagrams NV 4500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 2366 Vehicle Speed Sensor: Diagrams ZF S6-650 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission Vehicle Speed Sensor: Service and Repair NV 3500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (1). 3. Remove the VSS and O-ring seal. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 2369 1. Coat a NEW O-ring seal with a thin film of Synchro-mesh transmission fluid GM P/N 12345349 (Canadian P/N 10953465), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS and O-ring seal. Tighten the VSS to 16 Nm (12 ft. lbs.). 3. Connect the VSS electrical connector (1). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 2370 Vehicle Speed Sensor: Service and Repair NV 4500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (3). 3. Remove the VSS and seal. Installation Procedure 1. Coat the NEW O-ring seal with a thin film of transmission fluid, use GM P/N 12346190 (Canadian P/N 10953477), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS. Tighten the VSS to 16 Nm (12 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 2371 3. Connect the VSS electrical connector (3). Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 2372 Vehicle Speed Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (2). 3. Remove the VSS bolt (2). 4. Remove the VSS (1). 5. Remove the O-ring seal (3). Installation Procedure 1. Install the O-ring seal (3) onto the VSS (1). 2. Coat the O-ring seal (3) with a thin film of transmission fluid. 3. Install the VSS (1). 4. Notice: Refer to Fastener Notice. Install the VSS bolt (2). Tighten the bolt to 11 Nm (97 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 2373 5. Connect the VSS electrical connector (2). 6. Lower the vehicle. 7. Refill the fluid as required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 2378 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 2379 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 2380 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 2381 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2387 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2388 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2389 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2390 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2391 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2392 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2393 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2394 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2395 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2396 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2397 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2398 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2399 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2400 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2401 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2402 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2403 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2404 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2405 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2406 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2407 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2408 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2409 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2410 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2411 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2412 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2413 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2414 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2415 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2416 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2417 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2418 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2419 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2420 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2421 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2422 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2423 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2424 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2425 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2426 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2427 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2428 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2429 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2430 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2431 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2432 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2433 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2434 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2435 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2436 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2437 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2438 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2439 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2440 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2441 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2442 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2443 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2444 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2445 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2446 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2447 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2448 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2449 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2450 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2451 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2452 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2453 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2454 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2455 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2456 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2457 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2458 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2459 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2460 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2461 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2462 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2463 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2464 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2465 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2466 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2467 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2468 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2469 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2470 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2471 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2472 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2473 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2474 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2475 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2476 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2477 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2478 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2479 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 2480 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 2481 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2486 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2487 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2488 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2489 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2490 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2491 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2492 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2493 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2494 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2495 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2496 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2497 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2498 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2499 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2500 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2501 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2502 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2503 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2504 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2505 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2506 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2507 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2508 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2509 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2510 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2511 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2512 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2513 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2514 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2515 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2516 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2517 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2518 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2519 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2520 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2521 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2522 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2523 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2524 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2525 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2526 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2527 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2528 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2529 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2530 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2531 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2532 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2533 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2534 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2535 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2536 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2537 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2538 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2539 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2540 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2541 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2542 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2543 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2544 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2545 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2546 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2547 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2548 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2549 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2550 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2551 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2552 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2553 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2554 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2555 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2556 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2557 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2558 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2559 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2560 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2561 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2562 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2563 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2564 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2565 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2566 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2567 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2568 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2569 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2570 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2571 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2572 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2573 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2574 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2575 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2576 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2577 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2583 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2584 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2585 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2586 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2587 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2588 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2589 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2590 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2591 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2592 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2593 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2594 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2595 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2596 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2597 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2598 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2599 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2600 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2601 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2602 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2603 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2604 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2605 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2606 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2607 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2608 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2609 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2610 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2611 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2612 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2613 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2614 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2615 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2616 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2617 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2618 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2619 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2620 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2621 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2622 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2623 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2624 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2625 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2626 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2627 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2628 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2629 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2630 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2631 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2632 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2633 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2634 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2635 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2636 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2637 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2638 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2639 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2640 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2641 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2642 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2643 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2644 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2645 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2646 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2647 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2648 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2649 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2650 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2651 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2652 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2653 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2654 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2655 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2656 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2657 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2658 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2659 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2660 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2661 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2662 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2663 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2664 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2665 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2666 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2667 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2668 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2669 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2670 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2671 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2672 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2673 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2674 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2675 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Page 2676 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2681 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2682 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2683 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2684 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2685 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2686 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2687 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2688 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2689 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2690 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2691 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2692 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2693 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2694 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2695 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2696 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2697 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2698 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2699 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2700 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2701 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2702 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2703 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2704 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2705 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2706 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2707 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2708 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2709 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2710 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2711 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2712 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2713 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2714 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2715 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2716 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2717 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2718 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2719 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2720 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2721 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2722 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2723 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2724 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2725 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2726 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2727 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2728 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2729 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2730 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2731 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2732 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2733 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2734 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2735 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2736 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2737 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2738 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2739 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2740 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2741 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2742 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2743 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2744 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2745 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2746 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2747 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2748 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2749 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2750 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2751 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2752 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2753 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2754 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2755 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2756 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2757 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2758 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2759 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2760 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2761 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2762 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2763 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2764 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2765 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2766 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2767 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2768 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2769 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2770 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2771 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2772 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2773 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 2776 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 2777 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation Ignition Switch Lock Cylinder: Description and Operation Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation > Page 2782 Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2788 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2789 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2790 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2791 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2792 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2793 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2794 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2795 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2796 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2797 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2798 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2799 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2800 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2801 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2802 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2803 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2804 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2805 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2806 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2807 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2808 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2809 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2810 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2811 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2812 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2813 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2814 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2815 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2816 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2817 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2818 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2819 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2820 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2821 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2822 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2823 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2824 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2825 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2826 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2827 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2828 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2829 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2830 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2831 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2832 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2833 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2834 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2835 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2836 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2837 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2838 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2839 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2840 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2841 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2842 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2843 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2844 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2845 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2846 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2847 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2848 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2849 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2850 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2851 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2852 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2853 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2854 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2855 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2856 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2857 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2858 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2859 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2860 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2861 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2862 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2863 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2864 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2865 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2866 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2867 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2868 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2869 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2870 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2871 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2872 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2873 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2874 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2875 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2876 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2877 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2878 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2879 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2880 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 2881 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 2882 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 2883 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 2884 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Air Bag Deactivation Switch > Component Information > Locations Air Bag Deactivation Switch: Locations SIR Component Views Center of the I/P - Accessory Switches (Except 10 Series and Crew Cab) 1 - Inflatable Restraint IP Module Disable Switch Connector (Except Crewcab) 2 - Accessory Switch Housing 3 - Inflatable Restraint IP Module Disable Switch (Except Crewcab) 4 - Instrument Panel Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Air Bag Deactivation Switch > Component Information > Locations > Page 2889 Air Bag Deactivation Switch: Diagrams SIR Connector End Views Inflatable Restraint I/P Module Disable Switch (Except 10 Series and Crew Cab) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Air Bag Deactivation Switch > Component Information > Locations > Page 2890 Air Bag Deactivation Switch: Service and Repair Inflatable Restraint Instrument Panel Module Disable Switch Replacement Removal Procedure Caution: Refer to SIR Caution. 1. Remove the instrument panel trim bezel. 2. Remove the I/P module switch from the lower right opening of the switch plate panel. 3. Disconnect the I/P module switch electrical connector. Installation Procedure 1. Connect the I/P module switch electrical connector. 2. Install the I/P module switch into the lower right opening of the switch plate panel. 3. Install the instrument panel trim bezel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Impact Sensor > Component Information > Locations Impact Sensor: Locations SIR Component Views Front End Sensors 1 - Radiator Support 1 - Radiator Support 2 - Inflatable Restraint Front End Sensor (HVY), Left and Right Sensors Similar (w/o HVY) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Impact Sensor > Component Information > Locations > Page 2894 Impact Sensor: Diagrams SIR Connector End Views Inflatable Restraint Front End Sensor - Left (AL0) Inflatable Restraint Front End Sensor - Right (AL0) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Impact Sensor > Component Information > Locations > Page 2895 Inflatable Restraint Front End Sensor (HVY) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Impact Sensor > Component Information > Service and Repair > Inflatable Restraint Front End Sensor Replacement Impact Sensor: Service and Repair Inflatable Restraint Front End Sensor Replacement Inflatable Restraint Front End Sensor Replacement Removal Procedure Caution: Do not strike or jolt the inflatable restraint front end sensor. Before applying power to the front end sensor make sure that it is securely fastened. Failure to observe the correct installation procedure could cause SIR deployment, personal injury, or unnecessary SIR system repairs. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the connector position assurance (CPA) from the connector. 3. Disconnect the electrical connector. 4. Remove the sensor bolt. 5. Remove the sensor (2) from the vehicle. Installation Procedure 1. Remove any dirt, grease, or other contaminants from the mounting surface (1). Important: Refer to SIR Service Precautions. 2. Point the arrow on the sensor toward the front of the vehicle. Notice: Refer to Fastener Notice. 3. Install the sensor (2) horizontally to the radiator support. Tighten the bolt to 9 N.m (79 lb in). 4. Connect the electrical connector to the sensor (2). 5. Install the CPA. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Impact Sensor > Component Information > Service and Repair > Inflatable Restraint Front End Sensor Replacement > Page 2898 Impact Sensor: Service and Repair Inflatable Restraint Side Impact Sensor Replacement Inflatable Restraint Side Impact Sensor Replacement Removal Procedure Caution: Refer to SIR Inflator Module Handling and Storage Caution. Caution: When carrying an undeployed inflatable restraint seat belt pretensioner: * Do not carry the seat belt pretensioner by the wires or connector. * Carry the seat belt pretensioner by the piston tube, keeping hands and fingers away from the cable. * Make sure the open end of the seat belt pretensioner piston tube points away from you and other people. * Do not cover the seat belt pretensioner piston tube opening with your hand. Failure to observe these guidelines may result in personal injury. 1. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the front door trim panel. 3. Loosen the 2 inflatable restraint side impact sensor fasteners (2). 4. Remove the inflatable restraint side impact sensor (1) from the door (4). 5. Remove the connector position assurance (CPA) (3), and disconnect the inflatable restraint side impact sensor yellow 2-way harness connector (5). Installation Procedure 1. Connect the inflatable restraint side impact sensor yellow 2-way harness connector (5) to the inflatable restraint side impact sensor (1). 2. Install the CPA (3) to the inflatable restraint side impact sensor yellow 2-way connector (5). 3. Install the inflatable restraint side impact sensor (1) to the door (4). Notice: Refer to Fastener Notice. 4. Install the fasteners (2) to the inflatable restraint side impact sensor (1) using only hand tools. Tighten the fasteners to 10 N.m (89 lb in). 5. Install the door trim panel. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Belt Buckle Switch > Component Information > Technical Service Bulletins > Customer Interest for Seat Belt Buckle Switch: > 08-09-41-010 > Oct > 08 > Restraints - Air Bag Lamp ON/Multiple DTC's Set Seat Belt Buckle Switch: Customer Interest Restraints - Air Bag Lamp ON/Multiple DTC's Set TECHNICAL Bulletin No.: 08-09-41-010 Date: October 29, 2008 Subject: Airbag Readiness Light On, DTC B0015, B0022, B0071, B0072 or B0073 Set (Perform Repair as Outlined) Models: 2007-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Sierra Denali, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Condition Some customers may comment that the airbag readiness light is on. A scan tool may reveal one or more of the following DTCs set: B0015, B0022, B0071, B0072 or B0073. Cause One possible reason is the improper connection or high resistance at the front seat belt retractor and buckle connectors. Correction For DTCs B0015 and B0022 Before replacing the front seat belt retractor assembly, remove the components necessary to gain access to the connector (1) and follow the procedure outlined below. 1. Inspect the connector for proper connection. Perform a tug test to determine if the connector was properly locked. 2. Disconnect the connector and inspect the terminals for signs of corrosion or other deposits. Repair as necessary and use dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins. 3. Reconnect the connector and install CPA, GM P/N 12052834. 4. Clear the DTC and confirm the code does not reset. For DTCs B0071, B0072 and B0073 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Belt Buckle Switch > Component Information > Technical Service Bulletins > Customer Interest for Seat Belt Buckle Switch: > 08-09-41-010 > Oct > 08 > Restraints - Air Bag Lamp ON/Multiple DTC's Set > Page 2907 Before replacing the front seat buckle, remove the components necessary to gain access to the connectors (2, 3) and follow the procedure outlined below. 1. Inspect the connector for proper connection. Perform a tug test to determine if the connector was properly locked. 2. Disconnect the connector and inspect the terminals for signs of corrosion or other deposits. Repair as necessary and use dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins. 3. Reconnect the connector and CPA. 4. Clear the DTC and confirm the code does not reset. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Belt Buckle Switch > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Belt Buckle Switch: > 08-09-41-010 > Oct > 08 > Restraints - Air Bag Lamp ON/Multiple DTC's Set Seat Belt Buckle Switch: All Technical Service Bulletins Restraints - Air Bag Lamp ON/Multiple DTC's Set TECHNICAL Bulletin No.: 08-09-41-010 Date: October 29, 2008 Subject: Airbag Readiness Light On, DTC B0015, B0022, B0071, B0072 or B0073 Set (Perform Repair as Outlined) Models: 2007-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Sierra Denali, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Condition Some customers may comment that the airbag readiness light is on. A scan tool may reveal one or more of the following DTCs set: B0015, B0022, B0071, B0072 or B0073. Cause One possible reason is the improper connection or high resistance at the front seat belt retractor and buckle connectors. Correction For DTCs B0015 and B0022 Before replacing the front seat belt retractor assembly, remove the components necessary to gain access to the connector (1) and follow the procedure outlined below. 1. Inspect the connector for proper connection. Perform a tug test to determine if the connector was properly locked. 2. Disconnect the connector and inspect the terminals for signs of corrosion or other deposits. Repair as necessary and use dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins. 3. Reconnect the connector and install CPA, GM P/N 12052834. 4. Clear the DTC and confirm the code does not reset. For DTCs B0071, B0072 and B0073 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Belt Buckle Switch > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Seat Belt Buckle Switch: > 08-09-41-010 > Oct > 08 > Restraints - Air Bag Lamp ON/Multiple DTC's Set > Page 2913 Before replacing the front seat buckle, remove the components necessary to gain access to the connectors (2, 3) and follow the procedure outlined below. 1. Inspect the connector for proper connection. Perform a tug test to determine if the connector was properly locked. 2. Disconnect the connector and inspect the terminals for signs of corrosion or other deposits. Repair as necessary and use dielectric grease, GM P/N 12345579 (in Canada, use P/N 10953481) on the connector pins. 3. Reconnect the connector and CPA. 4. Clear the DTC and confirm the code does not reset. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Occupant Sensor > Component Information > Technical Service Bulletins > Restraints - Passenger Presence System Information Seat Occupant Sensor: Technical Service Bulletins Restraints - Passenger Presence System Information INFORMATION Bulletin No.: 06-08-50-009F Date: December 23, 2010 Subject: Information on Passenger Presence Sensing System (PPS or PSS) Concerns With Custom Upholstery, Accessory Seat Heaters or Other Comfort Enhancing Devices Models: 2011 and Prior GM Passenger Cars and Trucks Equipped with Passenger Presence Sensing System Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 06-08-50-009E (Section 08 - Body and Accessories). Concerns About Safety and Alterations to the Front Passenger Seat Important ON A GM VEHICLE EQUIPPED WITH A PASSENGER SENSING SYSTEM, USE THE SEAT COVERS AND OTHER SEAT-RELATED EQUIPMENT AS RELEASED BY GM FOR THAT VEHICLE. DO NOT ALTER THE SEAT COVERS OR SEAT-RELATED EQUIPMENT. ANY ALTERATIONS TO SEAT COVERS OR GM ACCESSORIES DEFEATS THE INTENDED DESIGN OF THE SYSTEM. GM WILL NOT BE LIABLE FOR ANY PROBLEMS CAUSED BY USE OF SUCH IMPROPER SEAT ALTERATIONS, INCLUDING ANY WARRANTY REPAIRS INCURRED. The front passenger seat in many GM vehicles is equipped with a passenger sensing system that will turn off the right front passenger's frontal airbag under certain conditions, such as when an infant or child seat is present. In some vehicles, the passenger sensing system will also turn off the right front passenger's seat mounted side impact airbag. For the system to function properly, sensors are used in the seat to detect the presence of a properly-seated occupant. The passenger sensing system may not operate properly if the original seat trim is replaced (1) by non-GM covers, upholstery or trim, or (2) by GM covers, upholstery or trim designed for a different vehicle or (3) by GM covers, upholstery or trim that has been altered by a trim shop, or (4) if any object, such as an aftermarket seat heater or a comfort enhancing pad or device is installed under the seat fabric or between the occupant and the seat fabric. Aftermarket Seat Heaters, Custom Upholstery, and Comfort Enhancing Pads or Devices Important ON A GM VEHICLE EQUIPPED WITH A PASSENGER SENSING SYSTEM, USE ONLY SEAT COVERS AND OTHER SEAT-RELATED EQUIPMENT RELEASED AS GM ACCESSORIES FOR THAT VEHICLE. DO NOT USE ANY OTHER TYPE OF SEAT COVERS OR SEAT-RELATED EQUIPMENT, OR GM ACCESSORIES RELEASED FOR OTHER VEHICLE APPLICATIONS. GM WILL NOT BE LIABLE FOR ANY PROBLEMS CAUSED BY USE OF SUCH IMPROPER SEAT ACCESSORIES, INCLUDING ANY WARRANTY REPAIRS MADE NECESSARY BY SUCH USE. Many types of aftermarket accessories are available to customers, upfitting shops, and dealers. Some of these devices sit on top of, or are Velcro(R) strapped to the seat while others such as seat heaters are installed under the seat fabric. Additionally, seat covers made of leather or other materials may have different padding thickness installed that could prevent the Passenger Sensing System from functioning properly. Never alter the vehicle seats. Never add pads or other devices to the seat cushion, as this may interfere with the operation of the Passenger Sensing System and either prevent proper deployment of the passenger airbag or prevent proper suppression of the passenger air bag. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Occupant Sensor > Component Information > Technical Service Bulletins > Restraints - Passenger Presence System Information > Page 2918 Seat Occupant Sensor: Technical Service Bulletins Air Bag System - DTC B0071/B0074/B0081 Code Clearing Bulletin No.: 07-09-41-004 Date: June 13, 2007 INFORMATION Subject: New Procedure for Clearing Passenger Presence System (PPS) and Sensing and Diagnostic Module (SDM) DTCs B0071, B0074, B0081 Models: 2006-2008 Buick Lucerne 2006-2008 Cadillac DTS 2007-2008 Cadillac Escalade, Escalade ESV, Escalade EXT 2006-2007 Monte Carlo 2006-2008 Chevrolet Impala 2007-2008 Chevrolet Silverado, Suburban, Tahoe 2007-2008 GMC Yukon, Yukon Denali, Yukon XL, Yukon XL Denali A condition exists where the passenger presence system (PPS) may continue to output a fault to the sensing and diagnostic module (SDM) after the PPS has been cleared. The fault may continue to report to the SDM if the buss has not been allowed to go to sleep prior to clearing B0081 DTC in the SDM. If B0071, B0074 or B0081/0F is received, the following procedure should be followed to clear the codes. With the Ignition OFF, open and close the driver door. With a scan tool, clear PPS DTC (B0071 or B0074). While continuing to keep the doors closed, wait 60 seconds with the ignition OFF. DO NOT operate any functions in the vehicle during this time. Verify that the PPS does not have any DTCs. If PPS DTCs exist, please perform the necessary repair. With the scan tool, clear DTC B0081. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Position Sensor > Component Information > Locations Seat Position Sensor: Locations SIR Component Views Passenger Presence Components - Under Front Passenger Seat 1 - Seat Horizontal Motor - Front Passenger (AN3) 2 - Inflatable Restraint Passenger Presence System (PPS) Module (AL0) 3 - Inflatable Restraint Passenger Presence System (PPS) Sensor (AL0) 4 - Seat Front Vertical Motor - Front Passenger (AN3) 5 - Seat Rear Vertical Motor - Front Passenger (AN3) 6 - C399 7 - Inflatable Restraint Seat Position Sensor - Right 8 - Seat Recliner Motor - Front Passenger (AN3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Position Sensor > Component Information > Locations > Page 2922 Seat Position Sensor: Diagrams SIR Connector End Views Inflatable Restraint Seat Position Switch - Left (AL0) A/T Shift Lock Control Solenoid Inflatable Restraint Seat Position Switch - Right (AL0) A/T Shift Lock Control Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Position Sensor > Component Information > Locations > Page 2923 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Restraint Systems > Seat Position Sensor > Component Information > Locations > Page 2924 Seat Position Sensor: Service and Repair Inflatable Restraint Seat Position Sensor Replacement Removal Procedure 1. Remove the passenger or driver's seat from the vehicle. 2. Disconnect the electrical connector from the seat position sensor. Caution: Eye protection must be worn when drilling rivets to reduce the chance of personal injury. 3. Drill out the rivets that retain the seat position sensor (1) to the seat adjuster track bracket. 4. Remove the seat position sensor from the seat adjuster track bracket. Installation Procedure 1. Install the seat position sensor to the seat adjuster bracket. 2. Install the rivets that retain the seat position sensor (1) to the seat adjuster track bracket. 3. Connect the electrical connector to the seat position sensor. 4. Install the passenger or driver's seat to the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Battery Current Sensor > Component Information > Diagrams Battery Current Sensor: Diagrams Engine Electrical Connector End Views Current Sensor (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Clutch Switch > Component Information > Locations Clutch Switch: Locations Manual Transmission Component Views Clutch Pedal Position (CPP) Switch 1 - Clutch Pedal Position (CPP) Switch 2 - Dash Panel 3 - Clutch Pedal Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Clutch Switch > Component Information > Diagrams > NV 3500 - Manual Transmission Clutch Switch: Diagrams NV 3500 - Manual Transmission Manual Transmission Connector End Views Clutch Pedal Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Clutch Switch > Component Information > Diagrams > NV 3500 - Manual Transmission > Page 2934 Clutch Switch: Diagrams NV 4500 - Manual Transmission Manual Transmission Connector End Views Clutch Pedal Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Clutch Switch > Component Information > Diagrams > NV 3500 - Manual Transmission > Page 2935 Clutch Switch: Diagrams ZF S6-650 - Manual Transmission Manual Transmission Connector End Views Clutch Pedal Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Clutch Switch > Component Information > Diagrams > Page 2936 Clutch Switch: Service and Repair Clutch Pedal Engine Start Switch Replacement Removal Procedure 1. Disconnect the clutch pedal position switch electrical connector (1). 2. Remove the plastic retainer tabs from the clutch pedal position switch. 3. Remove the clutch pedal position switch from the pushrod. Installation Procedure 1. Install the clutch pedal position switch to the pushrod with the plastic tabs. 2. Connect the clutch pedal position switch electrical connector (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation Ignition Switch Lock Cylinder: Description and Operation Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Starting and Charging > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation > Page 2941 Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Diagrams Steering Angle Sensor: Diagrams Power Steering Connector End Views Brake Pedal Position Sensor Brake Pedal Position Sensor Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Diagrams > Page 2947 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Diagrams > Page 2948 Electro-Hydraulic Power Steering (EHPS) C2 Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Diagrams > Page 2949 Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Steering Angle Sensor: Service and Repair Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Tools Required ^ J 42640 Steering Column Anti-Rotation Pin Removal Procedure 1. Caution: Refer to SIR Caution. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Notice: The front wheels of the vehicle must be maintained in the straight ahead position and the steering column must be in the LOCK position before disconnecting the steering column or intermediate shaft. Failure to follow these procedures will cause improper alignment of some components during installation and result in damage to the SIR coil assembly. Lock the steering column through the access hole in the lower trim cover using J 42640. 3. Important: A new sensor must come with a pin installed. If pin is not installed, return and reorder sensor. Do not apply force to the sensor and the bearing assembly in a sideways direction. Remove the steering column from the vehicle. 4. Remove the sensor connector by using a suitable tool in order to pull the connector down around the right side of the steering column for accessibility. 5. Remove the sensor retainer from the steering shaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2952 6. Important: When reusing the sensor (1) you must install a pin into the sensor before it is removed from the steering shaft. By not installing a pin into the sensor it will cause the sensor to lose its centering position and must be discarded. Pin diameter must be in the range of 1 - 2 mm. Do not remove the bearing adapter (3). If reusing the sensor (1), remove the position sensor by pulling the sensor straight out from the bearing adapter (3) until the sensor is almost off the steering shaft (2). Install a pin into the sensor before removing from the steering shaft (2). Do not remove the pin until the sensor is re-installed. 7. If replacing the sensor (1), remove the sensor by pulling the sensor straight out from the bearing adapter (3) and off the steering shaft. Installation Procedure 1. Important: Do not apply force to the sensor (1) or the bearing adapter (3) in a sideways direction. If reusing the sensor, with the pin still installed, align the sensor onto the steering shaft (2) and into the bearing adapter (3). 2. Important: If installing a new sensor the sensor will come precentered. Do not remove the pin until installation is complete. Install the sensor onto the steering shaft (2) and into the bearing adapter (3). 3. The sensor must be set to approximately 3 mm gap between the sensor and the bearing adapter. 4. Install the sensor connector. 5. Remove the pin from the sensor. 6. Install the sensor retainer onto the steering shaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2953 7. Install the steering column to the vehicle. 8. Remove J 42640 from the steering column. 9. Enable the SIR system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2954 Steering Angle Sensor: Service and Repair Steering Wheel Position Sensor Centering Steering Wheel Position Sensor Centering Removal Procedure 1. Important: Identify the type of steering wheel position sensor from the illustrations shown BEFORE removing the sensor from the steering column. Once you have identified the steering wheel position sensor, follow the instructions listed in the removal procedure. Verify the type of steering wheel position sensor. 2. From the technicians point of view, the FRONT of the sensor (1) connector will be on the right. 3. Important: If reusing the existing sensor, you do not have to align the sensor before removal. Centering is not required when it is time to reinstall. Remove the connector from the sensor. 4. Remove the sensor (1) from the adapter and bearing assembly. 5. To install the sensor, proceed to step 1 in the installation section. 6. From the technicians point of view, the FRONT of the sensor will have: ^ A foam ring (2) ^ A pin hole (1) for centering the pin-Note the location of the pin hole. ^ A flush rotor flange cuff (4) 7. Important: If reusing the existing sensor, you must make an alignment mark on the rotor flange cuff (3) before removing the sensor. Failure to do so will cause misalignment when installing the sensor. A new sensor will be required if misaligned. Make an alignment mark on the flush rotor flange cuff (3). 8. Remove the connector from the sensor. 9. Remove the sensor from the adapter and bearing assembly. 10. To install the sensor, proceed to step 5 in the installation procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2955 11. From the technicians point of view, the FRONT of the sensor will have: ^ A raised rotor flange cuff (3) ^ An alignment mark (2) on the rotor flange cuff (3) for installation ^ A pin hole (1) for the centering pin-Note the location of the pin hole. 12. Remove the connector from the sensor. 13. Remove the sensor from the adapter and bearing assembly. 14. To install the sensor, proceed to step 9 in the installation procedure. 15. From the technicians point of view, the FRONT of the sensor will have: ^ A raised rotor flange cuff (3) ^ An alignment mark (2) on the rotor flange cuff (3) for installation ^ A pin hole (1) for the centering pin-Note location of the pin hole. ^ A sensor clip in FRONT of the sensor 16. Remove the connector from the sensor. 17. Remove the sensor clip from the sensor. 18. Remove the sensor from the adapter and bearing assembly. 19. To install the sensor, proceed to step 13 in the installation procedure. 20. From the technicians point of view, the FRONT of the sensor will have: ^ A flush rotor flange cuff (3) ^ A pin hole (1) for the centering pin-Note the location of the pin hole. ^ An alignment mark (2) on the flush rotor flange cuff (3) for installation 21. Remove the connector from the sensor. 22. Remove the sensor from the adapter and bearing assembly. 23. To install the sensor, proceed to step 17 in the installation procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2956 24. From the technicians point of view, the FRONT of the sensor will have: ^ A flush rotor flange cuff (4) ^ A pin hole (2) for the centering pin-Note the location of the pin hole. ^ An alignment mark (3) on the flush rotor flange cuff (4) for installation ^ A foam ring (1) 25. Remove the connector from the sensor. 26. Remove the sensor from the adapter and bearing assembly. 27. To install the sensor, proceed to step 21 in the installation procedure. Installation Procedure 1. Important: If reusing the existing sensor, no centering of the sensor is required. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. 2. From the technicians point of view, the FRONT of the sensor (1) connector will be on your right. From the technicians point of view, the BACK of the sensor (2) connector will be on your left. 3. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 4. Install the connector to the sensor. 5. From the technicians point of view, the FRONT of the sensor will have: ^ A foam ring (4) ^ A pin hole (7) for the centering pin-Note the location of the pin hole. ^ A flushed rotor flange cuff (6) ^ An alignment mark (5) for installation 6. From the technicians point of view, the BACK of the sensor will have: ^ Double D flats (1) ^ A foam ring (3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2957 ^ An alignment tab (2) for installing into the adapter and bearing assembly ^ A view of the inside of the connector 7. Important: If reusing the existing sensor, you must align the marks on the flush rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 8. Install the connector to the sensor. 9. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (3) for the centering pin-Note location of the pin hole. ^ A raised rotor flange cuff (5) ^ An alignment mark (4) for installation 10. From the technicians point of view, the BACK of the sensor will have: ^ Double D flats (1) ^ An alignment tab (2) for installing into the adapter and bearing assembly 11. Important: If reusing the existing sensor, you must align the marks on the raised rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 12. Install the connector to the sensor. 13. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (2) for the centering pin-Note the location of the pin hole. ^ A raised rotor flange cuff (4) ^ An alignment mark (3) for installation 14. From the technicians point of view, the BACK of the sensor will have an alignment tab (1) for installation. This sensor does not have double D flats. 15. Important: If reusing the existing sensor, you must align the marks on the raised rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2958 If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 16. Install the connector to the sensor. 17. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (2) for the centering pin-Note the location of the pin hole. ^ A flush rotor flange cuff (4) ^ An alignment mark (3) for installation 18. From the technicians point of view, the BACK of the sensor will have an alignment tab (1) for installation. This sensor does not have double D flats. 19. Important: If reusing the existing sensor, you must align the marks on the flush rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 20. Install the connector to the sensor. 21. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (3) for the centering pin-Note location of the pin hole. ^ A flush rotor flange cuff (5) ^ An alignment mark (4) for installation ^ A foam ring (6) 22. From the technicians point of view, the BACK of the sensor will have: ^ Double D flats (1) ^ An alignment tab (2) for installing into the adapter and bearing assembly 23. Important: If reusing the existing sensor, you must align the marks on the flush rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2959 24. Install the connector to the sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Steering > Steering Column Position Sensor > Component Information > Diagrams Steering Column Position Sensor: Diagrams Power Steering Connector End Views Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Diagrams Steering Angle Sensor: Diagrams Power Steering Connector End Views Brake Pedal Position Sensor Brake Pedal Position Sensor Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Diagrams > Page 2967 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C1 Electro-Hydraulic Power Steering (EHPS) C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Diagrams > Page 2968 Electro-Hydraulic Power Steering (EHPS) C2 Steering Wheel Speed/Position Sensor Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Diagrams > Page 2969 Steering Wheel Speed/Position Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Steering Angle Sensor: Service and Repair Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement Tools Required ^ J 42640 Steering Column Anti-Rotation Pin Removal Procedure 1. Caution: Refer to SIR Caution. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Notice: The front wheels of the vehicle must be maintained in the straight ahead position and the steering column must be in the LOCK position before disconnecting the steering column or intermediate shaft. Failure to follow these procedures will cause improper alignment of some components during installation and result in damage to the SIR coil assembly. Lock the steering column through the access hole in the lower trim cover using J 42640. 3. Important: A new sensor must come with a pin installed. If pin is not installed, return and reorder sensor. Do not apply force to the sensor and the bearing assembly in a sideways direction. Remove the steering column from the vehicle. 4. Remove the sensor connector by using a suitable tool in order to pull the connector down around the right side of the steering column for accessibility. 5. Remove the sensor retainer from the steering shaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2972 6. Important: When reusing the sensor (1) you must install a pin into the sensor before it is removed from the steering shaft. By not installing a pin into the sensor it will cause the sensor to lose its centering position and must be discarded. Pin diameter must be in the range of 1 - 2 mm. Do not remove the bearing adapter (3). If reusing the sensor (1), remove the position sensor by pulling the sensor straight out from the bearing adapter (3) until the sensor is almost off the steering shaft (2). Install a pin into the sensor before removing from the steering shaft (2). Do not remove the pin until the sensor is re-installed. 7. If replacing the sensor (1), remove the sensor by pulling the sensor straight out from the bearing adapter (3) and off the steering shaft. Installation Procedure 1. Important: Do not apply force to the sensor (1) or the bearing adapter (3) in a sideways direction. If reusing the sensor, with the pin still installed, align the sensor onto the steering shaft (2) and into the bearing adapter (3). 2. Important: If installing a new sensor the sensor will come precentered. Do not remove the pin until installation is complete. Install the sensor onto the steering shaft (2) and into the bearing adapter (3). 3. The sensor must be set to approximately 3 mm gap between the sensor and the bearing adapter. 4. Install the sensor connector. 5. Remove the pin from the sensor. 6. Install the sensor retainer onto the steering shaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2973 7. Install the steering column to the vehicle. 8. Remove J 42640 from the steering column. 9. Enable the SIR system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2974 Steering Angle Sensor: Service and Repair Steering Wheel Position Sensor Centering Steering Wheel Position Sensor Centering Removal Procedure 1. Important: Identify the type of steering wheel position sensor from the illustrations shown BEFORE removing the sensor from the steering column. Once you have identified the steering wheel position sensor, follow the instructions listed in the removal procedure. Verify the type of steering wheel position sensor. 2. From the technicians point of view, the FRONT of the sensor (1) connector will be on the right. 3. Important: If reusing the existing sensor, you do not have to align the sensor before removal. Centering is not required when it is time to reinstall. Remove the connector from the sensor. 4. Remove the sensor (1) from the adapter and bearing assembly. 5. To install the sensor, proceed to step 1 in the installation section. 6. From the technicians point of view, the FRONT of the sensor will have: ^ A foam ring (2) ^ A pin hole (1) for centering the pin-Note the location of the pin hole. ^ A flush rotor flange cuff (4) 7. Important: If reusing the existing sensor, you must make an alignment mark on the rotor flange cuff (3) before removing the sensor. Failure to do so will cause misalignment when installing the sensor. A new sensor will be required if misaligned. Make an alignment mark on the flush rotor flange cuff (3). 8. Remove the connector from the sensor. 9. Remove the sensor from the adapter and bearing assembly. 10. To install the sensor, proceed to step 5 in the installation procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2975 11. From the technicians point of view, the FRONT of the sensor will have: ^ A raised rotor flange cuff (3) ^ An alignment mark (2) on the rotor flange cuff (3) for installation ^ A pin hole (1) for the centering pin-Note the location of the pin hole. 12. Remove the connector from the sensor. 13. Remove the sensor from the adapter and bearing assembly. 14. To install the sensor, proceed to step 9 in the installation procedure. 15. From the technicians point of view, the FRONT of the sensor will have: ^ A raised rotor flange cuff (3) ^ An alignment mark (2) on the rotor flange cuff (3) for installation ^ A pin hole (1) for the centering pin-Note location of the pin hole. ^ A sensor clip in FRONT of the sensor 16. Remove the connector from the sensor. 17. Remove the sensor clip from the sensor. 18. Remove the sensor from the adapter and bearing assembly. 19. To install the sensor, proceed to step 13 in the installation procedure. 20. From the technicians point of view, the FRONT of the sensor will have: ^ A flush rotor flange cuff (3) ^ A pin hole (1) for the centering pin-Note the location of the pin hole. ^ An alignment mark (2) on the flush rotor flange cuff (3) for installation 21. Remove the connector from the sensor. 22. Remove the sensor from the adapter and bearing assembly. 23. To install the sensor, proceed to step 17 in the installation procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2976 24. From the technicians point of view, the FRONT of the sensor will have: ^ A flush rotor flange cuff (4) ^ A pin hole (2) for the centering pin-Note the location of the pin hole. ^ An alignment mark (3) on the flush rotor flange cuff (4) for installation ^ A foam ring (1) 25. Remove the connector from the sensor. 26. Remove the sensor from the adapter and bearing assembly. 27. To install the sensor, proceed to step 21 in the installation procedure. Installation Procedure 1. Important: If reusing the existing sensor, no centering of the sensor is required. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. 2. From the technicians point of view, the FRONT of the sensor (1) connector will be on your right. From the technicians point of view, the BACK of the sensor (2) connector will be on your left. 3. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 4. Install the connector to the sensor. 5. From the technicians point of view, the FRONT of the sensor will have: ^ A foam ring (4) ^ A pin hole (7) for the centering pin-Note the location of the pin hole. ^ A flushed rotor flange cuff (6) ^ An alignment mark (5) for installation 6. From the technicians point of view, the BACK of the sensor will have: ^ Double D flats (1) ^ A foam ring (3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2977 ^ An alignment tab (2) for installing into the adapter and bearing assembly ^ A view of the inside of the connector 7. Important: If reusing the existing sensor, you must align the marks on the flush rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 8. Install the connector to the sensor. 9. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (3) for the centering pin-Note location of the pin hole. ^ A raised rotor flange cuff (5) ^ An alignment mark (4) for installation 10. From the technicians point of view, the BACK of the sensor will have: ^ Double D flats (1) ^ An alignment tab (2) for installing into the adapter and bearing assembly 11. Important: If reusing the existing sensor, you must align the marks on the raised rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 12. Install the connector to the sensor. 13. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (2) for the centering pin-Note the location of the pin hole. ^ A raised rotor flange cuff (4) ^ An alignment mark (3) for installation 14. From the technicians point of view, the BACK of the sensor will have an alignment tab (1) for installation. This sensor does not have double D flats. 15. Important: If reusing the existing sensor, you must align the marks on the raised rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2978 If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 16. Install the connector to the sensor. 17. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (2) for the centering pin-Note the location of the pin hole. ^ A flush rotor flange cuff (4) ^ An alignment mark (3) for installation 18. From the technicians point of view, the BACK of the sensor will have an alignment tab (1) for installation. This sensor does not have double D flats. 19. Important: If reusing the existing sensor, you must align the marks on the flush rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. 20. Install the connector to the sensor. 21. From the technicians point of view, the FRONT of the sensor will have: ^ A pin hole (3) for the centering pin-Note location of the pin hole. ^ A flush rotor flange cuff (5) ^ An alignment mark (4) for installation ^ A foam ring (6) 22. From the technicians point of view, the BACK of the sensor will have: ^ Double D flats (1) ^ An alignment tab (2) for installing into the adapter and bearing assembly 23. Important: If reusing the existing sensor, you must align the marks on the flush rotor flange cuff before installation. The alignment mark must stay aligned until the sensor is seated into the adapter and bearing assembly. If installing a new sensor, it will come with a pin installed in the sensor. Do not remove the pin until the sensor is seated. If the new sensor did not come with a pin installed, you must reorder a new sensor. Looking at the FRONT of the sensor, align the sensor with the steering shaft and install into the adapter and bearing assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Steering Angle Sensor > Component Information > Service and Repair > Steering Wheel Position Sensor or Steering Shaft Lower Bearing Replacement > Page 2979 24. Install the connector to the sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Suspension Mode Switch > Component Information > Locations Suspension Mode Switch: Locations Selectable Ride Control Component Views RH Front Selectable Ride Shock, LH Front Similar 1 - RH Front Selectable Ride Electrical Connector 2 - RH Front Selectable Ride Shock 3 - RH Frame Rail Selectable Ride Switch 1 - Instrument Panel 2 - Selectable Ride Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Suspension > Suspension Mode Switch > Component Information > Locations > Page 2983 Suspension Mode Switch: Diagrams Selectable Ride Control Component Ends Views Selectable Ride Switch Tow/Haul Switch, Wiring Harness Side Selectable Ride Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Sensor: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 2989 Tire Pressure Sensor: Technical Service Bulletins Tire Monitor System - TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 2990 Tire Pressure Sensor: Technical Service Bulletins Tires - Minimizing Damage to TPM Sensors INFORMATION Bulletin No.: 08-03-10-007 Date: May 16, 2008 Subject: Minimizing Damage to Tire Pressure Monitor (TPM) Sensors During Tire Mounting/Dismounting Models: 2009 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Wheel Mounted Tire Pressure Sensors Minimizing Damage To TPM Sensors All GM vehicles now in production and sold in the U.S., as well as many vehicles sold in Canada, feature Tire Pressure Monitoring Systems that have valve stem mounted Tire Pressure Sensors. When dismounting and mounting tires, care must be taken when breaking the bead loose from the wheel. If the tire machines bead breaking fixture is positioned too close to the tire pressure sensor, as the tire bead breaks away from the wheel it may be forced into, or catch on the edge of the tire pressure sensor. This can damage the sensor and require the sensor to be replaced. Care must also be taken when transferring the tire bead to the other side of the wheel rim. As the tire machine rotates and the tire bead is stretched around the wheel rim, the bead can come in contact with the sensor if it is not correctly positioned in relation to the mounting/dismounting head prior to tire mounting/dismounting. This can also cause sensor damage requiring replacement. Procedure Notice: Use a tire changing machine in order to dismount tires. Do not use hand tools or tire irons alone in order to remove the tire from the wheel. Damage to the tire beads or the wheel rim could result. Notice: Do not scratch or damage the clear coating on aluminum wheels with the tire changing equipment. Scratching the clear coating could cause the aluminum wheel to corrode and the clear coating to peel from the wheel. 1. Remove the valve core from the valve stem. 2. Deflate the tire completely. Important: Rim-clamp European-type tire changers are recommended. 3. Use the tire changer in order to remove the tire from the wheel. Follow steps 4-7 to remove the tire from the wheel. 4. When separating the tire bead from the wheel position the bead breaking fixture 90, 180 and 270 degrees from the valve stem. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 2991 5. Position the wheel and tire so the valve stem is situated at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the outer tire bead up and over the mounting/dismounting head. 6. Position the wheel and tire so that the valve stem is situated again at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the inner tire bead up and over the mounting/dismounting head. 7. Remove all residual liquid sealant from the inside of the tire and wheel surfaces. If any tire sealant is noted upon tire dismounting on vehicles equipped with TPM replace the tire pressure sensor. 8. Use a wire brush or coarse steel wool in order to remove any rubber, light rust or corrosion from the wheel bead seats. Important: If bead seat corrosion has been identified as an air loss concern on the wheel being worked on, refer to GM Service Bulletin # 08-03-10-006 for additional information on correcting the leak. 9. Apply GM P/N 12345884 (in Canada, P/N 5728223) or equivalent to the tire bead and the wheel rim. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 2992 10. Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. 11. Position the rim so that the valve stem (1) is situated at the 3 o'clock position relative to the head (2). This will protect the sensor when the bottom bead seats. 12. After the bottom bead is on the wheel, reposition the wheel and tire so that the valve stem is situated at the 9 o'clock position relative to the head. This will protect the sensor while mounting the tire bead to the outside of the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 2993 13. Use the tire changer in order to install the tire to the wheel. Caution: To avoid serious personal injury, do not stand over tire when inflating. The bead may break when the bead snaps over the safety hump. Do not exceed 275 kPa (40 psi) pressure when inflating any tire if beads are not seated. If 275 kPa (40 psi) pressure will not seat the beads, deflate, lubricate the beads and reinflate. Overinflating may cause the bead to break and cause serious personal injury. Important: Allowable bead seating pressure is 345 kPa (50 psi) on Extended Mobility Tires. 14. Inflate the tire until it passes the bead humps. Be sure that the valve core is not installed at this time. 15. Install the valve core to the valve core stem. 16. Inflate the tire to the proper air pressure. 17. Ensure that the locating rings are visible on both sides of the tire in order to verify that the tire bead is fully seated on the wheel. Parts Information The product shown above is available from GM SPO. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > Page 2994 Fastener Tightening Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > Page 2995 Tire Pressure Sensor: Locations Tire Pressure Monitoring System Component Views Tire Pressure Monitor Sensors 1 - Tire Pressure Monitor Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) Tire Pressure Sensor: Service and Repair Tire Pressure Indicator Sensor Replacement (Clamp In Style) Tire Pressure Indicator Sensor Replacement (Clamp In Style) Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Vehicle Lifting. 2. Remove the tire/wheel assembly from the vehicle. 3. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ When separating the tire bead from the wheel, position the bead breaking fixture 90 degrees from the valve stem. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the out side of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. 4. Important: If any tire sealant is noted upon tire dismounting, remove all residual liquid sealant from the inside of the tire and wheel surfaces. Remove the tire pressure sensor nut. 5. Remove the tire pressure sensor. Installation Procedure 1. Clean any dirt or debris from the grommet sealing area. 2. Insert the sensor in the wheel hole with the air passage facing away from the wheel. 3. Notice: Refer to Fastener Notice. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 Nm (62 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 2998 4. Important: Before reinstalling the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180° from the valve stem. ^ Position the bead transition area 45° counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. 5. Important: A service replacement tire pressure sensor is shipped in OFF mode. In this mode the sensor unique identification code cannot be learned into the remote control door lock receiver (RCDLR) memory. The sensor must be taken out of OFF mode by spinning the tire/wheel assembly above 32 km/h (20 mph) in order to close the sensors internal roll switch for at least 10 seconds. Install the tire/wheel assembly on the vehicle. 6. Lower the vehicle. 7. Learn the tire pressure sensors. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 2999 Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor Grommet Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Vehicle Lifting. 2. Remove the tire/wheel assembly from the vehicle. 3. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ Position the bead breaking fixture 90 degrees from the valve stem when separating the tire bead from the wheel. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. 4. Important: If any tire sealant is noted upon tire dismounting, replace the sensor. Refer to Tire Pressure Indicator Sensor Replacement (Clamp In Style). Also remove all residual liquid sealant from the inside of the tire and wheel surfaces. Remove the tire pressure sensor nut. 5. Remove the sensor from the wheel hole. 6. Remove the sensor grommet from the valve stem. Installation Procedure 1. Clean any dirt or debris from the grommet sealing areas. 2. Install the grommet on the sensor valve stem. 3. Insert the sensor in the wheel hole with the air passage facing away from the wheel. 4. Notice: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Steering and Suspension > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 3000 Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 Nm (62 inch lbs.). 5. Important: Before installing the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting. 6. Install the tire/wheel assembly on the vehicle. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Specifications Fluid Pressure Sensor/Switch: Specifications Transmission Fluid Pressure Manual Valve Position Switch Logic Transmission Fluid Pressure Manual Valve Position Switch Logic Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E Automatic Transmission Fluid Pressure Sensor/Switch: Locations 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Electronic Component Views Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 108 - Secondary Fluid Pump Assembly - M33 Model Only 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E Automatic Transmission > Page 3008 Fluid Pressure Sensor/Switch: Locations 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Electronic Component Views Automatic Transmission Internal Electronic Components (4L80-E) 22a - Automatic Transmission (AT) Input (Shaft) Speed Sensor (ISS) Assembly 22b - Automatic Transmission (AT) Output (Shaft) Speed Sensor (OSS) Assembly 34 - Automatic Transmission Fluid Temperature (TFT) Sensor 40 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 311 - 2-3 Shift Solenoid (SS) Valve Assembly 313 - 1-2 Shift Solenoid (SS) Valve Assembly 320 - Pressure Control (PC) Solenoid Valve Assembly 323 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission Fluid Pressure Sensor/Switch: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Internal Connector End Views (M30/M32) Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission > Page 3011 Fluid Pressure Sensor/Switch: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Internal Connector End Views Automatic Transmission Fluid Pressure Manual Valve Position Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Fluid Pressure Sensor/Switch: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Valve Body and Pressure Switch Replacement Removal Procedure 1. Ensure that removal of the valve body is necessary before proceeding. The following components can be serviced without removing the valve body from the transmission: ^ The torque converter clutch solenoid (1) ^ The pressure control solenoid (2) ^ The internal wiring harness (3) ^ The 2-3 shift solenoid (4) ^ The 1-2 shift solenoid (5) ^ The transmission fluid pressure manual valve position switch (6) ^ The 3-2 shift solenoid (7) ^ The torque converter clutch pulse width modulation (TCC PWM) solenoid (8) 2. Remove the fluid level indicator. 3. Remove the secondary fluid pump, if equipped with RPO HP2. Refer to Secondary Fluid Pump Replacement (5.3L Engine w/RPO HP2). 4. Remove the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 5. Disconnect the internal wiring harness electrical connectors from the following components: ^ The transmission fluid pressure manual valve position switch (1) ^ The 1-2 shift solenoid (2) ^ The 2-3 shift solenoid (3) ^ The pressure control solenoid (4) ^ The TCC PWM solenoid (5) ^ The 3-2 shift solenoid (6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3014 6. Remove the TCC PWM solenoid retainer (2) with a small screwdriver. Rotate the solenoid (1) in the bore, if necessary, until the flat part of the retainer (2) is visible. 7. Remove the TCC PWM solenoid (1) in order to access the TCC solenoid bolts. 8. Remove the TCC solenoid bolts. 9. Remove the TCC solenoid (with O-ring seal) and wiring harness from the valve body. 10. Reposition the harness to the side of the transmission case. 11. Remove the valve body bolts which retain the transmission fluid pressure switch to the valve body. 12. Remove the transmission fluid pressure switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3015 13. Inspect the transmission fluid pressure manual valve position switch assembly for the following conditions: ^ Damage ^ Debris ^ Damaged or missing O-rings ^ Cracked connector ^ Loose electrical terminals ^ Poor terminal retention 14. Remove the manual detent spring bolt. 15. Remove the manual detent spring. 16. Inspect the manual detent spring for cracks or damage. 17. Important: Keep the valve body level when lowering it from the vehicle. This will prevent the loss of checkballs located in the valve body passages. Remove the remaining valve body bolts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3016 18. Carefully lower the valve body from the transmission case while simultaneously disconnecting the manual valve link. Ball Check Valves 19. Remove the seven valve body checkballs. 20. Important: Some models do not have an outer spring. Note spring usage during removal. Remove the accumulator cover bolts (58, 59). 21. Remove the 1-2 accumulator cover and pin assembly (57). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3017 22. Remove the spacer plate support bolts (77). 23. Remove the spacer plate support (53). 24. Important: RPO HP2 equipped uses a bonded spacer plate. Remove the valve body gasket (52), the valve body spacer plate (48) and the case gasket (47). Discard the gaskets. Do not reuse. Installation Procedure 1. Install a NEW valve body gasket (52), the valve body spacer plate (48) and a NEW case gasket (47). 2. Notice: Refer to Fastener Notice. Install the spacer plate support (53) and bolts (77). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3018 Tighten the bolts to 10 Nm (89 inch lbs.). 3. Install the 1-2 accumulator cover and pin assembly (57). 4. Install the 1-2 accumulator cover bolts (58, 59). Tighten the bolts to 10 Nm (89 inch lbs.). Ball Check Valves 5. Install the seven checkballs (1-7) into the valve body. 6. Install the valve body to the transmission case while simultaneously connecting the manual valve link to the manual valve. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3019 7. Verify that the manual valve link (3) is installed properly to the inside detent lever (1) and the manual valve (2). 8. Install one bolt (M6 X 1.0 X 47.5) hand tight in the center (1) of the valve body to hold it in place. 9. Important: When installing bolts throughout this procedure, be sure to use the correct bolt size and length in the correct location as specified. Do not install the transmission fluid indicator stop bracket and bolt at this time. Install but do not tighten the valve body bolts which retain only the valve body directly. Each numbered bolt location corresponds to a specific bolt size and length, as indicated by the following: ^ M6 X 1.0 X 65.0 (1) ^ M6 X 1.0 X 54.4 (2) ^ M6 X 1.0 X 47.5 (3) ^ M6 X 1.0 X 35.0 (4) ^ M8 X 1.0 X 20.0 (5) ^ M6 X 1.0 X 12.0 (6) ^ M6 X 1.0 X 18.0 (7) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3020 10. Install the manual detent spring. 11. Install but do not tighten the manual detent spring bolt. 12. Install the transmission fluid pressure switch. 13. Install but do not tighten the valve body bolts which retain the transmission fluid pressure switch to the valve body. 14. Notice: Torque valve body bolts in a spiral pattern starting from the center. If the bolts are torqued at random, valve bores may be distorted and inhibit valve operation. Tighten the valve body bolts in a spiral pattern starting from the center, as indicated by the arrows. Tighten the bolts in the sequence shown to 11 Nm (97 inch lbs.). 15. Ensure that the manual detent spring is aligned properly with the detent lever. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3021 Tighten the bolt to 11 Nm (97 inch lbs.). 16. Install the TCC solenoid with a NEW O-ring seal to the valve body. 17. Install the TCC solenoid bolts. Tighten the bolts to 11 Nm (97 inch lbs.). 18. Install the internal wiring harness to the valve body. The internal wiring harness has a tab (1) on the edge of the conduit. 19. Place the tab between the valve body and the pressure switch in the location shown (2). Press the harness into position on the valve body bolt bosses (1, 3). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3022 20. Install the TCC PWM solenoid (1) to the valve body. 21. Install the TCC PWM solenoid retainer (2). 22. Install the transmission fluid indicator stop bracket (1) and bolt (2). Tighten the bolt to 11 Nm (97 inch lbs.). 23. Connect the internal wiring harness electrical connectors to the following components: ^ The transmission fluid pressure manual valve position switch (1) ^ The 1-2 shift solenoid (2) ^ The 2-3 shift solenoid (3) ^ The pressure control solenoid (4) ^ The TCC PWM solenoid (5) ^ The 3-2 shift solenoid (6) 24. Install the auxiliary pump, if equipped with RPO HP2. Refer to Secondary Fluid Pump Replacement (5.3L Engine w/RPO HP2). 25. Install the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 26. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, The ECM, PCM or TCM will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. Reset the TAP values. Refer to Transmission Adaptive Functions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3023 Fluid Pressure Sensor/Switch: Service and Repair 4L80-E/4L85-E - Automatic Transmission Valve Body and Pressure Switch Replacement Tools Required ^ J 25025-5 Dial Indicator Mounting Post - M6 X 1.00 ^ J 36850 Transjel(r) Lubricant Removal Procedure 1. Ensure that removal of the valve body is necessary before proceeding. ^ Important: The following components can be serviced without removing the valve body: The 2-3 solenoid (1) ^ The internal wiring harness (2) ^ The 1-2 shift solenoid (3) ^ The transmission fluid temperature sensor (4) ^ The transmission fluid pressure manual valve position switch (5) ^ The pressure control solenoid (6) ^ The torque converter clutch pulse width modulation (TCC PWM) solenoid (7) 2. Remove the fluid level indicator. 3. Remove the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 4. Disconnect the internal wire harness from the transmission fluid pressure (TFP) manual valve position switch. Important: Use care not to loose the 5 O-rings that are located between the TFP manual valve position switch and the valve body. 5. Remove the valve body bolts (1) that retain the (TFP) manual valve position switch (2). 6. Remove the TFP manual valve position switch. 7. Disconnect the internal wiring harness electrical connectors from the remaining valve body electrical components. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3024 8. Remove the lube oil pipe bolt (6) and retainer (7). 9. Remove the lube oil pipe (5). 10. Remove the manual shaft detent spring bolt and spring (3). 11. Important: Keep the control valve body level when lowering it from the vehicle. This will prevent the loss of checkballs located in the valve body passages. Remove the remaining valve body bolts. 12. Carefully lower the valve body from the transmission. Use care not to drop the manual shaft valve. 13. Remove the valve body (2) which includes the following: ^ The accumulator housing (1) ^ The valve body to the spacer plate gasket ^ The spacer plate 14. Remove the manual valve (1) from the valve body. 15. Inspect the manual valve for nicks and burrs. 16. Remove the spacer plate to case gasket (2) from the case. The gasket may stick to the spacer plate. 17. Remove the PWM screen (1) from the case passage. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3025 18. Remove the manual 2-1 band servo (1). 19. Remove the servo piston cushion spring (2). 20. Remove the manual 2-1 band servo piston pin retainer ring (4). 21. Remove the manual 2-1 band servo piston pin (1). 22. Remove the manual 2-1 band servo piston seal (2). 23. Important: Do not use a magnet in order to remove the checkballs. Using a magnet to remove the checkballs may magnetize the checkballs, causing metal particles to stick. Remove the 8 checkballs (9 for some models). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3026 1. Install the 8 checkballs (9 for some models) into the transmission case passages. ^ The checkball marked as number 2, is used on RCP, RDP, ZJP and ZLP models only ^ To hold the checkballs in place, use the J 36850. 2. Install the PWM screen into the valve body. 3. Install a new manual 2-1 band servo piston seal (2) onto the manual 2-1 band servo piston (3). 4. Install the manual 2-1 band servo piston pin (1) into the manual 2-1 band servo piston (3). 5. Install the manual 2-1 band servo piston pin retainer ring (4). 6. Install the manual 2-1 band servo piston cushion spring (2). 7. Important: Make certain that the tapered end of the manual 2-1 band servo piston pin contacts the manual 2-1 band. Install the manual 2-1 band servo piston (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3027 8. Install the manual valve (1) into the valve body. 9. To aid in alignment and assembly, install J 25025-5. 10. Install the valve body gasket (6). 11. Install the valve body (5). Attach the manual valve to the detent lever while installing the valve body. 12. Install the transmission fluid pressure manual valve position switch (2). 13. Notice: Refer to Fastener Notice. Install the transmission fluid pressure manual valve position switch bolts (1) finger tight. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3028 14. Tighten the bolts in the order shown. Tighten the bolts to 11 Nm (97 inch lbs.). 15. Remove J 25025-5. 16. Install the manual shaft detent roller and spring (3) and bolts. 17. Install the 2 wiring harness clips (1) and bolts (2). 18. Install the wiring harness clip (1) and bolts (2). 19. Install the lube oil pipe (5) with the short end into the valve body. 20. Install the lube oil pipe retainer (7) and the bolt (6). 21. Install the valve body bolts and tighten in the order shown. Tighten the bolts to 11 Nm (97 inch lbs.). 22. Install the remaining valve body bolts. Tighten the bolts to 11 Nm (97 inch lbs.). 23. Connect the internal wiring harness to the valve body electrical components. 24. Install the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 25. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM), or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. Reset the TAP values. Refer to Transmission Adaptive Functions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3029 Fluid Pressure Sensor/Switch: Service and Repair Allison - Automatic Transmission Pressure Switch Manifold Replacement Removal Procedure 1. Important: Individual pressure switches cannot be replaced. When any pressure switch needs replacing, the entire assembly must be replaced. Important: The modulated main pressure (MAIN MOD) solenoid has been removed for clarity. Remove the oil pan and transmission internal oil filter. Refer to Oil Pan Replacement. Caution: Refer to Battery Disconnect Caution in Service Precautions. 2. Disconnect the internal wiring harness connector from the transmission fluid pressure (TFP) switch (2). 3. Remove six bolts (1). Remove the TFP switch (2). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Fluid Pressure Sensor/Switch, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3030 1. Notice: Refer to Fastener Notice in Service Precautions. Place the new TFP manifold assembly (2) in position and install one bolt (1) in a recessed location to hold in position. Start the remaining five bolts (1) in recessed locations and tighten the bolts by hand. Torque the bolts to 12 Nm (108 inch lbs.). 2. Connect the internal wiring harness connector to the TFP switch. 3. Install the oil pan and transmission internal oil filter. Refer to Oil Pan Replacement. 4. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > Customer Interest for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Transmission Mode Switch: Customer Interest A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > Customer Interest for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 3039 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > Customer Interest for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 3040 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > Customer Interest for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 3041 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Transmission Mode Switch: All Technical Service Bulletins A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 3047 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 3048 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Transmission Mode Switch: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 3049 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Technical Service Bulletins > Page 3050 Transmission Mode Switch: Locations Automatic Transmission Electronic Component Views Vehicle Speed Sensor (VSS) 1 - Fuel Lines 2 - C350 3 - Transfer Case 4 - Propshaft Speed Sensor - Rear 5 - VSS Sensor 6 Propshaft Speed Sensor - Front 7 - Transfer Case Encoder Motor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission Transmission Mode Switch: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Tow/Haul Switch, Column Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission > Page 3053 Transmission Mode Switch: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Related Connector End Views Tow/Haul Switch, Column Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Mode Switch, A/T > Component Information > Diagrams > Page 3054 Transmission Mode Switch: Service and Repair Transmission Internal Mode Switch Replacement Important: The Internal Mode Switch (IMS) is mounted to the manual shift shaft detent lever as an assembly. The components of the detent lever/IMS assembly cannot be individually serviced. When the IMS needs replacing, the entire assembly must be replaced. Replace the IMS. Refer to Manual Shift Shaft, Detent Lever, and Position Switch Assembly Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70-E 2 - Park/Neutral Position (PNP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range Switch, Wiring Harness Side Transmission Range Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3060 Transmission Position Switch/Sensor: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range (TR) Switch Connector, Wiring Harness Side Transmission Range (TR) Switch Connector, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Adjustments 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the PNP switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the park/neutral position (PNP) switch bolts. 4. With the vehicle in the neutral (N) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine off. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3063 Transmission Position Switch/Sensor: Adjustments 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the shift lever in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the PNP switch bolts. 4. With the vehicle in neutral (N), rotate the PNP switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the manual shaft lever nut. 7. Remove the transmission control lever from the manual shaft. 8. Remove the PNP switch bolts. 9. Remove the PNP switch from the manual shaft. If the PNP switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3066 1. Install the PNP switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a NEW PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. 4. Install J 41364-A onto the PNP switch. Ensure that the two slots on the switch where the manual shaft is inserted are lined up with the lower two tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the transmission control lever to the manual shaft with the nut. Tighten the nut to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3067 8. Connect the PNP switch electrical connector (2). 9. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 10. Lower the vehicle. 11. Check the switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3068 Transmission Position Switch/Sensor: Service and Repair 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the range selector cable end (2) from the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3069 7. Remove the control lever to the manual shaft nut. 8. Remove the control lever from the manual shaft. 9. Remove the PNP switch bolts. 10. Remove the PNP switch from the manual shaft. If the PNP switch does not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the PNP switch to the manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a new PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3070 4. Position the J 41364-A onto the PNP switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate J 41364-A until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove J 41364-A from the PNP switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the control lever to the manual shaft with the nut. 8. Install the manual shaft nut. Tighten the nut to 25 Nm (18 ft. lbs.). 9. Install the range selector cable end (2) to the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3071 10. Connect the PNP switch electrical connector (2). 11. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 12. Lower the vehicle. 13. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3072 Transmission Position Switch/Sensor: Service and Repair Allison - Automatic Transmission Manual Shift Shaft, Detent Lever, and Position Switch Assembly Replacement Removal Procedure 1. Remove the control valve assembly from the transmission. Refer to Control Valve Body Replacement. 2. Important: The detent lever/IMS retaining bolt contains patch lock material on the threads. Do not reuse the retaining bolt. Remove the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit and discard the retaining bolt. 3. Notice: DO NOT mar the transmission case surface around the spherical pin when removing or installing the spherical pin. An unmarred surface is required to maintain the seal between the control valve assembly and the transmission case. Notice: DO NOT twist the spherical pin when removing the pin from the transmission case. Damage to the transmission case can occur. Place a protective plate on the transmission case surface around the spherical pin (3). Remove the spherical pin (3) from the transmission case. 4. Slide the manual shift shaft (5) through the detent lever/IMS assembly (4) and through the manual shift shaft seal. 5. Rotate the detent lever/IMS assembly to disengage the park pawl apply assembly (2). Remove the detent lever/IMS assembly (4). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3073 1. Place the new detent lever/IMS assembly (4) in position in the transmission case. Rotate the detent lever/IMS assembly to engage the park pawl apply assembly (2). Reinstall the manual shift shaft (5) through the manual shift shaft seal and through the detent lever/IMS assembly (4). 2. Notice: Refer to Fastener Notice in Service Precautions. Push the manual shift shaft (5) into the final position in the transmission case. 3. Install the spherical pin (3) into the transmission case that retains the manual shift shaft. 4. Install the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit. Tighten the bolt (1) to 10 Nm (92 inch lbs.). 5. Install the control valve assembly. Refer to Control Valve Body Replacement. 6. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Locations > 4L80-E/4L85-E - Automatic Transmission Transmission Speed Sensor: Locations 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Electronic Component Views Automatic Transmission Internal Electronic Components (4L80-E) 22a - Automatic Transmission (AT) Input (Shaft) Speed Sensor (ISS) Assembly 22b - Automatic Transmission (AT) Output (Shaft) Speed Sensor (OSS) Assembly 34 - Automatic Transmission Fluid Temperature (TFT) Sensor 40 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 311 - 2-3 Shift Solenoid (SS) Valve Assembly 313 - 1-2 Shift Solenoid (SS) Valve Assembly 320 - Pressure Control (PC) Solenoid Valve Assembly 323 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Locations > 4L80-E/4L85-E - Automatic Transmission > Page 3078 Transmission Speed Sensor: Locations Allison - Automatic Transmission Automatic Transmission Electronic Component Views Engine Harness to Transmission 1 - Turbine Sensor Harness Connector 2 - Power Take-Off (PTO) Connector 3 - Output Speed Sensor Harness Connector 4 - Transfer Case Selector Shift Control Switch 5 - Transmission Connector Harness 6 - Allison Transmission 7 - Engine Harness 8 - Automatic Transmission Input Shaft Speed (ISS) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Locations > Page 3079 Transmission Speed Sensor: Diagrams Automatic Transmission Related Connector End Views Automatic Transmission Input Speed Sensor (AT ISS) Automatic Transmission Input Speed Sensor (AT ISS) Automatic Transmission Output Speed Sensor (OSS) Automatic Transmission Output Speed Sensor (OSS) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Service and Repair > 4L80-E/4L85-E Automatic Transmission Transmission Speed Sensor: Service and Repair 4L80-E/4L85-E - Automatic Transmission Input Shaft Speed Sensor Replacement Input Shaft Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the input speed sensor electrical connector (1). 3. Remove the input speed sensor bolt. 4. Remove the input speed sensor (1). 5. Inspect the input speed sensor (1) for any evidence of damage. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Service and Repair > 4L80-E/4L85-E Automatic Transmission > Page 3082 1. Lubricate the input speed sensor seal with automatic transmission fluid. 2. Install the input speed sensor (1). Notice: Refer to Fastener Notice. 3. Install the input speed sensor bolt. Tighten the bolt to 11 Nm (96 inch lbs.). 4. Connect the input speed sensor electrical connector (1). 5. Lower the vehicle. Output Shaft Speed Sensor Replacement Output Shaft Speed Sensor Replacement Removal Procedure Important: This procedure is for 2-wheel drive (2WD) vehicles only. If the vehicle is equipped with 4-wheel drive (4WD), the output speed sensor is located on the transfer case. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Service and Repair > 4L80-E/4L85-E Automatic Transmission > Page 3083 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the output speed sensor (2) electrical connector. 3. Remove the output speed sensor bolt. 4. Remove the output speed sensor (2). 5. Inspect the output speed sensor (2) for any evidence of damage. Installation Procedure 1. Lubricate the output speed sensor seal with automatic transmission fluid. 2. Install the output speed sensor (2). Notice: Refer to Fastener Notice. 3. Install the output speed sensor bolt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Service and Repair > 4L80-E/4L85-E Automatic Transmission > Page 3084 Tighten the bolt to 11 Nm (96 inch lbs.). 4. Connect the output speed sensor (2) electrical connector. 5. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Service and Repair > 4L80-E/4L85-E Automatic Transmission > Page 3085 Transmission Speed Sensor: Service and Repair Allison - Automatic Transmission Speed Sensor Replacement Removal Procedure 1. Caution: Refer to Battery Disconnect Caution in Service Precautions. Be sure the vehicle ignition is turned off. 2. Disconnect the external wiring harness from the speed sensor. 3. Remove the bolt (1) from the speed sensor and carefully remove the speed sensor (2). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Speed Sensor, A/T > Component Information > Service and Repair > 4L80-E/4L85-E Automatic Transmission > Page 3086 1. Important: Do not rotate the sensor in its retaining bracket. Changing the sensor/bracket orientation may cause improper operation. Install a new a O-ring on the speed sensor (2). Lubricate the O-ring with clean transmission fluid. 2. Install the new speed sensor (2) into the speed sensor bore. Align the hole in the retaining bracket with the bolt hole in the speed sensor boss. 3. Notice: Refer to Fastener Notice in Service Precautions. Install the speed sensor bolt (1). Tighten bolt to 12 Nm (108 inch lbs.). 4. Reconnect the external wiring harness to the speed sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Temperature Sensor/Switch, A/T > Component Information > Specifications > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Temperature Sensor/Switch: Specifications 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Fluid Temperature Sensor Specifications Transmission Fluid Temperature Sensor Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Temperature Sensor/Switch, A/T > Component Information > Specifications > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3091 Transmission Fluid Temperature Sensor Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Temperature Sensor/Switch, A/T > Component Information > Specifications > Page 3092 Transmission Temperature Sensor/Switch: Locations Automatic Transmission Electronic Component Views Automatic Transmission Internal Electronic Components (4L80-E) 22a - Automatic Transmission (AT) Input (Shaft) Speed Sensor (ISS) Assembly 22b - Automatic Transmission (AT) Output (Shaft) Speed Sensor (OSS) Assembly 34 - Automatic Transmission Fluid Temperature (TFT) Sensor 40 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 311 - 2-3 Shift Solenoid (SS) Valve Assembly 313 - 1-2 Shift Solenoid (SS) Valve Assembly 320 - Pressure Control (PC) Solenoid Valve Assembly 323 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - A/T > Transmission Temperature Sensor/Switch, A/T > Component Information > Specifications > Page 3093 Transmission Temperature Sensor/Switch: Diagrams Automatic Transmission Internal Connector End Views Transmission Fluid Temperature (TFT) Sensor, Wiring Harness Side Transmission Fluid Temperature (TFT) Sensor, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Transmission and Drivetrain > Sensors and Switches - Transfer Case > Speed Sensor, Transfer Case > Component Information > Technical Service Bulletins > Drivetrain - Updated Transfer Case Speed Sensor Conn. Speed Sensor: Technical Service Bulletins Drivetrain - Updated Transfer Case Speed Sensor Conn. Bulletin No.: 06-04-21-001 Date: May 17, 2006 INFORMATION Subject: Updated Transfer Case Connector Service Kit Now Available For Transfer Case Speed Sensor Wire Harness Connector that Comes Loose Or Connector Retainer Clip Breaks Models: 2007 and Prior GM Light Duty Trucks 2007 and Prior HUMMER H2, H3 2005-2007 Saab 9-7X with Four-Wheel Drive or All-Wheel Drive Technicians may find that when the transfer case speed sensor wire harness connector is removed, the connector lock flexes/bends and does not return to the original position. The transfer case speed sensor wire harness connector then has no locking device. On older vehicles, the plastic connector retainer becomes brittle and the clip may break as soon as it is flexed. In the past, the only service fix was to install a wire harness connector service pack, P/N 88987183. This repair procedure involved splicing a new service connector with an integral connector lock. This connector service kit is of the same design and was still prone to failure over time. A new connector service repair kit is now available, P/N 15306187, that is an updated design. This new kit should be used whenever the speed sensor wire harness connector requires replacement. Parts Information Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Windows and Glass > Power Window Switch > Component Information > Diagrams Power Window Switch: Diagrams Window Switch - Left Rear (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Windows and Glass > Power Window Switch > Component Information > Diagrams > Page 3103 Window Switch - Right Rear (Crew Cab Only) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Windows and Glass > Power Window Switch > Component Information > Diagrams > Page 3104 Power Window Switch: Service and Repair REAR SIDE DOOR WINDOW SWITCH REPLACEMENT REMOVAL PROCEDURE 1. Use a small flat-bladed tool in order to carefully pry the door power window switch from the door trim panel. 2. Disconnect the electrical connector from the switch. INSTALLATION PROCEDURE 1. Connect the electrical connector to the switch. 2. Install the switch to the door trim panel by pressing the switch into place until fully seated. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Wiper and Washer Systems > Washer Fluid Level Switch > Component Information > Locations Windshield Wiper Motor Module, Washer Pump And Level Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Wiper and Washer Systems > Washer Fluid Level Switch > Component Information > Locations > Page 3109 Washer Fluid Level Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Sensors and Switches > Sensors and Switches - Wiper and Washer Systems > Washer Fluid Level Switch > Component Information > Locations > Page 3110 Washer Fluid Level Switch: Service and Repair WASHER SOLVENT CONTAINER LEVEL SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the washer solvent container. 2. Using a small flat-bladed tool, remove the washer solvent container level sensor (1) and seal (2) from the container. INSTALLATION PROCEDURE 1. Position the washer solvent container level sensor (1) and the seal (2) to the container by pressing in until fully seated. 2. Install the washer solvent container. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications Alignment: Technical Service Bulletins Steering/Suspension - Wheel Alignment Specifications WARRANTY ADMINISTRATION Bulletin No.: 05-03-07-009C Date: December 09, 2010 Subject: Wheel Alignment Specifications, Requirements and Recommendations for GM Vehicles Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks Supercede: This bulletin is being extensively revised to provide technicians and warranty administrators with an all inclusive guide for wheel alignments. PLEASE FAMILIARIZE YOURSELF WITH THESE UPDATES BEFORE PERFORMING YOUR NEXT GM WHEEL ALIGNMENT SERVICE. Please discard Corporate Bulletin Number 05-03-07-009B (Section 03 - Suspension). Purpose The purpose of this bulletin is to provide retail, wholesale and fleet personnel with General Motors' warranty service requirements and recommendations for customer concerns related to wheel alignment. For your convenience, this bulletin updates and centralizes all of GM's Standard Wheel Alignment Service Procedures, Policy Guidelines and bulletins on wheel alignment warranty service. Important PLEASE FAMILIARIZE YOURSELF WITH THESE UPDATES BEFORE PERFORMING YOUR NEXT GM WHEEL ALIGNMENT SERVICE. The following five (5) key steps are a summary of this bulletin and are REQUIRED in completing a successful wheel alignment service. 1. Verify the vehicle is in an Original Equipment condition for curb weight, tires, wheels, suspension and steering configurations. Vehicles modified in any of these areas are not covered for wheel alignment warranty. 2. Review the customer concern relative to "Normal Operation" definitions. 3. Verify that vehicle is within the "Mileage Policy" range. 4. Document wheel alignment warranty claims appropriately for labor operations E2000 and E2020. The following information must be documented or attached to the repair order: - Customer concern in detail - What corrected the customer concern? - If a wheel alignment is performed: - Consult SI for proper specifications. - Document the "Before" AND "After" wheel alignment measurements/settings. - Completed "Wheel Alignment Repair Order Questionnaire" (form attached to this bulletin) 5. Use the proper wheel alignment equipment (preferred with print-out capability), process and the appropriate calibration maintenance schedules. Important If it is determined that a wheel alignment is necessary under warranty, use the proper labor code for the repair. E2000 for Steering Wheel Angle and/or Front Toe set or E2020 for Wheel Alignment Check/Adjust includes Caster, Camber and Toe set (Wheel alignment labor time for other component repairs is to be charged to the component that causes a wheel alignment operation.). The following flowchart is to help summarize the information detailed in this bulletin and should be used whenever a wheel alignment is performed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3116 Verify Original Equipment Condition of the Vehicle - Verify that Original Equipment Tires and Wheels or Official GM Accessory Tires and Wheels are on the vehicle. - Verify that aftermarket suspension "Lift" or "Lowering" Kits or other suspension alterations have NOT been done to the vehicle. - Check for accidental damage to the vehicle; for example, severe pothole or curb impacts, collision damage that may have affected the wheel alignment of the vehicle; e.g., engine cradles, suspension control arms, axles, wheels, wheel covers, tires may show evidence of damage/impact. - Check to be sure vehicle has seen "Normal Use" rather than abuse; e.g., very aggressive driving may show up by looking at the tires and condition of the vehicle. - Check for other additional equipment items that may significantly affect vehicle mass such as large tool boxes, campers, snow plow packages (without the snowplow RPO), etc., especially in trucks and cutaway/incomplete vehicles. Significant additional mass can affect trim height and wheel alignment of the vehicle and may necessitate a customer pay wheel alignment when placed semi-permanently in the vehicle (Upfitter instructions are to realign the vehicle after placement of these types of items. (This typically applies to trucks and incomplete vehicles that can be upfit with equipment such as the above.) Customer Concerns, "Normal Operation" Conditions and "Mileage Policy" Possible Concerns The following are typical conditions that may require wheel alignment warranty service: 1. Lead/Pull: defined as "at a constant highway speed on a typical straight road, the amount of effort required at the steering wheel to maintain the vehicle's straight heading." Important Please evaluate for the condition with hands-on the steering wheel. Follow the "Vehicle Leads/Pulls" diagnostic tree located in SI to determine the cause of a lead/pull concern. Lead/Pull concerns can be due to road crown or road slope, tires, wheel alignment or even in rare circumstances a steering gear issue. Lead/pull concerns due to road crown are considered "Normal Operation" and are NOT a warrantable condition -- the customer should be advised that this is "Normal Operation." Important Some customers may comment on a "Lead/Pull" when they hold the steering wheel in a level condition. If so, this is more likely a "steering wheel angle" concern because the customer is "steering" the vehicle to obtain a "level" steering wheel. 2. Steering wheel angle to the left or right (counter-clockwise or clockwise, respectively): Defined as the steering wheel angle (clocking) deviation from "level" while maintaining a straight heading on a typical straight road. 3. Irregular or Premature tire wear: Slight to very slight "feathering" or "edge" wear on the shoulders of tires is NOT considered unusual and should even out with a tire rotation; if the customer is concerned about a "feathering" condition of the tires, the customer could be advised to rotate the tires earlier than the next scheduled mileage/maintenance interval (but no later than the next interval). Be sure to understand the customer's driving habits as this will also heavily influence the tire wear performance; tire wear from aggressive or abusive driving habits is NOT a warrantable condition. Important Slight or mild feathering, cupping, edge or heel/toe wear of tire tread shoulders is "normal" and can show up very early in a tire/vehicle service mileage; in fact, some new tires can show evidence of feathering from the factory. These issues do NOT affect the overall performance and tread life of the tire. Dealer personnel should always check the customer's maintenance records to ensure that tire inflation pressure is being maintained to placard and that the tires are being rotated (modified-X pattern) at the proper mileage intervals. Wheel alignments are NOT to be performed for the types of "Normal" Tire Feathering shown in Figures 1-4 below. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3117 Figure 1: Full Tread View - "NORMAL" Tire "Feathering" Wear on the Shoulder/Adjacent/Center Ribs Figure 2: Tire Shoulder View Example 1 - "NORMAL" Tire "Feathering" Wear on the Shoulder Figure 3: Tire Shoulder View Example 2 - "NORMAL" Tire "Feathering" Wear Figure 4: Detail Side View of Tire Shoulder Area - "NORMAL" Tire "Feathering" Wear Important When a wheel alignment is deemed necessary for tire wear, be sure to document on the repair order, in as much detail as possible, the severity and type of tire wear (e.g., severe center wear or severe inside or outside shoulder wear) and the position of the tire on the vehicle (RF, LF, LR, RR). Please note the customer's concern with the wear such as, noise, appearance, wear life, etc. A field product report with pictures of the tire wear condition is recommended. Refer to Corporate Bulletin Number 02-00-89-002J and #07-00-89-036C. 4. Other repairs that affect wheel alignment; e.g., certain component replacement such as suspension control arm replacement, engine cradle adjustment/replace, steering gear replacement, steering tie rod replace, suspension strut/shock, steering knuckle, etc. may require a wheel alignment. Important If other components or repairs are identified as affecting the wheel alignment, policy calls for the wheel alignment labor time to be charged to the replaced/repaired component's labor operation time rather than the wheel alignment labor operations. Important Vibration type customer concerns are generally NOT due to wheel alignment except in the rare cases; e.g., extreme diagonal wear across the tread. In general, wheel alignments are NOT to be performed as an investigation/correction for vibration concerns. "Normal Operation" Conditions Vehicle Lead/Pull Due to Road Crown or Slope: As part of "Normal Operation," vehicles will follow side-to-side or left to right road crown or slope. Be sure to verify from the customer the types of roads they are driving as they may not recognize the influence of road crown on vehicle lead/pull and steering wheel angle. If a vehicle requires significant steering effort to prevent it from "climbing" the road crown there may be an issue to be looked into further. Important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3118 A wheel alignment will generally NOT correct vehicles that follow the road crown since this is within "Normal Operation." Mileage Policy The following mileage policy applies for E2020 and E2000 labor operations: Note Wheel Alignment is NOT covered under the New Vehicle Limited Warranty for Express and Savana Cutaway vehicles as these vehicles require Upfitters to set the wheel alignment after completing the vehicles. - 0-800 km (0-500 mi): E2000/E2020 claims ONLY allowed with Call Center Authorization. Due to the tie down during shipping, the vehicle's suspension requires some time to reach normal operating position. For this reason, new vehicles are generally NOT to be aligned until they have accumulated at least 800 km (500 mi). A field product report should accompany any claim within this mileage range. - 801-12,000 km (501-7,500 mi): - If a vehicle came from the factory with incorrect alignment settings, any resulting off-angle steering wheel, lead/pull characteristics or the rare occurrence of excessive tire wear would be apparent early in the life of the vehicle. The following policy applies: - Vehicles 100% Factory Set/Measured for Caster/Camber/Toe - Escalade/ESV/EXT, Tahoe/Suburban, Yukon/XL/Denali, Silverado/Sierra, Express/Savana, Corvette and Colorado/Canyon: E2000/E2020 Claims: Call Center Authorization Required - All Vehicles NOT 100% Factory Set/Measured for Caster/Camber/Toe as noted above: E2000/E2020 Claims: Dealer Service Manager Authorization Required - 12,001 km and beyond (7,501 miles and beyond): During this period, customers are responsible for the wheel alignment expense or dealers may provide on a case-by case basis a one-time customer enthusiasm claim up to 16,000 km (10,000 mi). In the event that a defective component required the use of the subject labor operations, the identified defective component labor operation will include the appropriate labor time for a wheel alignment as an add condition to the component repair. Important Only one wheel alignment labor operation claim (E2000 or E2020) may be used per VIN. Warranty Documentation Requirements When a wheel alignment service has been deemed necessary, the following items will need to be clearly documented on/with the repair order: - Customer concern in detail - What corrected the customer concern? - If a wheel alignment is performed: - Consult SI for proper specifications. - Document the "Before" AND "After" wheel alignment measurements/settings. - Completed "Wheel Alignment Repair Order Questionnaire" (form attached to this bulletin) 1. Document the customer concern in as much detail as possible on the repair order and in the warranty administration system. Preferred examples: - Steering wheel is off angle in the counterclockwise direction by approximately x degrees or clocking position. - Vehicle lead/pulls to the right at approximately x-y mph. Vehicle will climb the road crown. Severe, Moderate or Slight. - RF and LF tires are wearing on the outside shoulders with severe feathering. Important In the event of a lead/pull or steering wheel angle concern, please note the direction of lead/pull (left or right) or direction of steering wheel angle (clockwise or counterclockwise) on the repair order and within the warranty claim verbatim. Important In the event of a tire wear concern, please note the position on the vehicle and where the wear is occurring on the tire; i.e., the RF tire is wearing on the inside shoulder. 2. Document the technician's findings on cause and correction of the issue. Examples: - Reset LF toe from 0.45 degrees to 0.10 degrees and RF toe from -0.25 degrees to 0.10 degrees to correct the steering wheel angle from 5 degrees counterclockwise to 0 degrees. - Reset LF camber from 0.25 degrees to -0.05 degrees to correct the cross-camber condition of +0.30 degrees to 0.00 degrees on the vehicle. - Front Sum toe was found to be 0.50 degrees, reset to 0.20 degrees. 3. Print-out the "Before" and "After" wheel alignment measurements/settings and attach them to the Repair Order or if print-out capability is not Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3119 available, measurements may also be clearly and legibly handwritten into the Wheel Alignment Repair Order Questionnaire attached to this bulletin. 4. Attach the Wheel Alignment Repair Order Questionnaire below along with the print-out of "Before" and "After" wheel alignment measurements to the Repair Order and retain for use by GM. Wheel Alignment Equipment and Process Wheel alignments must be performed with a quality machine that will give accurate results when performing checks. "External Reference" (image-based camera technology) is preferred. Please refer to Corporate Bulletin Number 05-00-89-029B: General Motors Dealership Critical Equipment Requirements and Recommendations. Requirements: - Computerized four wheel alignment system. - Computer capable of printing before and after alignment reports. - Computer capable of time and date stamp printout. - Racking system must have jacking capability - Racking system must be capable of level to 1.6 mm (1/16 in) - Appropriate wheel stops and safety certification - Built-in turn plates and slip plates - Wheel clamps capable of attaching to 20" or larger wheels - Racking capable of accepting any GM passenger car or light duty truck - Operator properly trained and ASE-certified (U.S. only) in wheel alignment Recommendations: Racking should have front and rear jacking capability. Equipment Maintenance and Calibration: Alignment machines must be regularly calibrated in order to give correct information. Most manufacturers recommend the following: - Alignment machines with "internal reference" sensors should be checked (and calibrated, if necessary) every six months. - Alignment machines with "external reference" (image-based camera technology) should be checked (and calibrated, if necessary) once a year. - Racks must be kept level to within 1.6 mm (1/16 in). - If any instrument that is part of the alignment machine is dropped or damaged in some way, check the calibration immediately. Check with the manufacturer of your specific equipment for their recommended service/calibration schedule. Wheel Alignment Process When performing wheel alignment measurement and/or adjustment, the following steps should be taken: Preliminary Steps: 1. Verify that the vehicle has a full tank of fuel (compensate as necessary). 2. Inspect the wheels and the tires for damage. 3. Inspect the tires for the proper inflation and irregular tire wear. 4. Inspect the wheel bearings for excessive play. 5. Inspect all suspension and steering parts for looseness, wear, or damage. 6. Inspect the steering wheel for excessive drag or poor return due to stiff or rusted linkage or suspension components. 7. Inspect the vehicle trim height. 8. Compensate for frame angle on targeted vehicles (refer to Wheel Alignment Specifications in SI). Satisfactory vehicle operation may occur over a wide range of alignment angles. However, if the wheel alignment angles are not within the range of specifications, adjust the wheel alignment to the specifications. Refer to Wheel Alignment Specifications in SI. Give consideration to excess loads, such as tool boxes, sample cases, etc. Follow the wheel alignment equipment manufacturer's instructions. Measure/Adjust: Important Prior to making any adjustments to wheel alignment on a vehicle, technicians must verify that the wheel alignment specifications loaded into their wheel alignment machine are up-to-date by comparing these to the wheel alignment specifications for the appropriate model and model year in SI. Using incorrect and/or outdated specifications may result in unnecessary adjustments, irregular and/or premature tire wear and repeat customer concerns Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3120 Important When performing adjustments to vehicles requiring a 4-wheel alignment, set the rear wheel alignment angles first in order to obtain proper front wheel alignment angles. Perform the following steps in order to measure the front and rear alignment angles: 1. Install the alignment equipment according to the manufacturer's instructions. 2. Jounce the front and the rear bumpers 3 times prior to checking the wheel alignment. 3. Measure the alignment angles and record the readings. If necessary, adjust the wheel alignment to vehicle specification and record the before and after measurements. Refer to Wheel Alignment Specifications in SI. Important Technicians must refer to SI for the correct wheel alignment specifications. SI is the only source of GM wheel alignment specifications that is kept up-to-date throughout the year. Test drive vehicle to ensure proper repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3121 Frame Angle Measurement (Express / Savana Only) ........ Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Technical Service Bulletins > Steering/Suspension - Wheel Alignment Specifications > Page 3122 What corrected the customer concern and was the repair verified? Please Explain: ............. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Fastener Tightening Specifications Alignment: Specifications Fastener Tightening Specifications Fastener Tightening Specifications Fastener Tightening Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Fastener Tightening Specifications > Page 3125 Alignment: Specifications Trim Height Specifications Trim Height Specifications Trim Height Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Fastener Tightening Specifications > Page 3126 Alignment: Specifications Wheel Alignment Specifications Wheel Alignment Specifications Wheel Alignment Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Page 3127 Alignment: Description and Operation Caster Description Caster Description Caster is the tilting of the uppermost point of the steering axis either forward or backward, when viewed from the side of the vehicle. A backward tilt is positive (+) and a forward tilt is negative (-). Caster influences directional control of the steering but does not affect the tire wear. Caster is affected by the vehicle height, therefore it is important to keep the body at its designed height. Overloading the vehicle or a weak or sagging rear spring will affect caster. When the rear of the vehicle is lower than its designated trim height, the front suspension moves to a more positive caster. If the rear of the vehicle is higher than its designated trim height, the front suspension moves to a less positive caster. With too little positive caster, steering may be touchy at high speed and wheel returnability may be diminished when coming out of a turn. If one wheel has more positive caster than the other, that wheel will pull toward the center of the vehicle. This condition will cause the vehicle to pull or lead to the side with the least amount of positive caster. Camber Description Camber Description Camber is the tilting of the wheels from the vertical when viewed from the front of the vehicle. When the wheels tilt outward at the top, the camber is positive (+). When the wheel tilts inward at the top, the camber is negative (-). The amount of tilt is measured in degrees from the vertical. Camber settings influence the directional control and the tire wear. Too much positive camber will result in premature wear on the outside of the tire and cause excessive wear on the suspension parts. Too much negative camber will result in premature wear on the inside of the tire and cause excessive wear on the suspension parts. Unequal side-to-side camber of 1 degree or more will cause the vehicle to pull or lead to the side with the most positive camber. Toe Description Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Page 3128 Toe Description Toe is a measurement of how much the front and/or rear wheels are turned in or out from a straight-ahead position. When the wheels are turned in, toe is positive (+). When the wheels are turned out, toe is negative (-). The actual amount of toe is normally only a fraction of a degree. The purpose of toe is to ensure that the wheels roll parallel. Toe also offsets the small deflections of the wheel support system that occur when the vehicle is rolling forward. In other words, with the vehicle standing still and the wheels set with toe-in, the wheels tend to roll parallel on the road when the vehicle is moving. Improper toe adjustment will cause premature tire wear and cause steering instability. Setback Description Setback applies to both the front and the rear wheels. Setback is the amount that one wheel may be aligned behind the other wheel. Setback may be the result of a road hazard or a collision. The first clue is a caster difference from side-to-side of more than 1 degree. Thrust Angles Description Thrust Angles Description The front wheels aim or steer the vehicle. The rear wheels control tracking. This tracking action relates to the thrust angle (3). The thrust angle is the path that the rear wheels take. Ideally, the thrust angle is geometrically aligned with the body centerline (2). In the illustration, toe-in is shown on the left rear wheel, moving the thrust line (1) off center. The resulting deviation from the centerline is the thrust angle. If the thrust angle is not set properly the vehicle may "dog track", the steering wheel may not be centered or it could be perceived as a bent axle. Thrust angle can be checked during a wheel alignment. Positive thrust angle means the thrust line is pointing to the right hand side (RHS) of the vehicle. Negative thrust angle means the thrust line is pointing to the left hand side (LHS) of the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Page 3129 If the thrust angle is out of specification, moving the axle to body relationship will change the thrust angle reading. If the vehicle is out in the Positive (+) direction-moving the RHS forward and/or LHS rearward will move the thrust angle towards zero degrees. If the vehicle is out in the Negative (-) direction-moving the RHS rearward and/or LHS forward will move the thrust angle towards zero degrees. Lead/Pull Description At a constant highway speed on a typical straight road, lead/pull is the amount of effort required at the steering wheel to maintain the vehicle's straight path. Important: Vehicles will tend to lead/pull in the direction of the road slope as part of normal operation. Lead/pull is usually caused by the following factors: ^ Road slope ^ Variability in tire construction ^ Wheel alignment (front cross caster and camber) ^ Unbalanced steering gear ^ Electronic Power Steering (EPS) steering position and torque sensors not calibrated correctly, if equipped. Memory Steer Description Memory steer is when the vehicle wants to lead or pull in the direction the driver previously turned the vehicle. Additionally, after turning in the opposite direction, the vehicle will want to lead or pull in that direction. Wander Description Wander is the undesired drifting or deviation of a vehicle to either side from a straight path with hand pressure on the steering wheel. Wander is a symptom of the vehicle's sensitivity to external disturbances, such as road crown and crosswind, and accentuated by poor on-center steering feel. Scrub Radius Description Ideally, the scrub radius is as small as possible. Normally, the SAI angle and the centerline of the tire and the wheel intersect below the road surface, causing a positive scrub radius. With struts, the SAI angle is much larger than the long arm/short arm type of suspension. This allows the SAI angle to intersect the camber angle above the road surface, forming a negative scrub radius. The smaller the scrub radius, the better the directional stability. Installing aftermarket wheels that have additional offset will dramatically increase the scrub radius. The newly installed wheels may cause the centerline of the tires to move further away from the spindle. This will increase the scrub radius. A large amount of scrub radius can cause severe shimmy after hitting a bump. Four-wheel drive vehicles with large tires use a steering damper to compensate for an increased scrub radius. Scrub radius is not directly measurable by the conventional methods. Scrub radius is projected geometrically by engineers during the design phase of the suspension. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Page 3130 Alignment: Testing and Inspection Trim Height Inspection Trim Height Measurements Trim height is a predetermined measurement relating to vehicle ride height. Incorrect trim heights can cause bottoming out over bumps, damage to the suspension components and symptoms similar to wheel alignment problems. Check the trim heights when diagnosing suspension concerns and before checking the wheel alignment. Perform the following before measuring the trim heights: 1. Make sure the vehicle is on a level surface, such as a alignment rack. 2. Remove the alignment rack floating pins. 3. Set the tire pressures to the pressure shown on the certification label. Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. 4. Check the fuel level. Add additional weight if necessary to simulate a full tank. 5. Make sure the rear compartment is empty except for the spare tire. 6. Close the doors and hood. Z Height Measurement Important: Torsion bar models only, the Z height must be adjusted before the alignment. The Z height dimension measurement determines the proper ride height for the front end of the vehicle. Vehicles equipped with torsion bars use a adjusting arm in order to adjust the Z height dimension. Vehicles without torsion bars have no adjustment and could require replacement of suspension components. 1. Important: All dimensions are measured vertical to the ground. Cross vehicle Z heights should be within 12 mm (0.47 inch) to be considered correct. Place hand on the front bumper and jounce the front of the vehicle. Make sure that there is at least 38 mm (1.5 inch) of movement while jouncing. 2. Allow the vehicle to settle into position. 3. Measure from the pivot bolt center line (2) down to the lower corner (5) of the steering knuckle (1) in order to obtain the Z height measurement (4). 4. Repeat the jouncing operation 2 more times for a total of 3 times. 5. Use the highest and the lowest measurements to calculate the average height. 6. The true Z height dimension number is the average of the highest and the lowest measurements. Refer to Trim Height Specifications. Z Height Adjustment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Specifications > Page 3131 1. For vehicles equipped with a torsion bar suspension turn the bolt (1) that contacts the torsion arm clockwise to raise the and counterclockwise to lower the height adjustment. One revolution of the bolt (1) into the nut increases the Z height by approximately 6.0 mm (0.2 inch). 2. For vehicles without torsion bars, replace damaged or worn components as necessary. D Height Measurement Important: There are no specified trim heights specifications on leaf spring vehicles because it is not an adjustable feature. The height of the suspension will depend on the option content of the vehicle as well as the aftermarket equipment that is placed on the vehicle. The measurements are used for comparison only and should be within 15 mm with the vehicle at curb and no accessories. 1. With the vehicle on a flat surface, lift upward on the rear bumper 38 mm (1.5 inch). 2. Allow the vehicle to settle into position. 3. Important: Measure the metal to metal contact points of the rear axle to the frame on the inboard side of the leaf springs. Measure the D height by measuring the distance between the bumper bracket and the top of the rear axle tube. 4. Repeat the jouncing operation 2 more times for a total of 3 times. 5. Use the highest and lowest measurements to calculate the average height. 6. The true D height dimension number is the average of the highest and the lowest measurements. 7. If these measurements are out of specifications, inspect for the following conditions: ^ Sagging front suspension-Refer to Front Coil Springs Replacement or Torsion Bar Replacement (2500 Series). ^ Sagging rear leaf springs-Refer to Leaf Spring Replacement. ^ Improper tire inflation-Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. ^ Improper weight distribution ^ Collision damage Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Service and Repair > Trim Height Inspection Alignment: Service and Repair Trim Height Inspection Trim Height Inspection Trim Height Measurements Trim height is a predetermined measurement relating to vehicle ride height. Incorrect trim heights can cause bottoming out over bumps, damage to the suspension components and symptoms similar to wheel alignment problems. Check the trim heights when diagnosing suspension concerns and before checking the wheel alignment. Perform the following before measuring the trim heights: 1. Make sure the vehicle is on a level surface, such as a alignment rack. 2. Remove the alignment rack floating pins. 3. Set the tire pressures to the pressure shown on the certification label. Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. 4. Check the fuel level. Add additional weight if necessary to simulate a full tank. 5. Make sure the rear compartment is empty except for the spare tire. 6. Close the doors and hood. Z Height Measurement Important: Torsion bar models only, the Z height must be adjusted before the alignment. The Z height dimension measurement determines the proper ride height for the front end of the vehicle. Vehicles equipped with torsion bars use a adjusting arm in order to adjust the Z height dimension. Vehicles without torsion bars have no adjustment and could require replacement of suspension components. 1. Important: All dimensions are measured vertical to the ground. Cross vehicle Z heights should be within 12 mm (0.47 inch) to be considered correct. Place hand on the front bumper and jounce the front of the vehicle. Make sure that there is at least 38 mm (1.5 inch) of movement while jouncing. 2. Allow the vehicle to settle into position. 3. Measure from the pivot bolt center line (2) down to the lower corner (5) of the steering knuckle (1) in order to obtain the Z height measurement (4). 4. Repeat the jouncing operation 2 more times for a total of 3 times. 5. Use the highest and the lowest measurements to calculate the average height. 6. The true Z height dimension number is the average of the highest and the lowest measurements. Refer to Trim Height Specifications. Z Height Adjustment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Service and Repair > Trim Height Inspection > Page 3134 1. For vehicles equipped with a torsion bar suspension turn the bolt (1) that contacts the torsion arm clockwise to raise the and counterclockwise to lower the height adjustment. One revolution of the bolt (1) into the nut increases the Z height by approximately 6.0 mm (0.2 inch). 2. For vehicles without torsion bars, replace damaged or worn components as necessary. D Height Measurement Important: There are no specified trim heights specifications on leaf spring vehicles because it is not an adjustable feature. The height of the suspension will depend on the option content of the vehicle as well as the aftermarket equipment that is placed on the vehicle. The measurements are used for comparison only and should be within 15 mm with the vehicle at curb and no accessories. 1. With the vehicle on a flat surface, lift upward on the rear bumper 38 mm (1.5 inch). 2. Allow the vehicle to settle into position. 3. Important: Measure the metal to metal contact points of the rear axle to the frame on the inboard side of the leaf springs. Measure the D height by measuring the distance between the bumper bracket and the top of the rear axle tube. 4. Repeat the jouncing operation 2 more times for a total of 3 times. 5. Use the highest and lowest measurements to calculate the average height. 6. The true D height dimension number is the average of the highest and the lowest measurements. 7. If these measurements are out of specifications, inspect for the following conditions: ^ Sagging front suspension-Refer to Front Coil Springs Replacement or Torsion Bar Replacement (2500 Series). ^ Sagging rear leaf springs-Refer to Leaf Spring Replacement. ^ Improper tire inflation-Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. ^ Improper weight distribution ^ Collision damage Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Service and Repair > Trim Height Inspection > Page 3135 Alignment: Service and Repair Wheel Alignment Procedures Measuring Wheel Alignment Steering and vibration complaints are not always the result of improper alignment. One possible cause is wheel and tire imbalance. Another possibility is tire lead due to worn or improperly manufactured tires. Lead/pull is defined as follows: at a constant highway speed on a typical straight road, lead/pull is the amount of effort required at the steering wheel to maintain the vehicles straight path. Lead is the vehicle deviation from a straight path on a level road without pressure on the steering wheel. Refer to Radial Tire Lead/Pull Correction in order to determine if the vehicle has a tire lead problem. Before performing any adjustment affecting wheel alignment, perform the following inspections and adjustments in order to ensure correct alignment readings: ^ Inspect the tires for the proper inflation and irregular tire wear. Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label and Tire Diagnosis - Irregular or Premature Wear. ^ Inspect the runout of the wheels and the tires. Refer to Tire and Wheel Runout Specifications. ^ Inspect the wheel bearings for backlash and excessive play. Refer to Wheel Bearings Diagnosis. ^ Inspect the ball joints and tie rod ends for looseness or wear. ^ Inspect the control arms and stabilizer shaft for looseness or wear. ^ Inspect the steering gear for looseness at the frame. Refer to Fastener Tightening Specifications. ^ Inspect the struts/shock absorbers for wear, leaks, and any noticeable noises. Refer to Suspension Strut and Shock Absorber Testing - On Vehicle. ^ Inspect the vehicle trim height. Refer to Trim Height Inspection. ^ Inspect the steering wheel for excessive drag or poor return due to stiff or rusted linkage or suspension components. ^ Inspect the fuel level. The fuel tank should be full or the vehicle should have a compensating load added. Give consideration to excess loads, such as tool boxes, sample cases, etc. If normally carried in the vehicle, these items should remain in the vehicle during alignment adjustments. Give consideration also to the condition of the equipment being used for the alignment. Follow the equipment manufacturer's instructions. Satisfactory vehicle operation may occur over a wide range of alignment settings. However, if the setting exceeds the service allowable specifications, correct the alignment to the service preferred specifications. Refer to Wheel Alignment Specifications. Perform the following steps in order to measure the front and rear alignment angles: 1. Install the alignment equipment according to the manufacturer's instructions. 2. Jounce the front and the rear bumpers 3 times prior to checking the wheel alignment. 3. Measure the alignment angles and record the readings. 4. Important: When performing adjustments to vehicles requiring a 4-wheel alignment, set the rear wheel alignment angles first in order to obtain proper front alignment angles. Adjust alignment angles to vehicle specification, if necessary. Refer to Wheel Alignment Specifications. Front Caster and Camber Adjustment 1. Important: Caster measurements are now relative to ground. The caster and camber adjustments are made by rotating the offset cam bolt and the cam in the slotted frame bracket in order to reposition the control arm. 2. Important: Before adjusting the caster and camber angles, jounce the front bumper 3 times to allow the vehicle to return to normal height. Measure and adjust the caster and the camber with the vehicle at curb height. The front suspension Z dimension is indicated in Trim Heights. Refer to Trim Height Inspection. For an accurate reading, do not push or pull on the tires during the alignment process. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Service and Repair > Trim Height Inspection > Page 3136 3. Determine the caster angle (2). 4. Determine the positive camber (2) or negative camber (3) angle. 5. Remove the pinned adjusting cam insert. Do not reinstall the cam insert. 6. Loosen the upper control arm cam adjustment bolts. 7. Notice: Refer to Fastener Notice. Adjust the caster and the camber angle by turning the cam bolts until the specifications have been met. When the adjustments are complete, hold the cam bolt head in order to ensure the cam bolt position does not change while tightening the nut. Tighten the cam nuts to 190 Nm (140 ft. lbs.). 8. Verify that the caster and the camber are still within specifications. Refer to Wheel Alignment Specifications. When the caster and camber are within specifications, adjust the toe. Refer to Front Toe Adjustment. Front Toe Adjustment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Alignment > System Information > Service and Repair > Trim Height Inspection > Page 3137 1. Loosen the jam nut on the tie rod (2). 2. Rotate the inner tie rod (1) to the required toe specification setting. Refer to Wheel Alignment Specifications. 3. Notice: Refer to Fastener Notice. Tighten the jam nut on the tie rod. Tighten the tie rod jam to 68 Nm (50 ft. lbs.). 4. Check the toe setting after tightening. 5. Re-adjust the toe setting if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................384-425 kPa (55-62 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Technician Safety Information > Page 3144 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 3145 Fuel Pressure: Testing and Inspection FUEL SYSTEM DIAGNOSIS SYSTEM DESCRIPTION The control module enables the fuel pump relay when the ignition switch is turned ON. The control module will disable the fuel pump relay within two seconds unless the control module detects ignition reference pulses. The control module continues to enable the fuel pump relay as long as ignition reference pulses are detected. The control module disables the fuel pump relay within two seconds if ignition reference pulses cease to be detected and the ignition remains ON. The Fuel System is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. The fuel tank stores the fuel supply. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pump also supplies fuel to a venturi pump located on the bottom of the fuel sender assembly. The function of the venturi pump is to fill the fuel sender assembly reservoir. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 3146 Step 1 - Step 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 3147 Step 6 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Idle Speed > System Information > Specifications Idle Speed: Specifications Information not supplied by the manufacturer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Cleaner Fresh Air Duct/Hose > Component Information > Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair AIR CLEANER RESONATOR OUTLET DUCT REPLACEMENT REMOVAL PROCEDURE 1. Loosen the clamp and separate the air cleaner outlet duct at the mass air flow (MAF)/intake air temperature (IAT) sensor. 2. Loosen the clamp and separate the air cleaner outlet duct from the throttle body. 3. Remove the radiator inlet hose clamp from the outlet duct. 4. Remove the air cleaner outlet duct. INSTALLATION PROCEDURE 1. Install the air cleaner outlet duct. 2. Install the air cleaner outlet duct to the throttle body. 3. Install the air cleaner outlet duct to MAF/IAT sensor. 4. Install the radiator inlet hose clamp to the outlet duct. NOTE: Refer to Fastener Notice. 5. Tighten the air cleaner outlet duct clamps. Tighten the clamps to 4 N.m (35 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 3163 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 3169 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 3170 Air Filter Element: Service and Repair AIR CLEANER ELEMENT REPLACEMENT REMOVAL PROCEDURE 1. Remove the air cleaner outlet duct. 2. Disconnect the mass air flow/intake air temperature (MAF/IAT) sensor electrical connector (4). 3. Loosen the air cleaner housing top screws. 4. Remove the air cleaner housing cover. 5. Remove the air filter element. INSTALLATION PROCEDURE 1. Install a NEW air filter element. 2. Install the air cleaner housing cover. 3. Tighten the air cleaner housing top screws until snug. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 3171 4. Connect the MAF/IAT sensor electrical connector (4). 5. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3177 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3178 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3179 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3180 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications Ignition Cable: Specifications Spark Plug Wire Resistance................................................................................................................. ...........................................................397-1337 Ohms Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 3184 Ignition Cable: Testing and Inspection SPARK PLUG WIRE INSPECTION Spark plug wire integrity is vital for proper engine operation. A thorough inspection is necessary to accurately identify conditions that may affect engine operation. Inspect for the following conditions: 1. Correct routing of the spark plug wires-Incorrect routing may cause cross-firing. 2. Any signs of cracks or splits in the wires. 3. Inspect each boot for the following conditions: - Tearing - Piercing - Arcing - Carbon tracking - Corroded terminal If corrosion, carbon tracking or arcing are indicated on a spark plug wire boot or terminal, replace the wire and the component connected to the wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 3185 Ignition Cable: Service and Repair SPARK PLUG WIRE REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire from the spark plug. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the spark plug. 2. Remove the spark plug wire from the ignition coil. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the ignition coil. 3. IMPORTANT: The Melco(R) spark plug wires MUST be used only with the Melco(R) coils and bracket, like wise the Delphi(R) spark plug wires MUST be used only with Delphi(R) coils and bracket. The components are NOT interchangeable. There are 2 different manufacturers for the spark plug wire, ignition coils and coil brackets. They are as follows: 4. The Melco(R) spark plug wire (1) will have a blue foil mark on it, and the wire is 145 mm (5.70 in) in length from cable seal to cable seal. 5. The Delphi(R) spark plug wire (2) will have a white foil mark on it, and the wire is 110 mm (4.30 in) in length cable seal to cable seal. 6. The Melco(r) (1) ignition coil is a square design. 7. The Delphi(r) (2) ignition coil is a round design. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 3186 8. The Melco(r) ignition coil bracket (1) is a square design. 9. The Delphi(r) ignition coil bracket (2) is a round design. INSTALLATION PROCEDURE 1. Install the spark plug wire to the ignition coil. 2. Install the spark plug wire to the spark plug. 3. Inspect the spark plug wire for proper installation: 1. Push sideways on each boot in order to inspect the seating. 2. Reinstall any loose boot. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications Spark Plug: Specifications Spark Plug Gap.................................................................................................................................... .......................................................1.52 mm - 0.060 in Spark Plug Torque.......................................... ................................................................................................................................................15 N.m 11 lb ft Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 3190 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ............................................25171803 [AC plug type] Spark Plug Type.............................................. ..............................................................................................................................12567759 [NGK plug type] Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 3191 Spark Plug: Testing and Inspection SPARK PLUG INSPECTION - Verify that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. - Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: Spark plug fouling - Colder plug - Pre-ignition causing spark plug and/or engine damage - Hotter plug - Inspect the terminal post (1) for damage. Inspect for a bent or broken terminal post (1). - Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should not move. - Inspect the insulator (2) for flashover or carbon tracking, or soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: Inspect the spark plug boot for damage. - Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated will cause arcing to ground. - Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). - Inspect for evidence of improper arcing. Measure the gap between the center electrode (4) and the side electrode (3). - Inspect for the correct spark plug torque. Insufficient torque can prevent correct spark plug operation. An over torqued spark plug, causes the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 3192 insulator (2) to crack. - Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). - Inspect for a broken or worn side electrode (3). - Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. - Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. - Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. - Inspect for excessive fouling. - Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Visual Inspection Normal operation - Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. - Carbon fouled - Dry, fluffy black carbon, or soot caused by the following conditions: Rich fuel mixtures Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion - Reduced ignition system voltage output Weak ignition coils - Worn ignition wires - Incorrect spark plug gap - Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. - Deposit fouling - Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark plug intensity. Most powdery deposits will not affect spark plug intensity unless they form into a glazing over the electrode. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 3193 Spark Plug: Service and Repair SPARK PLUG REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire. 2. Loosen the spark plug 1 or 2 turns. 3. Brush or using compressed air, blow away any dirt from around the spark plug. 4. Remove the spark plug.If removing more than one plug, place each plug in a tray marked with the corresponding cylinder number. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 3194 1. Correctly position the spark plug washer. 2. Inspect the spark plug gap. Adjust the gap as needed. Spark plug gap: 1.016 mm (0.040 in) 3. Hand start the spark plug in the corresponding cylinder. NOTE: Refer to Fastener Notice. 4. Tighten the spark plug. - Tighten the plug to 15 N.m (11 lb ft) for used heads. - Tighten the plug to 20 N.m (15 lb ft) for NEW heads. 5. Install the spark plug wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Compression Check > System Information > Specifications Compression Check: Specifications The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Tune-up and Engine Performance Checks > Compression Check > System Information > Specifications > Page 3198 Compression Check: Testing and Inspection Engine Compression Test 1. Charge the battery if the battery is not fully charged. 2. Disable the ignition system. 3. Disable the fuel injection system. 4. Remove all the spark plugs. 5. Turn the ignition to the ON position. 6. Depress the accelerator pedal to position the throttle plate wide open. 7. Start with the compression gage at zero and crank the engine through 4 compression strokes, 4 puffs. 8. Measure the compression for each cylinder. Record the readings. 9. If a cylinder has low compression, inject approximately 15 ml (1 tablespoon) of engine oil into the combustion chamber through the spark plug hole. Measure the compression again and record the reading. 10. The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). For example, if the highest pressure in any 1 cylinder is 1,035 kPa (150 psi), the lowest allowable pressure for any other cylinder would be 725 kPa (105 psi). (1 035 x 70% = 725) (150 x 70% = 105). ^ Normal - Compression builds up quickly and evenly to the specified compression for each cylinder. ^ Piston Rings Leaking - Compression is low on the first stroke. Compression builds up with the following strokes, but does not reach normal. Compression improves considerably when you add oil. ^ Valves Leaking - Compression is low on the first stroke. Compression usually does not build up on the following strokes. Compression does not improve much when you add oil. ^ If 2 adjacent cylinders have lower than normal compression, and injecting oil into the cylinders does not increase the compression, the cause may be a head gasket leaking between the cylinders. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Timing Component Alignment Marks > Component Information > Locations Timing Component Alignment Marks: Locations If necessary, rotate the camshaft or crankshaft sprockets in order to align the timing marks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > Customer Interest: > 07-01-38-010A > Oct > 09 > A/C - Compressor/Serpentine Belt Noise Drive Belt: Customer Interest A/C - Compressor/Serpentine Belt Noise TECHNICAL Bulletin No.: 07-01-38-010A Date: October 06, 2009 Subject: Air Conditioning (A/C) Compressor and/or Serpentine Belt Noise at Vehicle Start-up (Reprogram Powertrain Control Module (PCM)) Models: 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon Models Equipped With Air Conditioning (RPOs CJ2 or CJ3) Supercede: This bulletin is being revised to update the Condition and Correction information. Please discard Corporate Bulletin Number 07-01-38-010 (Section 01 - HVAC). Condition Some customers may comment on air conditioning (A/C) compressor slugging and/or serpentine belt or pulley rattle noise at vehicle start-up in warmer outside ambient temperature conditions. Others may describe the noise as a belt chirp or as a thumping/grinding noise coming from the A/C compressor at vehicle start-up. Cause This condition may be caused by the A/C compressor trying to move liquid refrigerant through the system. Correction - A revised PCM calibration has been released to address this condition. Reprogram the PCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. - When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. - When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. - During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information Note *Please use Failure Code 93 for any warranty claims submitted using this bulletin. For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > Customer Interest: > 07-01-38-010A > Oct > 09 > A/C - Compressor/Serpentine Belt Noise > Page 3210 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 07-01-38-010A > Oct > 09 > A/C - Compressor/Serpentine Belt Noise Drive Belt: All Technical Service Bulletins A/C - Compressor/Serpentine Belt Noise TECHNICAL Bulletin No.: 07-01-38-010A Date: October 06, 2009 Subject: Air Conditioning (A/C) Compressor and/or Serpentine Belt Noise at Vehicle Start-up (Reprogram Powertrain Control Module (PCM)) Models: 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon Models Equipped With Air Conditioning (RPOs CJ2 or CJ3) Supercede: This bulletin is being revised to update the Condition and Correction information. Please discard Corporate Bulletin Number 07-01-38-010 (Section 01 - HVAC). Condition Some customers may comment on air conditioning (A/C) compressor slugging and/or serpentine belt or pulley rattle noise at vehicle start-up in warmer outside ambient temperature conditions. Others may describe the noise as a belt chirp or as a thumping/grinding noise coming from the A/C compressor at vehicle start-up. Cause This condition may be caused by the A/C compressor trying to move liquid refrigerant through the system. Correction - A revised PCM calibration has been released to address this condition. Reprogram the PCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. - When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. - When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. - During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information Note *Please use Failure Code 93 for any warranty claims submitted using this bulletin. For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 07-01-38-010A > Oct > 09 > A/C - Compressor/Serpentine Belt Noise > Page 3216 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics Drive Belt: All Technical Service Bulletins Engine - Drive Belt Misalignment Diagnostics INFORMATION Bulletin No.: 08-06-01-008A Date: July 27, 2009 Subject: Diagnosing Accessory Drive Belt / Serpentine Belt Noise and Availability and Use of Kent-Moore EN-49228 Laser Alignment Tool - Drive Belt Models: 2010 and Prior GM Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add a model year and update the Tool Information. Please discard Corporate Bulletin Number 08-06-01-008 (Section 06 - Engine). Background Several aftermarket companies offer laser alignment tools for accessory drive systems that can be very helpful in eliminating drive belt noise as a result of misaligned pulleys. Typically pricing ranges from $160 - $200. EN-49228 Laser Alignment Tool - Drive Belt The GM Tool program has now made available a competitive, simple to use and time-saving laser tool to assist in achieving precise alignment of the drive belt pulleys. This optional tool removes the guesswork from proper pulley alignment and may serve to reduce comebacks from: - Drive Belt Noise - Accelerated Drive Belt Wear - Drive Belt Slippage Instructions The instructions below are specific only to the truck Gen IV V-8 family of engines. These instructions are only for illustrative purposes to show how the tool may be used. Universal instructions are included in the box with the Laser Alignment Tool - Drive Belt. Caution - Do not look directly into the beam projected from the laser. - Use caution when shining the laser on highly polished or reflective surfaces. Laser safety glasses help reduce laser beam glare in many circumstances. - Always use laser safety glasses when using the laser. Laser safety glasses are not designed to protect eyes from direct laser exposure. 1. Observe and mark the serpentine belt orientation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 3221 2. Remove the serpentine belt from the accessory drive system. 3. Install the tool onto the power steering pulley. Position the legs of the tool into the outer grooves of the pulley, farthest from the front of the engine. 4. Install the retaining cord around the pulley and to the legs of the tool. 5. Put on the laser safety glasses provided with the tool. 6. Depress the switch on the rear of the tool to activate the light beam. 7. Rotate the power steering pulley as required to project the light beam onto the crankshaft balancer pulley grooves. 8. Inspect for proper power steering pulley alignment. - If the laser beam projects onto the second rib or raised area (1), the pulleys are aligned properly. - If the laser beam projects more than one-quarter rib 0.9 mm (0.035 in) mis-alignment, adjust the position of the power steering pulley as required. - Refer to SI for Power Steering Pulley Removal and Installation procedures. 9. Install the serpentine belt to the accessory drive system in the original orientation. 10. Operate the vehicle and verify that the belt noise concern is no longer present. Tool Information Please visit the GM service tool website for pricing information or to place your order for this tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 3222 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Other Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics Drive Belt: All Technical Service Bulletins Engine - Drive Belt Misalignment Diagnostics INFORMATION Bulletin No.: 08-06-01-008A Date: July 27, 2009 Subject: Diagnosing Accessory Drive Belt / Serpentine Belt Noise and Availability and Use of Kent-Moore EN-49228 Laser Alignment Tool - Drive Belt Models: 2010 and Prior GM Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add a model year and update the Tool Information. Please discard Corporate Bulletin Number 08-06-01-008 (Section 06 - Engine). Background Several aftermarket companies offer laser alignment tools for accessory drive systems that can be very helpful in eliminating drive belt noise as a result of misaligned pulleys. Typically pricing ranges from $160 - $200. EN-49228 Laser Alignment Tool - Drive Belt The GM Tool program has now made available a competitive, simple to use and time-saving laser tool to assist in achieving precise alignment of the drive belt pulleys. This optional tool removes the guesswork from proper pulley alignment and may serve to reduce comebacks from: - Drive Belt Noise - Accelerated Drive Belt Wear - Drive Belt Slippage Instructions The instructions below are specific only to the truck Gen IV V-8 family of engines. These instructions are only for illustrative purposes to show how the tool may be used. Universal instructions are included in the box with the Laser Alignment Tool - Drive Belt. Caution - Do not look directly into the beam projected from the laser. - Use caution when shining the laser on highly polished or reflective surfaces. Laser safety glasses help reduce laser beam glare in many circumstances. - Always use laser safety glasses when using the laser. Laser safety glasses are not designed to protect eyes from direct laser exposure. 1. Observe and mark the serpentine belt orientation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Other Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 3228 2. Remove the serpentine belt from the accessory drive system. 3. Install the tool onto the power steering pulley. Position the legs of the tool into the outer grooves of the pulley, farthest from the front of the engine. 4. Install the retaining cord around the pulley and to the legs of the tool. 5. Put on the laser safety glasses provided with the tool. 6. Depress the switch on the rear of the tool to activate the light beam. 7. Rotate the power steering pulley as required to project the light beam onto the crankshaft balancer pulley grooves. 8. Inspect for proper power steering pulley alignment. - If the laser beam projects onto the second rib or raised area (1), the pulleys are aligned properly. - If the laser beam projects more than one-quarter rib 0.9 mm (0.035 in) mis-alignment, adjust the position of the power steering pulley as required. - Refer to SI for Power Steering Pulley Removal and Installation procedures. 9. Install the serpentine belt to the accessory drive system in the original orientation. 10. Operate the vehicle and verify that the belt noise concern is no longer present. Tool Information Please visit the GM service tool website for pricing information or to place your order for this tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > All Other Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 3229 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > Page 3230 Drive Belt: Service Precautions Belt Dressing Notice Notice: Do not use belt dressing on the drive belt. Belt dressing causes the breakdown of the composition of the drive belt. Failure to follow this recommendation will damage the drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Technical Service Bulletins > Page 3231 Drive Belt: Description and Operation Drive Belt System Description The drive belt system consists of the following components: ^ The drive belt ^ The drive belt tensioner ^ The drive belt idler pulley ^ The crankshaft balancer pulley ^ The accessory drive component mounting brackets ^ The accessory drive components ^ The power steering pump, if belt driven ^ The generator ^ The A/C compressor, if equipped ^ The engine cooling fan, if belt driven ^ The water pump, if belt driven ^ The vacuum pump, if equipped ^ The air compressor, if equipped The drive belt system may use 1 belt or 2 belts. The drive belt is thin so that it can bend backwards and has several ribs to match the grooves in the pulleys. The drive belts are made of different types of rubbers, chloroprene or EPDM, and have different layers or plys containing either fiber cloth or cords for reinforcement. Both sides of the drive belt may be used to drive the different accessory drive components. When the back side of the drive belt is used to drive a pulley, the pulley is smooth. The drive belt is pulled by the crankshaft balancer pulley across the accessory drive component pulleys. The spring loaded drive belt tensioner keeps constant tension on the drive belt to prevent the drive belt from slipping. The drive belt tensioner arm will move when loads are applied to the drive belt by the accessory drive components and the crankshaft. The drive belt system may have an idler pulley, which is used to add wrap to the adjacent pulleys. Some systems use an idler pulley in place of an accessory drive component when the vehicle is not equipped with the accessory. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt: Testing and Inspection Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt Chirping, Squeal, and Whine Diagnosis Diagnostic Aids ^ A chirping or squeal noise may be intermittent due to moisture on the drive belts or the pulleys. It may be necessary to spray a small amount of water on the drive belts in order to duplicate the customers concern. If spraying water on the drive belt duplicates the symptom, cleaning the belt pulleys may be the probable solution. ^ If the noise is intermittent, verify the accessory drive components by varying their loads making sure they are operated to their maximum capacity. An overcharged A/C system, power steering system with a pinched hose or wrong fluid, or a generator failing are suggested items to inspect. ^ A chirping, squeal or whine noise may be caused by a loose or improper installation of a body or suspension component. Other items of the vehicle may also cause the noise. ^ The drive belts will not cause a whine noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. The noise may not be engine related. This step is to verify that the engine is making the noise. If the engine is not making the noise do not proceed further with this table. 3. The noise may be an internal engine noise. Removing the drive belts one at a time and operating the engine for a brief period will verify the noise is related to the drive belt. When removing the drive belt the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspect all drive belt pulleys for pilling. Pilling is the small balls or pills or it can be strings in the drive belt grooves from the accumulation of rubber dust. 6. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across 2 or 3 pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure for that pulley. 10. Inspecting of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. 12. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 14. This test is to verify that the drive belt tensioner operates properly. If the drive belt tensioner is not operating properly, proper belt tension may not be achieved to keep the drive belt from slipping which could cause a squeal noise. 15. This test is to verify that the drive belt is not too long, which would prevent the drive belt tensioner from working properly. Also if an incorrect length drive belt was installed, it may not be routed properly and may be turning an accessory drive component in the wrong direction. 16. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across 2 or 3 pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure for that pulley. 17. This test is to verify that the pulleys are the correct diameter or width. Using a known good vehicle compare the pulley sizes. 19. Replacing the drive belt when it is not damaged or there is not excessive pilling will only be a temporary repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3234 Step 1 - Step 9 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3235 Step 10 - Step 20 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3236 Drive Belt: Testing and Inspection Drive Belt Falls Off and Excessive Wear Diagnosis Drive Belt Falls Off and Excessive Wear Diagnosis Diagnostic Aids If the drive belt repeatedly falls off the drive belt pulleys, this is because of pulley misalignment. An extra load that is quickly applied on released by an accessory drive component may cause the drive belt to fall off the pulleys. Verify the accessory drive components operate properly. If the drive belt is the incorrect length, the drive belt tensioner may not keep the proper tension on the drive belt. Excessive wear on a drive belt is usually caused by an incorrect installation or the wrong drive belt for the application. Minor misalignment of the drive belt pulleys will not cause excessive wear, but will probably cause the drive belt to make a noise or to fall off. Excessive misalignment of the drive belt pulleys will cause excessive wear but may also make the drive belt fall off. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This inspection is to verify the condition of the drive belt. Damage may of occurred to the drive belt when the drive belt fell off. The drive belt may of been damaged, which caused the drive belt to fall off. Inspect the belt for cuts, tears, sections of ribs missing, or damaged belt plys. 4. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure of that pulley. 5. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 6. Accessory drive component brackets that are bent or cracked will let the drive belt fall off. 7. Inspection of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. Missing, loose, or the wrong fasteners may cause pulley misalignment from the bracket moving under load. Over tightening of the fasteners may cause misalignment of the accessory component bracket. 13. The inspection is to verify the drive belt is correctly installed on all of the drive belt pulleys. Wear on the drive belt may be caused by mis-positioning the drive belt by one groove on a pulley. 14. The installation of a drive belt that is too wide or too narrow will cause wear on the drive belt. The drive belt ribs should match all of the grooves on all of the pulleys. 15. This inspection is to verify the drive belt is not contacting any parts of the engine or body while the engine is operating. There should be sufficient clearance when the drive belt accessory drive components load varies. The drive belt should not come in contact with an engine or a body component when snapping the throttle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3237 Step 1 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3238 Step 14 - Step 17 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3239 Drive Belt: Testing and Inspection Drive Belt Rumbling and Vibration Diagnosis Drive Belt Rumbling and Vibration Diagnosis Diagnostic Aids The accessory drive components can have an affect on engine vibration. Vibration from the engine operating may cause a body component or another part of the vehicle to make rumbling noise. Vibration can be caused by, but not limited to the air conditioning (A/C) system over charged, the power steering system restricted or the incorrect fluid, or an extra load on the generator. To help identify an intermittent or an improper condition, vary the loads on the accessory drive components. The drive belt may have a rumbling condition that can not be seen or felt. Sometimes replacing the drive belt may be the only repair for the symptom. If replacing the drive belt, completing the diagnostic table, and the noise is only heard when the drive belts are installed, there might be an accessory drive component with a failure. Varying the load on the different accessory drive components may aid in identifying which component is causing the rumbling noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This test is to verify that the symptom is present during diagnosing. Other vehicle components may cause a similar symptom. 3. This test is to verify that one of the drive belts is causing the rumbling noise or vibration. Rumbling noise may be confused with an internal engine noise due to the similarity in the description. Remove only one drive belt at a time if the vehicle has multiple drive belts. When removing the drive belts the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspecting the drive belts is to ensure that they are not causing the noise. Small cracks across the ribs of the drive belt will not cause the noise. Belt separation is identified by the plys of the belt separating and may be seen at the edge of the belt our felt as a lump in the belt. 5. Small amounts of pilling is normal condition and acceptable. When the pilling is severe the drive belt does not have a smooth surface for proper operation. 9. Inspecting of the fasteners can eliminate the possibility that the wrong bolt, nut, spacer, or washer was installed. 11. This step should only be performed if the water pump is driven by the drive belt. Inspect the water pump shaft for being bent. Also inspect the water pump bearings for smooth operation and excessive play. Compare the water pump with a known good water pump. 12. Accessory drive component brackets that are bent, cracked, or loose may put extra strain on that accessory component causing it to vibrate. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3240 Step 1 - Step 8 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 3241 Step 9 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory Drive Belt: Service and Repair Drive Belt Replacement - Accessory Drive Belt Replacement - Accessory (4.8L, 5.3L, and 6.0L Engines) Removal Procedure 1. Loosen the air cleaner outlet duct clamps at the following locations: ^ The throttle body ^ The mass airflow (MAF)/intake air temperature (IAT) sensor 2. Disconnect the radiator inlet hose clip from the outlet duct. 3. Remove the air cleaner outlet duct. 4. Install a breaker bar with hex-head socket to the drive belt tensioner bolt. 5. Rotate the drive belt tensioner clockwise in order to relieve tension on the belt (1). 6. Remove the belt (1) from the pulleys and the drive belt tensioner. 7. Slowly release the tension on the drive belt tensioner. 8. Remove the breaker bar and socket and from the drive belt tensioner bolt. 9. Clean and inspect the belt surfaces of all the pulleys. Installation Procedure 1. Route the drive belt (1) around all the pulleys except the idler pulley. 2. Install the breaker bar with hex-head socket to the belt tensioner bolt. 3. Rotate the belt tensioner clockwise in order to relieve the tension on the tensioner. 4. Install the drive belt (1) under the idler pulley. 5. Slowly release the tension on the belt tensioner. 6. Remove the breaker bar and socket from the belt tensioner bolt. 7. Inspect the drive belt (1) for proper installation and alignment. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 3244 8. Align the arrow (2) at the throttle body end of the duct with the throttle body attaching stud (1). 9. Install the air cleaner outlet duct. 10. Connect the radiator inlet hose clip to the outlet duct. Notice: Refer to Fastener Notice in Service Precautions. 11. Tighten the air cleaner outlet duct clamps at the following locations: ^ The throttle body ^ The MAF/IAT sensor Tighten the clamps to 4 Nm (35 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 3245 Drive Belt: Service and Repair Drive Belt Replacement - Air Conditioning Drive Belt Replacement - Air Conditioning Removal Procedure 1. Remove the accessory drive belt. 2. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Remove the engine shield bolts. 4. Remove the engine shield. 5. Install a ratchet into the air conditioning (A/C) belt tensioner adapter opening. 6. Rotate the A/C belt tensioner clockwise in order to relieve tension on the belt. 7. Remove the A/C belt from the pulleys. 8. Slowly release the tension on the A/C belt tensioner. 9. Remove the ratchet from the A/C belt tensioner. 10. Clean and inspect the belt surfaces of all the pulleys. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 3246 Installation Procedure 1. Install the A/C belt around the crankshaft balancer. 2. Install a ratchet into the A/C drive belt tensioner adapter opening. 3. Rotate the A/C belt tensioner clockwise in order to relieve tension on the tensioner. 4. Install the A/C belt over the idler pulley. 5. Install the A/C belt around the A/C compressor pulley. 6. Slowly release the tension on the A/C belt tensioner. 7. Remove the ratchet from the A/C belt tensioner. 8. Inspect the A/C belt for proper installation and alignment. 9. Install the engine shield. Notice: Refer to Fastener Notice in Service Precautions. 10. Install the engine shield bolts. Tighten the bolts to 20 Nm (15 ft. lbs.). 11. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 3247 12. Install the accessory drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Cleaner Fresh Air Duct/Hose > Component Information > Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair AIR CLEANER RESONATOR OUTLET DUCT REPLACEMENT REMOVAL PROCEDURE 1. Loosen the clamp and separate the air cleaner outlet duct at the mass air flow (MAF)/intake air temperature (IAT) sensor. 2. Loosen the clamp and separate the air cleaner outlet duct from the throttle body. 3. Remove the radiator inlet hose clamp from the outlet duct. 4. Remove the air cleaner outlet duct. INSTALLATION PROCEDURE 1. Install the air cleaner outlet duct. 2. Install the air cleaner outlet duct to the throttle body. 3. Install the air cleaner outlet duct to MAF/IAT sensor. 4. Install the radiator inlet hose clamp to the outlet duct. NOTE: Refer to Fastener Notice. 5. Tighten the air cleaner outlet duct clamps. Tighten the clamps to 4 N.m (35 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T Shift/Driveability Concerns/MIL ON > Page 3261 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 3267 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 3268 Air Filter Element: Service and Repair AIR CLEANER ELEMENT REPLACEMENT REMOVAL PROCEDURE 1. Remove the air cleaner outlet duct. 2. Disconnect the mass air flow/intake air temperature (MAF/IAT) sensor electrical connector (4). 3. Loosen the air cleaner housing top screws. 4. Remove the air cleaner housing cover. 5. Remove the air filter element. INSTALLATION PROCEDURE 1. Install a NEW air filter element. 2. Install the air cleaner housing cover. 3. Tighten the air cleaner housing top screws until snug. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 3269 4. Connect the MAF/IAT sensor electrical connector (4). 5. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Cabin Air Filter > Component Information > Service and Repair Cabin Air Filter: Service and Repair This vehicle is not equipped with a factory installed passenger compartment air filter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Evaporative Canister Filter: Customer Interest Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 3281 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 3282 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 3283 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 3284 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions MIL ON/DTC P0446 Stored In ECM Evaporative Canister Filter: All Technical Service Bulletins Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions MIL ON/DTC P0446 Stored In ECM > Page 3290 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions MIL ON/DTC P0446 Stored In ECM > Page 3291 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions MIL ON/DTC P0446 Stored In ECM > Page 3292 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions MIL ON/DTC P0446 Stored In ECM > Page 3293 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Fluid Filter - A/T: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Fluid and Filter Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Place a drain pan under the transmission oil pan. 3. Remove the oil pan drain plug, if equipped. 4. If necessary, remove the bolts and position aside the range selector cable bracket for clearance while lowering the pan. It is not necessary to remove the cable from the lever or bracket. 5. Remove the catalytic converter. Refer to Catalytic Converter Replacement. 6. Remove the oil pan bolts from the front and sides of the pan only. 7. Loosen the rear oil pan bolts approximately 4 turns. 8. Lightly tap the oil pan with a rubber mallet in order to loosen the pan to allow the fluid to drain. 9. Remove the remaining oil pan bolts. 10. Remove the oil pan and the gasket. 11. Grasp firmly while pulling down with a twisting motion in order to remove the filter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3298 12. Remove and discard the filter seal. The filter seal may be stuck in the pump; if necessary, carefully use pliers or another suitable tool to remove the seal. 13. Inspect the fluid color. 14. Inspect the filter. Pry the metal crimping away from the top of the filter and pull apart. The filter may contain the following evidence for root cause diagnosis: ^ Clutch material ^ Bronze slivers indicating bushing wear ^ Steel particles 15. Clean the transmission case and the oil pan gasket surfaces with solvent, and air dry. You must remove all traces of the old gasket material. Installation Procedure 1. Coat the NEW filter seal with automatic transmission fluid. 2. Install the NEW filter seal into the transmission case. Tap the seal into place using a suitable size socket. 3. Install the NEW filter. 4. Install the oil pan and NEW gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3299 5. Notice: Refer to Fastener Notice. Install the oil pan bolts. Tighten the bolts alternately and evenly to 11 Nm (97 inch lbs.). 6. Install the catalytic converter. Refer to Catalytic Converter Replacement. 7. If previously removed, install the range selector cable bracket and bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 8. Apply a small amount of sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the threads of the oil pan drain plug, if equipped. 9. Lower the vehicle. 10. Fill the transmission to the proper level with DEXRON(r) VI transmission fluid. Refer to Transmission Fluid Check and Fluid Capacity Specifications. 11. Check the COLD fluid level reading for initial fill only. 12. Inspect the oil pan gasket for leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3300 Fluid Filter - A/T: Service and Repair 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Fluid and Filter Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Place a drain pan under the transmission oil pan. 3. Remove the oil pan drain plug, if equipped. 4. Allow the transmission fluid to drain completely. 5. Apply a small amount of sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the treads of the drain plug, if equipped. Notice: Refer to Fastener Notice. 6. Install the oil pan drain plug. Tighten the oil pan drain plug to 18 Nm (13 ft. lbs.). 7. Remove the drain pan from under the transmission oil pan. 8. Support the transmission with a transmission jack. 9. Remove the transmission mount nuts. 10. Remove the transmission support bolts and nuts. 11. Remove the transmission support side bracket bolts and bracket. 12. Remove the transmission support. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3301 13. Disconnect the range selector cable end (2) from the transmission range selector lever ball stud (1). 14. Important: It is not necessary to remove the selector cable from the bracket. Remove the transmission range selector cable bracket (2) bolts and bracket from the transmission. Reposition the bracket with cable. 15. Remove the oil pan bolts. 16. Important: The transmission oil pan gasket is reusable. Inspect the gasket and replace as needed. Remove the oil pan and gasket. 17. Remove the magnet from the bottom of the pan, if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3302 18. Remove the oil filter. 19. Remove the filter neck seal. 20. Clean the transmission case and the oil pan gasket surfaces with solvent. Installation Procedure 1. Install the filter neck seal. 2. Install the oil filter. 3. Install the oil pan gasket to the pan. 4. Install the magnet into the bottom of the pan, if necessary. 5. Install the oil pan and bolts. Tighten the oil pan bolts to 24 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3303 6. Position the bracket with cable. Install the transmission range selector cable bracket (2) and bolts to the transmission. Tighten the selector bracket bolts to 25 Nm (18 ft. lbs.). 7. Connect the range selector cable end (2) to the transmission range selector lever ball stud (1). 8. Install the transmission support. 9. Install the transmission support side bracket and bolts. 10. Install the transmission support bolts and nuts. Tighten the bolts/nuts to 95 Nm (70 ft. lbs.). 11. Install the transmission mount nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3304 12. Remove the transmission jack. 13. Lower the vehicle. 14. Fill the transmission to the proper level with DEXRON(r) VI transmission fluid. Refer to Transmission Fluid Check. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3305 Fluid Filter - A/T: Service and Repair Allison - Automatic Transmission Transmission Fluid Filter Adapter Replacement Transmission Fluid Filter Adapter Replacement Removal Procedure 1. Important: ^ DO NOT drain the fluid if only the transmission external oil filter adapter is being replaced. ^ Use a standard strap-type filter wrench to remove or install the transmission external oil filter. Remove the transmission external oil filter (4) by rotating in the counterclockwise direction. 2. Remove the magnet (2) from the transmission external oil filter adapter (1) in the converter housing or from the filter element. 3. Clean any metal debris from the magnet. Presence of any metal pieces larger than dust may indicate that transmission replacement or overhaul is required. 4. Remove the filter adapter (1) from the converter housing. Installation Procedure 1. Install the transmission external oil filter adapter (1). Notice: Refer to Fastener Notice in Service Precautions. Tighten the adapter to 30 Nm (22 ft. lbs.). 2. Reinstall the magnet (2) onto the filter adapter (1). 3. Lubricate the gasket (3) on the transmission external oil filter with transmission fluid. 4. Install, by hand, the transmission external oil filter (4) until the gasket on the filter touches the converter housing. 5. Notice: Turning the transmission external oil filter more than ONE FULL TURN after gasket contact will damage the filter and may cause fluid leakage. Turn the filter ONE FULL TURN ONLY after gasket contact. 6. Notice: Use only clean and approved transmission fluid. Check the transmission fluid level. Refer to Transmission Fluid Check. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3306 Automatic Transmission Fluid and Filter Replacement Automatic Transmission Fluid and Filter Replacement Removal Procedure 1. Important: DO NOT drain the fluid if only the transmission external oil filter is being replaced. Remove the drain plug (6) and drain plug seal (5). Drain the transmission fluid into a suitable container. 2. Inspect the drained fluid. Refer to Transmission Fluid Check. 3. Important: Use a standard strap-type filter wrench to remove the transmission external oil filter. Remove the filter (4) by rotating in the counterclockwise direction. 4. Remove the magnet (2) from the filter adapter (1) in the converter housing or from the top of the transmission external oil filter (3). 5. Clean any metal debris from the magnet. Presence of any metal pieces larger than dust may indicate that transmission replacement or overhaul is required. Installation Procedure 1. Install the magnet (2) onto the filter adapter (1) which is in the converter housing. 2. Lubricate the gasket (3) on the transmission external oil filter with transmission fluid. 3. Install, by hand, the transmission external oil filter (4) until the gasket on the filter touches the converter housing. 4. Notice: Turning the transmission external oil filter more than ONE FULL TURN after gasket contact will damage the filter and may cause fluid leakage. Turn the filter ONE FULL TURN ONLY after gasket contact. 5. Notice: Refer to Fastener Notice in Service Precautions. Install the drain plug (6) and drain plug seal (5). Tighten the drain plug to 35 Nm (26 ft. lbs.). 6. Refill Transmission with DEXRON(r)VI Automatic Transmission Fluid. Refer to Fluid Capacity Specifications. 7. Important: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fluid Filter - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3307 DTC P0701 may often set following fluid service. Cycling the ignition clears the code and allows Drive or Reverse range to be attained. Cycle the ignition until Drive or Reverse range is attained. 8. Important: Fluid remains in the external circuits and transmission cavities after draining the transmission. Check the transmission fluid level. Refer to Transmission Fluid Check. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3313 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3314 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3315 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 3316 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Oil Filter: Customer Interest Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 3325 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Filter: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Oil Filter: All Technical Service Bulletins Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Filter: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 3331 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Filter: > 07-06-01-016B > Jul > 09 > Engine - Noise/Damage Oil Filter Application Importance Oil Filter: All Technical Service Bulletins Engine - Noise/Damage Oil Filter Application Importance INFORMATION Bulletin No.: 07-06-01-016B Date: July 27, 2009 Subject: Information on Internal Engine Noise or Damage After Oil Filter Replacement Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being updated to add model years. Please discard Corporate Bulletin Number 07-06-01-016A (Section 06 - Engine/Propulsion System). Important Engine damage that is the result of an incorrect or improperly installed engine oil filter is not a warrantable claim. The best way to avoid oil filter quality concerns is to purchase ACDelco(R) oil filters directly from GMSPO. Oil filter misapplication may cause abnormal engine noise or internal damage. Always utilize the most recent parts information to ensure the correct part number filter is installed when replacing oil filters. Do not rely on physical dimensions alone. Counterfeit copies of name brand parts have been discovered in some aftermarket parts systems. Always ensure the parts you install are from a trusted source. Improper oil filter installation may result in catastrophic engine damage. Refer to the appropriate Service Information (SI) installation instructions when replacing any oil filter and pay particular attention to procedures for proper cartridge filter element alignment. If the diagnostics in SI (Engine Mechanical) lead to the oil filter as the cause of the internal engine noise or damage, dealers should submit a field product report. Refer to Corporate Bulletin Number 02-00-89-002I (Information for Dealers on How to Submit a Field Product Report). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Filter: > 07-06-01-016B > Jul > 09 > Engine - Noise/Damage Oil Filter Application Importance Oil Filter: All Technical Service Bulletins Engine - Noise/Damage Oil Filter Application Importance INFORMATION Bulletin No.: 07-06-01-016B Date: July 27, 2009 Subject: Information on Internal Engine Noise or Damage After Oil Filter Replacement Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being updated to add model years. Please discard Corporate Bulletin Number 07-06-01-016A (Section 06 - Engine/Propulsion System). Important Engine damage that is the result of an incorrect or improperly installed engine oil filter is not a warrantable claim. The best way to avoid oil filter quality concerns is to purchase ACDelco(R) oil filters directly from GMSPO. Oil filter misapplication may cause abnormal engine noise or internal damage. Always utilize the most recent parts information to ensure the correct part number filter is installed when replacing oil filters. Do not rely on physical dimensions alone. Counterfeit copies of name brand parts have been discovered in some aftermarket parts systems. Always ensure the parts you install are from a trusted source. Improper oil filter installation may result in catastrophic engine damage. Refer to the appropriate Service Information (SI) installation instructions when replacing any oil filter and pay particular attention to procedures for proper cartridge filter element alignment. If the diagnostics in SI (Engine Mechanical) lead to the oil filter as the cause of the internal engine noise or damage, dealers should submit a field product report. Refer to Corporate Bulletin Number 02-00-89-002I (Information for Dealers on How to Submit a Field Product Report). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > Page 3341 Oil Filter: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure Important: In order to completely drain the oil from the oil pan internal baffling, the bottom of the oil pan must be level during the oil drain procedure. 1. Open the hood. 2. Remove the oil fill cap. 3. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Place a oil drain pan under the oil pan drain plug. 5. Remove the oil pan drain plug. 6. Drain the engine oil. 7. Wipe the excess oil from the drain plug hole and plug. 8. Remove the oil filter from the engine block. Important: Check the old oil filter to ensure that the filter seal is not left on the engine block. 9. Wipe the excess oil from the oil filter mounting. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Filters > Oil Filter, Engine > Component Information > Technical Service Bulletins > Page 3342 1. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the oil filter to the engine block. Tighten the oil filter to 30 Nm (22 ft. lbs.). 3. Install the oil drain plug to the engine block. Tighten the oil pan drain plug to 25 Nm (18 ft. lbs.). 4. Lower the vehicle. 5. Fill the crankcase with the proper quantity and grade of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 6. Remove the oil level indicator. 7. Wipe the indicator with a clean cloth. 8. Install the oil level indicator. 9. Remove the oil level indicator in order to check the level. 10. Add oil if necessary. 11. Close the hood. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) Heater Hose: Service and Repair Heater Inlet Hose Replacement (LB7) Heater Inlet Hose Replacement (LB7) Tools Required J 43181 Quick Connect Connector Removal Tool Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air intake tube. 3. Remove the heater and surge tank hose from the mounting clip. 4. Using the J 43181 disconnect the heater hose from the heater core inlet. 1. Install the J 43181 to the heater core pipe. 2. Close the tool around the heater core pipe. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3348 5. Reposition the inlet heater hose clamp from the engine coolant outlet. 6. Remove the inlet heater hose (1) from the engine coolant outlet. 7. Remove the auxiliary inlet heater hose if equipped. 8. Remove the inlet heater hose. Installation Procedure 1. Install the heater hose. 2. Connect the auxiliary inlet heater hose if equipped. 3. Install the inlet heater hose (1) to the engine coolant outlet. 4. Reposition the inlet heater hose clamp to the engine coolant outlet. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3349 5. Connect the heater and surge tank hoses to the heater core. Firmly push the quick connect onto the heater core pipe until you hear an audible click. 6. Install the heater and surge tank hose to the mounting clip. 7. Install the air intake tube. 8. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3350 Heater Hose: Service and Repair Heater Outlet Hose Replacement (LB7) Heater Outlet Hose Replacement (LB7) Tools Required J 43181 Quick Connect Connector Removal Tool Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air intake tube. 3. Remove the heater and surge tank hose from the mounting clip. 4. Using the J 43181 disconnect the heater hose from the heater core outlet. 1. Install the J 43181 to the heater core pipe. 2. Close the tool around the heater core pipe. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3351 5. Remove the outlet heater hose nut from the engine. Discard the nut. 6. Remove the outlet heater hose bolt from the engine. Discard the bolt. 7. Remove the auxiliary outlet heater hose if equipped. 8. Remove the outlet heater hose from the outlet pipe assembly. 9. Remove the outlet heater hose. Installation Procedure 1. Install the outlet heater hose. 2. Install the outlet heater hose to the outlet pipe assembly. 3. Install the auxiliary outlet heater hose if equipped. Notice: Refer to Fastener Notice. 4. Install the NEW outlet heater hose nut and bolt to the engine. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3352 Tighten the nut and bolt to 25 N.m (18 lb ft). 5. Connect the outlet heater hose to the heater core. Firmly push the quick connect onto the heater core pipe until you hear an audible click. 6. Install the outlet heater hose to the mounting clip. 7. Install the air intake tube. 8. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3353 Heater Hose: Service and Repair Heater Outlet Hose Replacement (LR4, LM7, LQ4) Heater Outlet Hose Replacement (LR4, LM7, LQ4) Tools Required J 43181 Quick Connect Connector Removal Tool Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air intake tube. 3. Remove the heater and surge tank hose from the mounting clip. 4. Using the J 43181 disconnect the heater hose from the heater core outlet. 1. Install the J 43181 to the heater core pipe. 2. Close the tool around the heater core pipe. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3354 5. Remove the outlet heater hose from the engine. 6. Remove the outlet heater hose. Installation Procedure 1. Install the outlet heater hose. 2. Install the outlet heater hose to the engine. 3. Connect the outlet heater hose to the heater core. Firmly push the quick connect onto the heater core pipe until you hear an audible click. 4. Install the heater and surge tank hose to the mounting clip. 5. Install the air intake tube. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 3355 6. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) Hose/Line HVAC: Service and Repair Discharge Hose Replacement (LB7) Discharge Hose Replacement (LB7) Tools Required J 39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 2. Remove the discharge hose mounting bolt (2) from the A/C compressor. Discard the bolt. 3. Remove the discharge hose (5) from the A/C compressor. 4. Remove the upper radiator air baffle. 5. Remove the discharge hose nut from the condenser. Discard the nut. 6. Remove the discharge hose from the condenser. 7. Disconnect the A/C recirculation switch from the discharge hose. 8. Remove the discharge hose from the vehicle. 9. Discard all of the used sealing washers. Cap the system openings. Installation Procedure 1. Install the discharge hose to the vehicle. 2. Connect the A/C recirculation switch to the discharge hose. 3. Install the discharge hose to the condenser using new sealing washers. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3360 Notice: Refer to Fastener Notice. 4. Install the NEW discharge hose nut to the condenser. Tighten the nut to 16 N.m (12 lb ft). 5. Install the upper radiator air baffle. 6. Install the discharge hose (5) to the compressor using new sealing washers. 7. Install the NEW discharge hose mounting bolt (2) to the A/C compressor. Tighten the bolt to 16 N.m (12 lb ft). 8. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 9. Leak test the fittings of the component using the J 39400-A. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3361 Hose/Line HVAC: Service and Repair Discharge Hose Replacement (LR4, LM7, LQ4, L18) Discharge Hose Replacement (LR4, LM7, LQ4, L18) Tools Required J 39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 2. Remove the discharge hose mounting bolt (2) from the A/C compressor. 3. Remove the discharge hose (1) from the A/C compressor. 4. Remove the upper radiator baffle. 5. Remove the discharge hose nut from the condenser. 6. Remove the discharge hose from the condenser. 7. Disconnect the electrical connector from the A/C recirculation switch. 8. Remove the discharge hose from the vehicle. 9. Discard all of the used sealing washers. Cap the system openings. Installation Procedure 1. Install the discharge hose (1) to the vehicle. 2. Connect the electrical connector to the A/C recirculation switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3362 3. Install the discharge hose to the condenser using new sealing washers. Notice: Refer to Fastener Notice. 4. Install the discharge hose nut to the condenser. Tighten the nut to 16 N.m (12 lb ft). 5. Install the upper air baffle. 6. Install the discharge hose (1) to the A/C compressor using new sealing washers. 7. Install the discharge hose mounting bolt. Tighten the bolt to 16 N.m (12 lb ft). 8. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 9. Leak test the fittings of the component using the J 39400-A. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3363 Hose/Line HVAC: Service and Repair Evaporator Tube Replacement (Without RPO Code HP2) Evaporator Tube Replacement (W/O HP2) Tools Required J 39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant from the A/C system. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 2. Remove the evaporator tube nut from the evaporator. 3. Remove the evaporator tube from the evaporator. 4. Remove the right park/turn signal lamp. 5. Remove the grille from the vehicle. 6. Remove the evaporator tube nut from the condenser. 7. Remove the evaporator tube from the condenser. 8. Remove the evaporator tube from the vehicle. 9. Discard all of the used sealing washers. Cap all of the open connections. Installation Procedure 1. Install the evaporator tube to the condenser using new sealing washers. Notice: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3364 2. Install the evaporator tube nut to the condenser. Tighten the nut to 16 N.m (12 lb ft). 3. Install the grille to the vehicle. 4. Install the right park/turn signal lamp. 5. Install the evaporator tube to the evaporator. 6. Install the evaporator tube nut to the evaporator. Tighten the nut to 16 N.m (12 lb ft). 7. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 8. Leak test the fittings of the components using the J 39400-A. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3365 Hose/Line HVAC: Service and Repair Suction Hose Replacement (LB7 w/Denso) Suction Hose Replacement (LB7 w/Denso) Tools Required J 39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 2. Remove the suction hose mounting bolt (3) from the A/C compressor. Discard the bolt. 3. Remove the suction hose (1) from the compressor. 4. Remove the suction hose nut from the accumulator. Discard the nut. 5. Remove the suction hose from the accumulator. 6. Remove the suction hose from the vehicle. 7. Discard all of the used sealing washers. Cap the system openings. Installation Procedure 1. Install the suction hose to the vehicle using new sealing washers. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3366 2. Install the suction hose to the accumulator. Notice: Refer to Fastener Notice. 3. Install the NEW suction hose nut to the accumulator. Tighten the nut to 16 N.m (12 lb ft). 4. Install the suction hose to the compressor (1). 5. Install the NEW suction hose mounting bolt (3). Tighten the bolt to 16 N.m (12 lb ft). 6. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 7. Leak test the fittings of the component using the J 39400-A. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3367 Hose/Line HVAC: Service and Repair Suction Hose Replacement (LR4, LM7, LQ4, L18 w/Denso) Suction Hose Replacement (LR4, LM7, LQ4, L18 w/Denso) Tools Required J 39400-A Halogen Leak Detector Removal Procedure 1. Recover the refrigerant. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 2. Remove the suction hose mounting bolt from the A/C compressor. 3. Remove the suction hose (2) from the A/C compressor. 4. Remove the suction hose nut from the accumulator. 5. Remove the suction hose from the accumulator. 6. Remove the suction hose assembly from the vehicle. 7. Discard all of the used sealing washers. Cap the system openings. Installation Procedure 1. Install the suction hose to the vehicle. 2. Install the suction hose to the accumulator using new sealing washers. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Hose/Line HVAC > Component Information > Service and Repair > Discharge Hose Replacement (LB7) > Page 3368 Notice: Refer to Fastener Notice. 3. Install the suction hose nut to the accumulator. Tighten the nut to 16 N.m (12 lb ft). 4. Install the suction hose (2) to the compressor using new sealing washers. 5. Install the suction hose mounting bolt to the A/C compressor. Tighten the bolt to 16 N.m (12 lb ft). 6. Evacuate and recharge the A/C system. Refer to Refrigerant Recovery and Recharging. See: Heating and Air Conditioning/Service and Repair/Removal and Replacement/Refrigerant Recovery and Recharging 7. Leak test the fittings of the component using the J 39400-A. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service Precautions Power Steering Line/Hose: Service Precautions Power Steering Hose Disconnected Notice Notice: Do not start the vehicle with any power steering gear inlet or outlet hoses disconnected. When disconnected, plug or cap all openings of components. Failure to do so could result in contamination or loss of power steering fluid and damage to the system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) Power Steering Line/Hose: Service and Repair Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) Removal Procedure 1. Remove the front grille. Refer to Grille Replacement (Chevrolet), (GMC). 2. Notice: Refer to Power Steering Hose Disconnected Notice. Remove the power steering outlet hose (4) from the power steering gear (3). 3. Remove the power steering inlet hose from the power steering pump (1). 4. Remove the bolts (2) retaining the cooler to the radiator support. 5. Remove the power steering cooler from the vehicle. Installation Procedure 1. Notice: Refer to Fastener Notice. Install the power steering cooler (1) to the vehicle. Tighten the power steering cooler retaining bolts to 5 Nm (44 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3374 2. Connect the power steering inlet hose to the power steering pump (5).Install the retaining clamp. 3. Connect the power steering outlet hose (4) to the power steering gear (3).Install the retaining clamp. 4. Bleed the power steering system. Refer to Power Steering System Bleeding. 5. Inspect all the hose connections for leaks. 6. Install the front grille. Refer to Grille Replacement (Chevrolet), (GMC). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3375 Power Steering Line/Hose: Service and Repair Power Steering Cooler Pipe/Hose Replacement (With Hydroboost) Power Steering Cooler Pipe/Hose Replacement (With Hydroboost) Removal Procedure 1. Remove the front grille. Refer to Grille Replacement (Chevrolet), (GMC). 2. Notice: Refer to Power Steering Hose Disconnected Notice. Place a drain pan under the vehicle. 3. Siphon the fluid from the reservoir to prevent excess spillage. 4. Remove the clamp retaining the power steering cooler inlet hose (3) to the power steering gear (2). 5. Remove the clamp retaining power steering cooler outlet hose (5) to the power steering pump (1). 6. Remove the bolts (2) retaining the power steering cooler from the radiator support. 7. Remove the power steering cooler from the vehicle. Installation Procedure 1. Notice: Refer to Fastener Notice. Install the power steering cooler (1) to the radiator support. Tighten the bolts retaining the power steering cooler to 5 Nm (44 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3376 2. Install the power steering cooler outlet hose (3) to the power steering pump (2). 3. Install the retaining clamp. 4. Install the power steering inlet hose (5) to the power steering gear (1). 5. Install the retaining clamp. 6. Fill and bleed the power steering system. Refer to Power Steering System Bleeding. 7. Inspect all the hose connections for leaks. 8. Install the front grille. Refer to Grille Replacement (Chevrolet), (GMC). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3377 Power Steering Line/Hose: Service and Repair Power Steering Cooler Pipe/Hose Replacement (Without Hydroboost) Power Steering Cooler Pipe/Hose Replacement (Without Hydroboost) Removal Procedure 1. Remove the front grille. 2. Notice: Refer to Power Steering Hose Disconnected Notice. Remove the clamp retaining the power steering outlet hose (3) from the power steering gear (4). 3. Remove the clamp retaining the power steering inlet hose from the power steering pump (5). 4. Remove the bolts (2) retaining the power steering cooler from the radiator support. 5. Remove the power steering cooler from the vehicle. Installation Procedure 1. Notice: Refer to Fastener Notice. Install the power steering cooler (1) to the vehicle. Tighten the power steering cooler retaining bolts to 5 Nm (44 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3378 2. Connect the power steering outlet hose (3) to the power steering gear (4). 3. Install the retaining clamp. 4. Connect the power steering inlet hose to the power steering pump. 5. Install the retaining clamp. 6. Bleed the power steering system. Refer to Power Steering System Bleeding. 7. Inspect all the hose connections for leaks. 8. Install the front grille. Refer to Grille Replacement (Chevrolet) Grille Replacement (GMC). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3379 Power Steering Line/Hose: Service and Repair Power Steering Gear Outlet Pipe/Hose Replacement (Recirculating Ball) Power Steering Gear Outlet Pipe/Hose Replacement (Recirculating Ball) Removal Procedure 1. Notice: Refer to Power Steering Hose Disconnected Notice. Install a drain pan under the vehicle. 2. Remove the power steering gear outlet hose (3) from the steering gear (2). 3. Remove the clamp retaining the power steering gear outlet hose (3) to the power steering pump (1). Remove the power steering gear outlet hose from the power steering pump. 4. Remove the power steering gear outlet hose from the vehicle. Installation Procedure 1. Notice: Refer to Installing Hoses Without Twists or Bends Notice. Route the hose in the same position the hose occupied prior to removal. 2. Install the power steering gear outlet hose (3) to the power steering pump (1). Position the clamp at the end of the hose. 3. Notice: Refer to Fastener Notice. Install the power steering gear outlet hose to the power steering gear. Tighten the outlet hose fitting to 28 Nm (20 ft. lbs.). 4. Remove the drain pan from under the vehicle. 5. Bleed the power steering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3380 Power Steering Line/Hose: Service and Repair Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) Removal Procedure 1. Remove the front grille. Refer to Grille Replacement (Chevrolet), (GMC). 2. Notice: Refer to Power Steering Hose Disconnected Notice. Remove the power steering outlet hose (4) from the power steering gear (3). 3. Remove the power steering inlet hose from the power steering pump (1). 4. Remove the bolts (2) retaining the cooler to the radiator support. 5. Remove the power steering cooler from the vehicle. Installation Procedure 1. Notice: Refer to Fastener Notice. Install the power steering cooler (1) to the vehicle. Tighten the power steering cooler retaining bolts to 5 Nm (44 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3381 2. Connect the power steering inlet hose to the power steering pump (5).Install the retaining clamp. 3. Connect the power steering outlet hose (4) to the power steering gear (3).Install the retaining clamp. 4. Bleed the power steering system. Refer to Power Steering System Bleeding. 5. Inspect all the hose connections for leaks. 6. Install the front grille. Refer to Grille Replacement (Chevrolet), (GMC). Power Steering Cooler Pipe/Hose Replacement (With Hydroboost) Power Steering Cooler Pipe/Hose Replacement (With Hydroboost) Removal Procedure 1. Remove the front grille. Refer to Grille Replacement (Chevrolet), (GMC). 2. Notice: Refer to Power Steering Hose Disconnected Notice. Place a drain pan under the vehicle. 3. Siphon the fluid from the reservoir to prevent excess spillage. 4. Remove the clamp retaining the power steering cooler inlet hose (3) to the power steering gear (2). 5. Remove the clamp retaining power steering cooler outlet hose (5) to the power steering pump (1). 6. Remove the bolts (2) retaining the power steering cooler from the radiator support. 7. Remove the power steering cooler from the vehicle. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3382 1. Notice: Refer to Fastener Notice. Install the power steering cooler (1) to the radiator support. Tighten the bolts retaining the power steering cooler to 5 Nm (44 inch lbs.). 2. Install the power steering cooler outlet hose (3) to the power steering pump (2). 3. Install the retaining clamp. 4. Install the power steering inlet hose (5) to the power steering gear (1). 5. Install the retaining clamp. 6. Fill and bleed the power steering system. Refer to Power Steering System Bleeding. 7. Inspect all the hose connections for leaks. 8. Install the front grille. Refer to Grille Replacement (Chevrolet), (GMC). Power Steering Cooler Pipe/Hose Replacement (Without Hydroboost) Power Steering Cooler Pipe/Hose Replacement (Without Hydroboost) Removal Procedure 1. Remove the front grille. 2. Notice: Refer to Power Steering Hose Disconnected Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3383 Remove the clamp retaining the power steering outlet hose (3) from the power steering gear (4). 3. Remove the clamp retaining the power steering inlet hose from the power steering pump (5). 4. Remove the bolts (2) retaining the power steering cooler from the radiator support. 5. Remove the power steering cooler from the vehicle. Installation Procedure 1. Notice: Refer to Fastener Notice. Install the power steering cooler (1) to the vehicle. Tighten the power steering cooler retaining bolts to 5 Nm (44 inch lbs.). 2. Connect the power steering outlet hose (3) to the power steering gear (4). 3. Install the retaining clamp. 4. Connect the power steering inlet hose to the power steering pump. 5. Install the retaining clamp. 6. Bleed the power steering system. Refer to Power Steering System Bleeding. 7. Inspect all the hose connections for leaks. 8. Install the front grille. Refer to Grille Replacement (Chevrolet) Grille Replacement (GMC). Power Steering Gear Outlet Pipe/Hose Replacement (Recirculating Ball) Power Steering Gear Outlet Pipe/Hose Replacement (Recirculating Ball) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3384 Removal Procedure 1. Notice: Refer to Power Steering Hose Disconnected Notice. Install a drain pan under the vehicle. 2. Remove the power steering gear outlet hose (3) from the steering gear (2). 3. Remove the clamp retaining the power steering gear outlet hose (3) to the power steering pump (1). Remove the power steering gear outlet hose from the power steering pump. 4. Remove the power steering gear outlet hose from the vehicle. Installation Procedure 1. Notice: Refer to Installing Hoses Without Twists or Bends Notice. Route the hose in the same position the hose occupied prior to removal. 2. Install the power steering gear outlet hose (3) to the power steering pump (1). Position the clamp at the end of the hose. 3. Notice: Refer to Fastener Notice. Install the power steering gear outlet hose to the power steering gear. Tighten the outlet hose fitting to 28 Nm (20 ft. lbs.). 4. Remove the drain pan from under the vehicle. 5. Bleed the power steering system. Power Steering Gear Inlet and Outlet Hose Replacement Power Steering Gear Inlet and Outlet Hose Replacement Removal Procedure 1. Disconnect the energy storage box before serving the vehicle. Refer to Hybrid Battery Service Disconnect/Connect (5.3L Engine w/RPO HP2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3385 2. Notice: Refer to Power Steering Hose Disconnected Notice. Install a drain pan under the vehicle. 3. Remove the power steering gear inlet hose (4) from the brake booster. 4. Remove the power brake booster outlet hose (3) retaining clamp (2) to remove the power brake booster hose outlet hose from the brake booster. 5. Remove the power brake booster inlet hose (1) from the brake booster. 6. Remove the power steering gear inlet hose (4) from the power steering gear. 7. Remove the power brake booster outlet hose (2) retaining clamp (3) to remove the power brake booster outlet hose from the power steering pump. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3386 8. Remove the power brake booster inlet hose from the power steering pump. 9. Remove the power steering hose assembly from the vehicle. Installation Procedure 1. Notice: Refer to Installing Hoses Without Twists or Bends Notice. Important: Following this sequence ensures correct routing and orientation. Install the gear inlet hose to the gear (4). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3387 2. Important: Ensure that the hose contacts the power steering pump as shown. Install the booster inlet hose to the pump. 3. Install the booster outlet hose to the power steering pump nipple (5) and retaining clamp. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3388 4. Install the booster inlet hose (1) to the booster. 5. Notice: Refer to Fastener Notice. Install the gear inlet hose to the booster. Tighten both power steering inlet hose fittings to 32 Nm (24 ft. lbs.). 6. Install the booster outlet hose (3) to the booster and install the retaining clamp (2). 7. Remove the drain pan from under the vehicle. 8. Bleed the power steering system. 9. Connect the energy storage box after servicing the vehicle. Refer to Hybrid Battery Service Disconnect/Connect (5.3L Engine w/RPO HP2). Power Steering Gear Inlet Pipe/Hose Replacement (Rack and Pinion) Power Steering Gear Inlet Pipe/Hose Replacement (Rack and Pinion) Removal Procedure Notice: Refer to Power Steering Hose Disconnected Notice. 1. Remove the power steering inlet hose (2) from the power steering pump (1). 2. Remove the power steering inlet hose (2) from the power steering gear (3). Installation Procedure 1. Connect the power steering inlet hose (2) to the power steering gear (3). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3389 2. Notice: Refer to Fastener Notice. Connect the power steering inlet hose (2) to the power steering pump (1). Tighten the hose connections to 28 Nm (20 ft. lbs.) 3. Bleed the power steering system. 4. Inspect all the hose connections for leaks. Power Steering Gear Inlet Pipe/Hose Replacement (With Gas Hydroboost) Power Steering Gear Inlet Pipe/Hose Replacement (With Gas Hydroboost) Removal Procedure 1. Notice: Refer to Power Steering Hose Disconnected Notice. Install a drain pan under the vehicle. 2. Remove the power steering gear inlet hose (1) from the brake booster. 3. Remove the power steering gear inlet hose from the power steering gear. 4. Remove the power steering gear inlet hose from the vehicle. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3390 1. Notice: Refer to Installing Hoses Without Twists or Bends Notice. Route the hose in the same position the hose occupied prior to removal. 2. Install the power steering gear inlet hose (1) to the brake booster (2). Hand tighten only. 3. Notice: Refer to Fastener Notice. Install the power steering gear inlet hose to the power steering gear. Tighten both power steering gear inlet hose fittings to 28 Nm (20 ft. lbs.). 4. Remove the drain pan from under the vehicle. 5. Bleed the power steering system. Power Steering Gear Inlet Pipe/Hose Replacement (Without Hydroboost) Power Steering Gear Inlet Pipe/Hose Replacement (Without Hydroboost) Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the engine protection shield. 3. Notice: Refer to Power Steering Hose Disconnected Notice. Install a drain pan under the vehicle. 4. Remove the power steering gear inlet hose (3) from the power steering pump (1). 5. Remove the power steering gear inlet hose from the power steering gear. 6. Remove the power steering gear inlet hose from the vehicle. Installation Procedure 1. Notice: Refer to Installing Hoses Without Twists or Bends Notice. Route the hose in the same position the hose occupied prior to removal. 2. Install the power steering gear inlet hose (3) to the power steering pump (1). Hand tighten only. 3. Notice: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Power Steering Line/Hose > Component Information > Service and Repair > Power Steering Cooler Pipe/Hose Replacement (Rack and Pinion) > Page 3391 Refer to Fastener Notice. Install the power steering gear inlet hose to the power steering gear. Tighten both power steering gear inlet hose fittings to 28 Nm (20 ft. lbs.). 4. Remove the drain pan from under the vehicle. 5. Install the engine protection shield. 6. Lower the vehicle. 7. Bleed the power steering system. Power Steering Gear Outlet Pipe/Hose Replacement (Rack and Pinion) Power Steering Gear Outlet Pipe/Hose Replacement (Rack and Pinion) Removal Procedure Notice: Refer to Power Steering Hose Disconnected Notice. 1. Remove the power steering outlet hose (4) from the power steering gear (3). 2. Remove the power steering outlet hose (4) from the power steering cooler (5). Installation Procedure 1. Connect the power steering outlet hose (4) to the power steering cooler (5). 2. Connect the power steering outlet hose (4) to the power steering gear (3). Hand tighten only. 3. Notice: Refer to Fastener Notice. Connect the power steering outlet hose (2) to the power steering pump (1). Tighten both hose connections to 28 Nm (20 ft. lbs.). 4. Bleed the power steering system. 5. Inspect all the hose connections for leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement Radiator Hose: Service and Repair Radiator Inlet Hose Replacement Radiator Inlet Hose Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Loosen the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ Mass airflow/intake air temperature (MAF/IAT) sensor 3. Remove the radiator inlet hose clip from the outlet hose. 4. Remove the air cleaner outlet duct. 5. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 6. Remove the radiator vent inlet hose from the radiator inlet hose clips. 7. Reposition the inlet hose clamp at the radiator. 8. Remove the inlet hose clip from the fan shroud. 9. Remove the inlet hose (1) from the radiator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 3396 10. Reposition the inlet hose clamp at the water pump. 11. Remove the inlet hose from the water pump. Installation Procedure 1. Install the inlet hose to the water pump. 2. Position the inlet hose clamp at the water pump. 3. Install the inlet hose (1) to the radiator. 4. Position the inlet hose clamp at the radiator. 5. Install the inlet hose clip to the fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 3397 6. Install the radiator vent inlet hose to the radiator inlet hose clips. 7. If necessary, install the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 8. Important: Align the arrow at the throttle body end of the duct with the throttle body attaching stud. Install the air cleaner outlet duct. 9. Install the radiator inlet hose clip to the outlet duct. 10. Tighten the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ MAF/IAT sensor Tighten the clamps to 4 Nm (35 inch lbs.). 11. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 3398 Radiator Hose: Service and Repair Radiator Outlet Hose Replacement Radiator Outlet Hose Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Loosen the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ Mass airflow/intake air temperature (MAF/IAT) sensor 3. Remove the radiator inlet hose clip from the outlet duct. 4. Remove the air cleaner outlet duct. 5. Reposition the outlet hose clamp at the water pump. 6. Remove the outlet hose from the water pump. 7. Reposition the outlet hose clamp at the radiator. 8. Remove the outlet hose (6) from the radiator. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Hoses > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 3399 1. Install the outlet hose (6) to the radiator. 2. Position the outlet hose clamp at the radiator. 3. Install the outlet hose to the water pump. 4. Position the outlet hose clamp at the water pump. 5. Important: Align the arrow at the throttle body end of the duct with the throttle body attaching stud. Install the air cleaner outlet duct. 6. Install the radiator inlet hose clip to the outlet duct. 7. Tighten the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ MAF/IAT sensor Tighten the clamps to 4 Nm (35 inch lbs.). 8. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Brake Fluid > Component Information > Specifications Brake Fluid: Specifications HYDRAULIC BRAKE SYSTEM Delco Supreme 11 Brake Fluid or equivalent DOT-3 brake fluid. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Clutch Fluid > Component Information > Specifications Clutch Fluid: Specifications HYDRAULIC CLUTCH FLUID GM Part No. U.S. 12345347, in Canada 10953517) or equivalent DOT-3 brake fluid. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Coolant: Technical Service Bulletins Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Bulletin No.: 05-06-02-002B Date: January 18, 2008 INFORMATION Subject: DEX-COOL(R) Coolant - New Leak Detection Dye J 46366 - Replaces J 29545-6 Models: 1996-2008 GM Passenger Cars and Light/Medium Duty Trucks* (including Saturn) 1997-2008 Isuzu T-Series Medium Duty Tilt Cab Models Built in Janesville and Flint 1999-2008 Isuzu N-Series Medium Duty Commercial Models with 5.7L or 6.0L Gas Engine 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X *EXCLUDING 2006 and Prior Chevrolet Aveo, Epica, Optra, Vivant and Pontiac Matiz, Wave Supercede: This bulletin is being revised to include additional model years. Please discard Corporate Bulletin Number 05-06-02-002A (Section 06 - Engine/Propulsion System). Leak detection dye P/N 12378563 (J 29545-6) (in Canada P/N 88900915) may cause DEX-COOL(R) coolant to appear green in a black vessel making it appear to be conventional (green) coolant. This may cause a technician to add conventional coolant to a low DEX-COOL(R) system thus contaminating it. The green DEX-COOL(R) appearance is caused by the color of the leak detection dye which alters the color of the DEX-COOL(R) coolant. A new leak detection dye P/N 89022219 (J 46366) (in Canada P/N 89022220) has been released that does not alter the appearance of the DEX-COOL(R) coolant. When adding the new leak detection dye the color of the DEX-COOL(R) coolant will not change. For detecting leaks on any system that uses DEX-COOL(R) leak detection dye P/N 89022219 (in Canada P/N 89022220) should be used. The new leak detection dye can be used with both conventional and DEX-COOL(R) coolant. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 3411 Coolant: Technical Service Bulletins Cooling System - Coolant Recycling Information Bulletin No.: 00-06-02-006D Date: August 15, 2006 INFORMATION Subject: Engine Coolant Recycling and Warranty Information Models: 2007 and Prior GM Passenger Cars and Trucks (Including Saturn) 2007 and Prior HUMMER Vehicles 2005-2007 Saab 9-7X Attention: Please address this bulletin to the Warranty Claims Administrator and the Service Manager. Supercede: This bulletin is being revised to adjust the title and Include Warranty Information. Please discard Corporate Bulletin Number 00-06-02-006C (Section 06 - Engine/Propulsion System). Coolant Reimbursement Policy General Motors supports the use of recycled engine coolant for warranty repairs/service, providing a GM approved engine coolant recycling system is used. Recycled coolant will be reimbursed at the GMSPO dealer price for new coolant plus the appropriate mark-up. When coolant replacement is required during a warranty repair, it is crucial that only the relative amount of engine coolant concentrate be charged, not the total diluted volume. In other words: if you are using two gallons of pre-diluted (50:50) recycled engine coolant to service a vehicle, you may request reimbursement for one gallon of GM Goodwrench engine coolant concentrate at the dealer price plus the appropriate warranty parts handling allowance. Licensed Approved DEX-COOL(R) Providers Important: USE OF NON-APPROVED VIRGIN OR RECYCLED DEX-COOL(R) OR DEVIATIONS IN THE FORM OF ALTERNATE CHEMICALS OR ALTERATION OF EQUIPMENT, WILL VOID THE GM ENDORSEMENT, MAY DEGRADE COOLANT SYSTEM INTEGRITY AND PLACE THE COOLING SYSTEM WARRANTY UNDER JEOPARDY. Shown in Table 1 are the only current licensed and approved providers of DEX-COOL(R). Products that are advertised as "COMPATIBLE" or "RECOMMENDED" for use with DEX-COOL(R) have not been tested or approved by General Motors. Non-approved coolants may degrade the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 3412 coolant system integrity and will no longer be considered a 5 yr/150,000 mile (240,000 km) coolant. Coolant Removal Services/Recycling The tables include all coolant recycling processes currently approved by GM. Also included is a primary phone number and demographic information. Used DEX-COOL(R) can be combined with used conventional coolant (green) for recycling. Depending on the recycling service and/or equipment, it is then designated as a conventional 2 yr/30,000 mile (50,000 km) coolant or DEX-COOL(R) 5 yr/150,000 mile (240,000 km) coolant. Recycled coolants as designated in this bulletin may be used during the vehicle(s) warranty period. DEX-COOL(R) Recycling The DEX-COOL(R) recycling service listed in Table 2 has been approved for recycling waste engine coolants (DEX-COOL) or conventional) to DEX-COOL(R) with 5 yr/150,000 mile (240,000 km) usability. Recycling Fluid Technologies is the only licensed provider of Recycled DEX-COOL(R) meeting GM6277M specifications and utilizes GM approved inhibitor packages. This is currently a limited program being monitored by GM Service Operations which will be expanded as demand increases. Conventional (Green) Recycling Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 3413 Processes shown in the Table 3 are capable of recycling waste engine coolants (DEX-COOL(R) or conventional) to a conventional (green) coolant. Recycling conventional coolant can be accomplished at your facility by a technician using approved EQUIPMENT (listed by model number in Table 3), or by an approved coolant recycling SERVICE which may recycle the coolant at your facility or at an offsite operation. Refer to the table for GM approved coolant recyclers in either of these two categories. Should you decide to recycle the coolant yourself, strict adherence to the operating procedures is imperative. Use ONLY the inhibitor chemicals supplied by the respective (GM approved) recycling equipment manufacturer. Sealing Tablets Cooling System Sealing Tablets (Seal Tabs) should not be used as a regular maintenance item after servicing an engine cooling system. Discoloration of coolant can occur if too many seal tabs have been inserted into the cooling system. This can occur if seal tabs are repeatedly used over the service life of a vehicle. Where appropriate, seal tabs may be used if diagnostics fail to repair a small leak in the cooling system. When a condition appears in which seal tabs may be recommended, a specific bulletin will be released describing their proper usage. Water Quality The integrity of the coolant is dependent upon the quality of DEX-COOL(R) and water. DEX-COOL(R) is a product that has enhanced protection capability as well as an extended service interval. These enhanced properties may be jeopardized by combining DEX-COOL(R) with poor quality water. If you suspect the water in your area of being poor quality, it is recommended you use distilled or de-ionized water with DEX-COOL(R). "Pink" DEX-COOL(R) DEX-COOL(R) is orange in color to distinguish it from other coolants. Due to inconsistencies in the mixing of the dyes used with DEX-COOL(R), some batches may appear pink after time. The color shift from orange to pink does not affect the integrity of the coolant, and still maintains the 5 yr/150,000 mile (240,000 km) service interval. Back Service Only use DEX-COOL(R) if the vehicle was originally equipped with DEX-COOL(R). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 3414 Contamination Mixing conventional green coolant with DEX-COOL(R) will degrade the service interval from 5 yrs./150,000 miles (240,000 km) to 2 yrs./30,000 miles (50,000 km) if left in the contaminated condition. If contamination occurs, the cooling system must be flushed twice immediately and re-filled with a 50/50 mixture of DEX-COOL(R) and clean water in order to preserve the enhanced properties and extended service interval of DEX-COOL(R). After 5 years/150,000 miles (240,000 km) After 5 yrs/150,000 miles (240,000 km), the coolant should be changed, preferably using a coolant exchanger. If the vehicle was originally equipped with DEX-COOL(R) and has not had problems with contamination from non-DEX-COOL(R) coolants, then the service interval remains the same, and the coolant does not need to be changed for another 5 yrs/150,000 miles (240,000 km) Equipment (Coolant Exchangers) The preferred method of performing coolant replacement is to use a coolant exchanger. A coolant exchanger can replace virtually all of the old coolant with new coolant. Coolant exchangers can be used to perform coolant replacement without spillage, and facilitate easy waste collection. They can also be used to lower the coolant level in a vehicle to allow for less messy servicing of cooling system components. It is recommended that you use a coolant exchanger with a vacuum feature facilitates removing trapped air from the cooling system. This is a substantial time savings over repeatedly thermo cycling the vehicle and topping-off the radiator. The vacuum feature also allows venting of a hot system to relieve system pressure. Approved coolant exchangers are available through the GMDE (General Motors Dealer Equipment) program. For refilling a cooling system that has been partially or fully drained for repairs other than coolant replacement, the Vac-N-Fill Coolant Refill Tool (GE-47716) is recommended to facilitate removal of trapped air from the cooling system during refill. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Specifications > Capacity Specifications Coolant: Capacity Specifications COOLING SYSTEM CAPACITY AUTOMATIC TRANSMISSION With Engine Fan Driven cooling system ..................................................................................................................................... 16.2 quarts (15.3 liters) With Electric Cooling Fan system .............................................................................................................................................. 16.7 quarts (15.8 liters) MANUAL TRANSMISSION With Engine Fan Driven cooling system ..................................................................................................................................... 16.7 quarts (15.8 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Coolant > Component Information > Specifications > Capacity Specifications > Page 3417 Coolant: Fluid Type Specifications ENGINE COOLANT The cooling system in your vehicle is filled with DEX-COOL engine coolant. This coolant is designed to remain in your vehicle for 5 years or 150,000 miles (240 000 km), whichever occurs first, if you add only DEX-COOL extended life coolant. A 50/50 mixture of clean, drinkable water and DEX-COOL coolant will: - Give freezing protection down to -34°F (-37°C). - Give boiling protection up to 265°F (129°C). - Protect against rust and corrosion. - Help keep the proper engine temperature. - Let the warning lights and gages work as they should. NOTICE: Using coolant other than DEX-COOL may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50 000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX-COOL (silicate-free) coolant in your vehicle. WHAT TO USE Use a mixture of one-half clean, drinkable water and one-half DEX-COOL coolant which won't damage aluminum parts. If you use this coolant mixture, you don't need to add anything else. CAUTION: Adding only plain water to your cooling system can be dangerous. Plain water, or some other liquid such as alcohol, can boil before the proper coolant mixture will. Your vehicle's coolant warning system is set for the proper coolant mixture. With plain water or the wrong mixture, your engine could get too hot but you would not get the overheat warning. Your engine could catch fire and you or others could be burned. Use a 50/50 mixture of clean, drinkable water and DEX-COOL coolant. NOTICE: If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. If you have to add coolant more than four times a year, check your cooling system. NOTICE: If you use the proper coolant, you do not have to add extra inhibitors or additives which claim to improve the system. These can be harmful. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Technical Service Bulletins > A/T - DEXRON(R)-VI Fluid Information Fluid - A/T: Technical Service Bulletins A/T - DEXRON(R)-VI Fluid Information INFORMATION Bulletin No.: 04-07-30-037E Date: April 07, 2011 Subject: Release of DEXRON(R)-VI Automatic Transmission Fluid (ATF) Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2007 Saturn Relay 2005 and Prior Saturn L-Series 2005-2007 Saturn ION 2005-2008 Saturn VUE with 4T45-E 2005-2008 Saab 9-7X Except 2008 and Prior Chevrolet Aveo, Equinox Except 2006 and Prior Chevrolet Epica Except 2007 and Prior Chevrolet Optra Except 2008 and Prior Pontiac Torrent, Vibe, Wave Except 2003-2005 Saturn ION with CVT or AF23 Only Except 1991-2002 Saturn S-Series Except 2008 and Prior Saturn VUE with CVT, AF33 or 5AT (MJ7/MJ8) Transmission Only Except 2008 Saturn Astra Attention: DEXRON(R)-VI Automatic Transmission Fluid (ATF) is the only approved fluid for warranty repairs for General Motors transmissions/transaxles requiring DEXRON(R)-III and/or prior DEXRON(R) transmission fluids. Supercede: This bulletin is being revised to update information. Please discard Corporate Bulletin Number 04-07-30-037D (Section 07 - Transmission/Transaxle). MANUAL TRANSMISSIONS / TRANSFER CASES and POWER STEERING The content of this bulletin does not apply to manual transmissions or transfer cases. Any vehicle that previously required DEXRON(R)-III for a manual transmission or transfer case should now use P/N 88861800. This fluid is labeled Manual Transmission and Transfer Case Fluid. Some manual transmissions and transfer cases require a different fluid. Appropriate references should be checked when servicing any of these components. Power Steering Systems should now use P/N 9985010 labeled Power Steering Fluid. Consult the Parts Catalog, Owner's Manual, or Service Information (SI) for fluid recommendations. Some of our customers and/or General Motors dealerships/Saturn Retailers may have some concerns with DEXRON(R)-VI and DEXRON(R)-III Automatic Transmission Fluid (ATF) and transmission warranty claims. DEXRON(R)-VI is the only approved fluid for warranty repairs for General Motors transmissions/transaxles requiring DEXRON(R)-III and/or prior DEXRON(R) transmission fluids (except as noted above). Please remember that the clean oil reservoirs of the J-45096 - Flushing and Flow Tester machine should be purged of DEXRON(R)-III and filled with DEXRON(R)-VI for testing, flushing or filling General Motors transmissions/transaxles (except as noted above). DEXRON(R)-VI can be used in any proportion in past model vehicles equipped with an automatic transmission/transaxle in place of DEXRON(R)-III (i.e. topping off the fluid in the event of a repair or fluid change). DEXRON(R)-VI is also compatible with any former version of DEXRON(R) for use in automatic transmissions/transaxles. DEXRON(R)-VI ATF General Motors Powertrain has upgraded to DEXRON(R)-VI ATF with the start of 2006 vehicle production. Current and prior automatic transmission models that had used DEXRON(R)-III must now only use DEXRON(R)-VI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Technical Service Bulletins > A/T - DEXRON(R)-VI Fluid Information > Page 3422 All 2006 and future model transmissions that use DEXRON(R)-VI are to be serviced ONLY with DEXRON(R)-VI fluid. DEXRON(R)-VI is an improvement over DEXRON(R)-III in the following areas: * These ATF change intervals remain the same as DEXRON(R)-III for the time being. 2006-2008 Transmission Fill and Cooler Flushing Some new applications of the 6L80 six speed transmission will require the use of the J 45096 Flushing and Flow Tester to accomplish transmission fluid fill. The clean oil reservoir of the machine should be purged of DEXRON(R)-III and filled with DEXRON(R)-VI. Parts Information Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Technical Service Bulletins > A/T - DEXRON(R)-VI Fluid Information > Page 3423 Fluid - A/T: Technical Service Bulletins A/T - Water Or Coolant Contamination Information INFORMATION Bulletin No.: 08-07-30-035B Date: November 01, 2010 Subject: Information on Water or Ethylene Glycol in Transmission Fluid Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks with Automatic Transmission Supercede: This bulletin is being revised to update model years. Please discard Corporate Bulletin Number 08-07-30-035A (Section 07 - Transmission/Transaxle). Water or ethylene glycol in automatic transmission fluid (ATF) is harmful to internal transmission components and will have a negative effect on reliability and durability of these parts. Water or ethylene glycol in ATF will also change the friction of the clutches, frequently resulting in shudder during engagement or gear changes, especially during torque converter clutch engagement. Indications of water in the ATF may include: - ATF blowing out of the transmission vent tube. - ATF may appear cloudy or, in cases of extreme contamination, have the appearance of a strawberry milkshake. - Visible water in the oil pan. - A milky white substance inside the pan area. - Spacer plate gaskets that appear to be glued to the valve body face or case. - Spacer plate gaskets that appear to be swollen or wrinkled in areas where they are not compressed. - Rust on internal transmission iron/steel components. If water in the ATF has been found and the source of the water entry has not been identified, or if a leaking in-radiator transmission oil cooler is suspected (with no evidence of cross-contamination in the coolant recovery reservoir), a simple and quick test kit is available that detects the presence of ethylene glycol in ATF. The "Gly-Tek" test kit, available from the Nelco Company, should be obtained and the ATF tested to make an accurate decision on the need for radiator replacement. This can help to prevent customer comebacks if the in-radiator transmission oil cooler is leaking and reduce repair expenses by avoiding radiator replacement if the cooler is not leaking. These test kits can be obtained from: Nelco Company Test kits can be ordered by phone or through the website listed above. Orders are shipped standard delivery time but can be shipped on a next day delivery basis for an extra charge. One test kit will complete 10 individual fluid sample tests. For vehicles repaired under warranty, the cost of the complete test kit plus shipping charges should be divided by 10 and submitted on the warranty claim as a net item. The transmission should be repaired or replaced based on the normal cost comparison procedure. Important If water or coolant is found in the transmission, the following components MUST be replaced. - Replace all of the rubber-type seals. - Replace all of the composition-faced clutch plates and/or bands. - Replace all of the nylon parts. - Replace the torque converter. - Thoroughly clean and rebuild the transmission, using new gaskets and oil filter. Important The following steps must be completed when repairing or replacing. Flush and flow check the transmission oil cooler using J 45096. Refer to Corporate Bulletin Number 02-07-30-052F- Automatic Transmission Oil Cooler Flush and Flow Test Essential Tool J 45096 TransFlow. - Thoroughly inspect the engine cooling system and hoses and clean/repair as necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Technical Service Bulletins > A/T - DEXRON(R)-VI Fluid Information > Page 3424 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Specifications > Capacity Specifications Fluid - A/T: Capacity Specifications 4L60-E/4L65-E/4L70-E - Automatic Transmission Fluid Capacity Specifications Pan Removal ....................................................................................................................................... ........................................................ 4.7 liters (5.0 qts) Overhaul .............................................................................................................................................. .................................................. 10.6 liters (11.0 qts) Measurements are approximate 4L80-E/4L85-E - Automatic Transmission Fluid Capacity Specifications Pan Removal ....................................................................................................................................... ........................................................ 7.3 liters (7.7 qts) Overhaul .............................................................................................................................................. .................................................. 12.8 liters (13.5 qts) Measurements are approximate Allison - Automatic Transmission Fluid Capacity Specifications Allison 1000 Initial Fill ............................................................................................................................................... ................................................. 12.0 liters (12.7 qts) Refill ..................................................................................................................................................... .................................................... 7.0 liters (7.4 qts) Measurements are approximate Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Specifications > Capacity Specifications > Page 3427 Fluid - A/T: Fluid Type Specifications AUTOMATIC TRANSMISSION DEXRON-VI Automatic Transmission Fluid. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure Fluid - A/T: Testing and Inspection Allison Transmission Fluid Checking Procedure Transmission Fluid Check Cold Fluid Check The purpose of the cold check is to determine if the transmission has enough fluid to be operated safely until a hot check can be made. 1. Important: The fluid level rises as fluid temperature increases. DO NOT fill above the COLD CHECK band if the transmission fluid is below normal operating temperatures. Bring the vehicle to a complete stop on a level surface using the service brakes. 2. Ensure that the engine is at low idle RPM (500 - 800 RPM). 3. With the service brakes applied, put the transmission in the P, PARK, position. 4. Engage the park pawl by slowly releasing the service brakes. The vehicle may move slightly as the pawl engages. 5. Apply the parking brake and ensure it is properly engaged. 6. Run the engine for at least one minute. Apply the service brakes and shift to D, DRIVE, then to N, NEUTRAL, and then shift to R, REVERSE, in order to fill the hydraulic system. 7. Ensure that the engine is at low idle RPM (500 - 800 RPM). 8. With the service brakes applied, put the transmission in the P, PARK, position. 9. Engage the park pawl by slowly releasing the service brakes. The vehicle may move slightly as the pawl engages. 10. With the engine running, remove the fluid level indicator from the fill tube and wipe the indicator clean. 11. Important: ^ If the fluid level is within the COLD CHECK band, the transmission may be operated until the fluid is hot enough to perform a HOT RUN check. If the fluid level is not within the COLD CHECK band, add or drain as necessary to bring it to the middle of the COLD CHECK band. ^ Always check the fluid level at least twice using the procedure described above. Consistent readings are important in order to maintaining proper fluid level. If inconsistent readings persist, inspect the transmission vent assembly to be sure that it is clean and unclogged. If readings are still inconsistent, contact your nearest Allison distribution or dealer. Insert the fluid level indicator into the fill tube and remove. Check the fluid level reading. Repeat the check procedure to verify the reading. 12. Perform a hot check at the first opportunity after the normal operating sump temperature of 71 93°C (160 - 200°F) is reached. Hot Fluid Check 1. Important: The fluid must be hot to ensure an accurate check. The fluid level rises as temperature increases. Operate the transmission in D, DRIVE, range until normal operating temperature is reached. Normal operating temperature is any of the following: ^ Sump temperature 71 - 93°C (160 - 200°F) ^ Converter-out temperature 82 - 104°C (180 - 220°F) ^ If a transmission temperature gage is not present, check the fluid level when the engine water temperature gage has stabilized and the transmission has been operated under load for at least one hour. 2. Bring the vehicle to a complete stop on a level surface using the service brake. 3. Ensure that the engine is at low idle RPM, 500 - 800 RPM. 4. With the service brakes applied, place the transmission in the P, PARK, position. 5. Engage the park pawl by slowly releasing the service brakes. The vehicle may move slightly as the pawl engages. 6. Apply the parking brake and ensure it is properly engaged. 7. With the engine running, remove the fluid level indicator from the fill tube and wipe the indicator clean. 8. Important: Always check the fluid level at least twice using the procedure described above. Consistent readings are important to maintaining proper fluid level. If inconsistent readings persist, inspect the transmission vent assembly to be sure it is clean and unclogged. If readings are still inconsistent, contact your nearest Allison distribution or dealer. Insert the fluid level indicator into fill the tube and remove. Check fluid level reading. Repeat the check procedure to verify the reading. 9. Important: Safe operating level is within the HOT RUN band on the fluid level indicator. The width of the HOT RUN band represents approximately 1.0 liter (1.06 quarts) of fluid at normal operating sump temperature. If the fluid level is not within the HOT RUN band, add or drain as necessary to bring the fluid level to within the HOT RUN band. Fluid Inspection Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure > Page 3430 1. Important: Transmission fluid must be changed whenever there is evidence of dirt or a high temperature condition. High temperature causes the transmission fluid to be discolored or to have a strong odor. Local conditions, severity of operation, or duty cycle may require more or less frequent fluid or filter change intervals. Examine the drained fluid for evidence of dirt. 2. Important: Cooler water may be contaminated by engine oil if an engine oil cooler is present; be sure to locate the correct source of cooler water contamination. Examine the drained fluid for evidence of water. Obvious water contamination of the transmission fluid or transmission fluid in the cooling water from the heat exchanger indicates a leak between the water and fluid areas of the cooler. Inspect and pressure test the cooler to confirm the leak. Replace leaking coolers. 3. Notice: Engine coolant in the transmission hydraulic system requires immediate action. Failure to clean or replace all contaminated components may result in premature transmission failure. Examine the drained fluid for evidence of engine coolant. 4. Examine the drained fluid for evidence of metal. Metal particles in the fluid, other than minute particles normally trapped in the oil filter, indicate internal transmission damage. When this occurs, inspect the inside of the oil pan for excessive metal particles. Refer to Oil Pan Replacement. 5. Metal contamination requires complete transmission disassembly. 6. Notice: Flush the transmission cooling system and inspect for restrictions following a transmission failure. Failure to repair or replace restricted oil cooling system components may result in premature transmission failure. Clean all internal and external hydraulic circuits, cooler, and all other areas where the particles could lodge. Refer to Transmission Fluid Cooler Flushing and Flow Test. See: Transmission and Drivetrain/Automatic Transmission/Transaxle/Testing and Inspection/Component Tests and General Diagnostics/Allison - Automatic Transmission/Transmission Fluid Cooler Flushing and Flow Test Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure > Page 3431 Fluid - A/T: Testing and Inspection 4L60-E/4L65-E/4L70-E Transmission Fluid Checking Procedure Transmission Fluid Check This procedure checks the transmission fluid level, as well as the condition of the fluid itself. Notice: Always use the proper automatic transmission fluid listed. Using incorrect automatic transmission fluid may damage the vehicle. Before checking the fluid level, perform the following: 1. Start the engine and park the vehicle on a level surface. Keep the engine running. 2. Apply the parking brake and place the shift lever in PARK (P). 3. Depress the brake pedal and move the shift lever through each gear range, pausing for about 3 seconds in each range. Then, move the shift lever back to PARK (P). 4. Allow the engine to idle 500-800 RPM for at least 1 minute. Slowly release the brake pedal. 5. Keep the engine running and observe the transmission fluid temperature (TFT) using the Driver Information Center (DIC) or a scan tool. 6. Using the TFT reading, determine and perform the appropriate check procedure. If the TFT reading is not within the required temperature ranges, allow the vehicle to cool, or operate the vehicle until the appropriate TFT is reached. Cold Check Procedure 1. Important: Use the cold check procedure only as a reference to determine if the transmission has enough fluid to be operated safely until a hot check procedure can be made. The hot check procedure is the most accurate method to check the fluid level. Perform the hot check procedure at the first opportunity. Use this cold check procedure to check fluid level when the TFT is between 27°C - 32°C (80°F 90°F). Start the engine and locate the transmission dipstick at the rear of the engine compartment, on the passenger's side of the vehicle. 2. Flip the handle up, and then pull out the dipstick and wipe the dipstick end with a clean rag or paper towel. 3. Install the dipstick by pushing it back in the dipstick tube all the way, wait three seconds and then pull it back out again. 4. Important: Always check the fluid level at least twice. Consistent readings are important to maintaining proper fluid level. If inconsistent readings are noted, inspect the transmission vent assembly to ensure it is clean and unclogged. Keep the dipstick pointing down and check both sides of the dipstick, and read the lower level. Repeat the check procedure to verify the reading. 5. Inspect the color of the fluid on the dipstick. Refer to Fluid Condition Inspection in this procedure. 6. If the fluid level is below the COLD check line, add only enough fluid as necessary to bring the level into the COLD line. It does not take much fluid, generally less than one pint (0.5L). Do not overfill. 7. If the fluid level is in the acceptable range, push the dipstick back in all the way, then flip the handle down to lock the dipstick in place. 8. Perform a hot check at the first opportunity after the transmission reaches a normal operating temperature between 82°C - 93°C (180°F - 200°F). Hot Check Procedure 1. Important: Use this procedure to check the transmission fluid level when the TFT is between 82°C - 93°C (180°F - 200°F). The hot check procedure is the most accurate method to check the fluid level. The hot check should be performed at the first opportunity in order to verify the cold check. The fluid level rises as fluid temperature increases, so it is important to ensure the transmission temperature is within range. Start the engine and locate the transmission dipstick at the rear of the engine compartment, on the passenger's side of the vehicle. 2. Flip the handle up, and then pull out the dipstick and wipe the dipstick end with a clean rag or paper towel. 3. Install the dipstick by pushing it back in the dipstick tube all the way, wait three seconds and then pull it back out. 4. Important: Always check the fluid level at least twice. Consistent readings are important to maintaining proper fluid level. If inconsistent readings are noted, inspect the transmission vent assembly to ensure it is clean and unclogged. Keep the dipstick tip pointing down and check both sides of the dipstick. Read the lower level. Repeat the check procedure to verify the reading. 5. Inspect the color of the fluid on the dipstick. Refer to Fluid Condition Inspection. 6. A safe operating fluid level is within the HOT crosshatch band on the dipstick. If the fluid level is not within the HOT band, and the transmission temperature is between 82°C - 93°C (180°F - 200°F), add or drain fluid as necessary to bring the level into the HOT band. If the fluid level is low, add only enough fluid to bring the level into the HOT band. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure > Page 3432 7. Important: To assist in reaching the correct temperature range of 82°C - 93°C (180°F - 200°F), drive the vehicle in second gear at no more than 65 MPH until the desired temperature is reached. If the fluid level is low, add only enough fluid to bring the level into the HOT band. It does not take much fluid, generally less than one pint (0.5L). Do not overfill. Also, if the fluid level is low, inspect the transmission for leaks. Refer to Fluid Leak Diagnosis. See: Transmission and Drivetrain/Automatic Transmission/Transaxle/Testing and Inspection/Component Tests and General Diagnostics/4L60-E/4L65-E/4L70-E - Automatic Transmission/Fluid Leak Diagnosis 8. If the fluid level is in the acceptable range, push the dipstick back into the dipstick tube all the way, and then flip the handle down to lock the dipstick in place. 9. If applicable and if the vehicle is equipped, reset the transmission oil life monitor only if the fluid was changed. Fluid Condition Inspection Inspect the fluid color. The fluid should be red or dark brown. ^ If the fluid color is very dark or black and has a burnt odor, inspect the fluid and inside of the bottom pan for excessive metal particles or other debris. A small amount of "friction" material in the bottom pan is a "normal" condition. If large pieces and/or metal particles are noted in the fluid or bottom pan, flush the oil cooler and cooler lines and overhaul the transmission. If there are no signs of transmission internal damage noted, replace the fluid filter assembly, repair the oil cooler, and flush the cooler lines. ^ Fluid that is cloudy or milky or appears to be contaminated with water indicates engine coolant or water contamination. Refer to Engine Coolant/Water in Transmission. See: Transmission and Drivetrain/Automatic Transmission/Transaxle/Testing and Inspection/Component Tests and General Diagnostics/4L60-E/4L65-E/4L70-E - Automatic Transmission/Engine Coolant/Water In Transmission Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure > Page 3433 Fluid - A/T: Testing and Inspection 4L80-E/4L85-E Transmission Fluid Checking Procedure Transmission Fluid Check 1. Start the engine and operate the vehicle for 15 minutes or until the transmission fluid reaches an operating temperature of 82 - 93°C (180 - 200°F). 2. Park the vehicle on a level surface. 3. With your foot on the brake, move the shift lever through each gear range. Pause for about 3 seconds in each range, ending in PARK. 4. Apply the parking brake and let the engine idle for 3 minutes. 5. Remove the transmission fluid level indicator. Wipe the fluid level indicator clean. Insert the fluid level indicator. Give the fluid level indicator a full twist in order to close. 6. Wait 3 seconds and remove the fluid level indicator. 7. Read both sides of the fluid level indicator. The fluid must be within the hot cross-hatched area using the lowest level reading. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure > Page 3434 Step 1 - Step 15 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Testing and Inspection > Allison Transmission Fluid Checking Procedure > Page 3435 Step 16 - Step 20 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Fluid - A/T: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Fluid and Filter Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Place a drain pan under the transmission oil pan. 3. Remove the oil pan drain plug, if equipped. 4. If necessary, remove the bolts and position aside the range selector cable bracket for clearance while lowering the pan. It is not necessary to remove the cable from the lever or bracket. 5. Remove the catalytic converter. Refer to Catalytic Converter Replacement. 6. Remove the oil pan bolts from the front and sides of the pan only. 7. Loosen the rear oil pan bolts approximately 4 turns. 8. Lightly tap the oil pan with a rubber mallet in order to loosen the pan to allow the fluid to drain. 9. Remove the remaining oil pan bolts. 10. Remove the oil pan and the gasket. 11. Grasp firmly while pulling down with a twisting motion in order to remove the filter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3438 12. Remove and discard the filter seal. The filter seal may be stuck in the pump; if necessary, carefully use pliers or another suitable tool to remove the seal. 13. Inspect the fluid color. 14. Inspect the filter. Pry the metal crimping away from the top of the filter and pull apart. The filter may contain the following evidence for root cause diagnosis: ^ Clutch material ^ Bronze slivers indicating bushing wear ^ Steel particles 15. Clean the transmission case and the oil pan gasket surfaces with solvent, and air dry. You must remove all traces of the old gasket material. Installation Procedure 1. Coat the NEW filter seal with automatic transmission fluid. 2. Install the NEW filter seal into the transmission case. Tap the seal into place using a suitable size socket. 3. Install the NEW filter. 4. Install the oil pan and NEW gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3439 5. Notice: Refer to Fastener Notice. Install the oil pan bolts. Tighten the bolts alternately and evenly to 11 Nm (97 inch lbs.). 6. Install the catalytic converter. Refer to Catalytic Converter Replacement. 7. If previously removed, install the range selector cable bracket and bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 8. Apply a small amount of sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the threads of the oil pan drain plug, if equipped. 9. Lower the vehicle. 10. Fill the transmission to the proper level with DEXRON(r) VI transmission fluid. Refer to Transmission Fluid Check and Fluid Capacity Specifications. 11. Check the COLD fluid level reading for initial fill only. 12. Inspect the oil pan gasket for leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3440 Fluid - A/T: Service and Repair 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Fluid and Filter Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Place a drain pan under the transmission oil pan. 3. Remove the oil pan drain plug, if equipped. 4. Allow the transmission fluid to drain completely. 5. Apply a small amount of sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the treads of the drain plug, if equipped. Notice: Refer to Fastener Notice. 6. Install the oil pan drain plug. Tighten the oil pan drain plug to 18 Nm (13 ft. lbs.). 7. Remove the drain pan from under the transmission oil pan. 8. Support the transmission with a transmission jack. 9. Remove the transmission mount nuts. 10. Remove the transmission support bolts and nuts. 11. Remove the transmission support side bracket bolts and bracket. 12. Remove the transmission support. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3441 13. Disconnect the range selector cable end (2) from the transmission range selector lever ball stud (1). 14. Important: It is not necessary to remove the selector cable from the bracket. Remove the transmission range selector cable bracket (2) bolts and bracket from the transmission. Reposition the bracket with cable. 15. Remove the oil pan bolts. 16. Important: The transmission oil pan gasket is reusable. Inspect the gasket and replace as needed. Remove the oil pan and gasket. 17. Remove the magnet from the bottom of the pan, if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3442 18. Remove the oil filter. 19. Remove the filter neck seal. 20. Clean the transmission case and the oil pan gasket surfaces with solvent. Installation Procedure 1. Install the filter neck seal. 2. Install the oil filter. 3. Install the oil pan gasket to the pan. 4. Install the magnet into the bottom of the pan, if necessary. 5. Install the oil pan and bolts. Tighten the oil pan bolts to 24 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3443 6. Position the bracket with cable. Install the transmission range selector cable bracket (2) and bolts to the transmission. Tighten the selector bracket bolts to 25 Nm (18 ft. lbs.). 7. Connect the range selector cable end (2) to the transmission range selector lever ball stud (1). 8. Install the transmission support. 9. Install the transmission support side bracket and bolts. 10. Install the transmission support bolts and nuts. Tighten the bolts/nuts to 95 Nm (70 ft. lbs.). 11. Install the transmission mount nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3444 12. Remove the transmission jack. 13. Lower the vehicle. 14. Fill the transmission to the proper level with DEXRON(r) VI transmission fluid. Refer to Transmission Fluid Check. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3445 Fluid - A/T: Service and Repair Allison - Automatic Transmission Automatic Transmission Fluid and Filter Replacement Removal Procedure 1. Important: DO NOT drain the fluid if only the transmission external oil filter is being replaced. Remove the drain plug (6) and drain plug seal (5). Drain the transmission fluid into a suitable container. 2. Inspect the drained fluid. Refer to Transmission Fluid Check. 3. Important: Use a standard strap-type filter wrench to remove the transmission external oil filter. Remove the filter (4) by rotating in the counterclockwise direction. 4. Remove the magnet (2) from the filter adapter (1) in the converter housing or from the top of the transmission external oil filter (3). 5. Clean any metal debris from the magnet. Presence of any metal pieces larger than dust may indicate that transmission replacement or overhaul is required. Installation Procedure 1. Install the magnet (2) onto the filter adapter (1) which is in the converter housing. 2. Lubricate the gasket (3) on the transmission external oil filter with transmission fluid. 3. Install, by hand, the transmission external oil filter (4) until the gasket on the filter touches the converter housing. 4. Notice: Turning the transmission external oil filter more than ONE FULL TURN after gasket contact will damage the filter and may cause fluid leakage. Turn the filter ONE FULL TURN ONLY after gasket contact. 5. Notice: Refer to Fastener Notice in Service Precautions. Install the drain plug (6) and drain plug seal (5). Tighten the drain plug to 35 Nm (26 ft. lbs.). 6. Refill Transmission with DEXRON(r)VI Automatic Transmission Fluid. Refer to Fluid Capacity Specifications. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 3446 7. Important: DTC P0701 may often set following fluid service. Cycling the ignition clears the code and allows Drive or Reverse range to be attained. Cycle the ignition until Drive or Reverse range is attained. 8. Important: Fluid remains in the external circuits and transmission cavities after draining the transmission. Check the transmission fluid level. Refer to Transmission Fluid Check. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Specifications > Capacity Specifications Fluid - M/T: Capacity Specifications MANUAL TRANSMISSION FLUID CAPACITY Manual Five Speed Getrag (RPO MG5)................................................................................................................................................ 2.5 quarts (2.3 liters) Manual Five Speed NVG (RPO MW3) ................................................................................................................................................ 4.0 quarts (3.8 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Specifications > Capacity Specifications > Page 3451 Fluid - M/T: Fluid Type Specifications MANUAL TRANSMISSION (5-SPEED WITH LOW GEAR, RPO MW3) GM Goodwrench Synthetic Manual Transmission Fluid (GM Part No. U.S. 12346190, in Canada 10953477) or equivalent SAE 75W-85 GL-4 gear oil. MANUAL TRANSMISSION (5-SPEED WITHOUT LOW GEAR, RPO MG5) Synchromesh Transmission Fluid (GM Part No. U.S. 12345349, in Canada 10953465). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Service and Repair > NV 3500 - Manual Transmission Fluid - M/T: Service and Repair NV 3500 - Manual Transmission Transmission Fluid Replacement Tools Required ^ J 36511 Oil Fill/Drain Plug Hex Bit (17 mm) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Using J 36511 remove the oil fill plug. 3. Place a suitable drain pan under the transmission in order to catch the drained transmission fluid. 4. Using J 36511 remove the oil drain plug. 5. Remove any old sealant from the transmission housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 3454 Installation Procedure 1. Apply sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the oil drain and fill plug threads. 2. Notice: Refer to Fastener Notice. Using J 36511 install the oil drain plug. Tighten the plug to 30 Nm (22 ft. lbs.). 3. Remove and drain the drain pan used to catch the used transmission fluid. 4. Fill the transmission to just below the bottom of the fill plug hole. Refer to Lubrication Specifications. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 3455 5. Using J 36511 install the oil fill plug. Tighten the plug to 30 Nm (22 ft. lbs.). 6. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 3456 Fluid - M/T: Service and Repair NV 4500 - Manual Transmission Transmission Fluid Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Remove the oil fill plug. 3. Place a suitable drain pan under the transmission in order to catch the drained transmission fluid. 4. Remove the oil drain plug. 5. Remove any old sealant from the transmission housing. Installation Procedure 1. Apply a thin bead of sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the oil drain and fill plug threads. Notice: Refer to Fastener Notice. 2. Install the oil drain plug. Tighten the plug to 37 Nm (27 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - M/T > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 3457 3. Fill the transmission to just below the bottom of the fill plug hole. Refer to Lubrication Specifications. 4. Install the oil fill plug. Tighten the plug to 37 Nm (27 ft. lbs.). 5. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - Differential > Component Information > Specifications > Capacity Specifications Fluid - Differential: Capacity Specifications DRIVE AXLE CAPACITIES Front Drive Axle (8.25") ....................................................................................................................... ............................................ 1.43 liters (1.51 quarts) Front Drive Axle (9.25") .................................... ............................................................................................................................... 1.73 liters (1.83 quarts) Rear Drive Axle (8.6") ............................................................................................................. ......................................................... 2.03 liters (2.15 quarts) Rear Drive Axle (9.5") .......................... .............................................................................................................................................. 2.6 liters (2.75 quarts) Rear Drive Axle (10.5") .................................................................................................. .................................................................... 2.6 liters (2.75 quarts) Rear Drive Axle (11.5") ............... ....................................................................................................................................................... 3.0 liters (3.17 quarts) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - Differential > Component Information > Specifications > Capacity Specifications > Page 3462 Fluid - Differential: Fluid Type Specifications FRONT AXLE (1500 SERIES) SAE 80W-90 Axle Lubricant (GM Part No. U.S. 89021671, in Canada 89021672). FRONT AXLE (1500 HD, 2500, 2500 HD, AND 3500 SERIES) SAE 75W-90 Synthetic Axle Lubricant (GM Part No. U.S. 89021677, in Canada 89021678) meeting GM Specification 9986115. REAR AXLE SAE 75W-90 Synthetic Axle Lubricant (GM Part No. U.S. 89021677, in Canada 89021678) meeting GM Specification 9986115. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - Differential > Component Information > Service and Repair > Procedures Fluid - Differential: Procedures Front Axle Lubricant Level Inspection 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Make sure the vehicle is level. 3. Inspect the front axle for leaks. Repair as necessary. 4. Clean the area around the front axle fill plug. 5. Remove the front axle fill plug (1). 6. Inspect the oil level. ^ For the 8.25 inch axle, the oil level should be between 12 - 16 mm (0.50 - 0.625 inch) below the fill plug opening. ^ For the 9.25 inch axle, the oil level should be between 0 - 6 mm (0 - 0.25 inch) below the fill plug opening. 7. If the level is low, add oil until the level is between 12 - 16 mm (0.50 - 0.625 inch) for the 8.25 inch axle or 0 - 6 mm (0 - 0.25 inch) for the 9.25 inch axle. Use the correct fluid. Refer to Sealers, Adhesives, and Lubricants. 8. Notice: Refer to Fastener Notice. Install the fill plug. Tighten the plug to 33 Nm (24 ft. lbs.). 9. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Fluid - Differential > Component Information > Service and Repair > Procedures > Page 3465 Fluid - Differential: Removal and Replacement Front Axle Lubricant Replacement Removal Procedure 1. Raise the vehicle. Refer to Vehicle Lifting. 2. Remove the front differential carrier shield, if equipped. Refer to Shield Replacement. 3. Clean the area around the front axle fill plug and the drain plug. 4. Remove the fill plug. 5. Remove the drain plug. 6. Drain the fluid from the front differential carrier assembly. Installation Procedure 1. Notice: Refer to Fastener Notice. Install the drain plug. Tighten the drain plug to 33 Nm (24 ft. lbs.). 2. Fill the differential carrier assembly with axle lubricant. Use the correct fluid. 3. Install the fill plug. Tighten the fill plug to 33 Nm (24 ft. lbs.). 4. Install the front differential carrier shield, if equipped. 5. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Engine Oil: Customer Interest Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 3474 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 11-00-90-001 > Mar > 11 > Engine - GM dexos 1 and dexos 2(R) Oil Specifications Engine Oil: All Technical Service Bulletins Engine - GM dexos 1 and dexos 2(R) Oil Specifications INFORMATION Bulletin No.: 11-00-90-001 Date: March 14, 2011 Subject: Global Information for GM dexos1(TM) and GM dexos2(TM) Engine Oil Specifications for Spark Ignited and Diesel Engines, Available Licensed Brands, and Service Fill for Adding or Complete Oil Change Models: 2012 and Prior GM Passenger Cars and Trucks Excluding All Vehicles Equipped with Duramax(TM) Diesel Engines GM dexos 1(TM) Information Center Website Refer to the following General Motors website for dexos 1(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 1(TM) Engine Oil Trademark and Icons The dexos(TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos‹›(TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos‹›(TM) specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 1(TM) engine oil. GM dexos 1(TM) Engine Oil Specification Important General Motors dexos 1(TM) engine oil specification replaces the previous General Motors specifications GM6094M, GM4718M and GM-LL-A-025 for most GM gasoline engines. The oil specified for use in GM passenger cars and trucks, PRIOR to the 2011 model year remains acceptable for those previous vehicles. However, dexos 1(TM) is backward compatible and can be used in those older vehicles. In North America, starting with the 2011 model year, GM introduced dexos 1(TM) certified engine oil as a factory fill and service fill for gasoline engines. The reasons for the new engine oil specification are as follows: - To meet environmental goals such as increasing fuel efficiency and reducing engine emissions. - To promote long engine life. - To minimize the number of engine oil changes in order to help meet the goal of lessening the industry's overall dependence on crude oil. dexos 1(TM) is a GM-developed engine oil specification that has been designed to provide the following benefits: - Further improve fuel economy, to meet future corporate average fuel economy (CAFE) requirements and fuel economy retention by allowing the oil to maintain its fuel economy benefits throughout the life of the oil. - More robust formulations for added engine protection and aeration performance. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 11-00-90-001 > Mar > 11 > Engine - GM dexos 1 and dexos 2(R) Oil Specifications > Page 3480 - Support the GM Oil Life System, thereby minimizing the replacement of engine oil, before its life has been depleted. - Reduce the duplication of requirements for a large number of internal GM engine oil specifications. International Lubricants Standardization and Approval Committee (ILSAC) GF-5 Standard In addition to GM dexos 1(TM), a new International Lubricants Standardization and Approval Committee (ILSAC) standard called GF-5, was introduced in October 2010. - There will be a corresponding API category, called: SN Resource Conserving. The current GF-4 standard was put in place in 2004 and will become obsolete in October 2011. Similar to dexos 1(TM), the GF-5 standard will use a new fuel economy test, Sequence VID, which demands a statistically significant increase in fuel economy versus the Sequence VIB test that was used for GF-4. - It is expected that all dexos 1(TM) approved oils will be capable of meeting the GF-5 standard. However, not all GF-5 engine oils will be capable of meeting the dexos 1(TM) specification. - Like dexos(TM), the new ILSAC GF-5 standard will call for more sophisticated additives. The API will begin licensing marketers during October 2010, to produce and distribute GF-5 certified products, which are expected to include SAE 0W-20, 0W-30, 5W-20, 5W-30 and 10W-30 oils. Corporate Average Fuel Economy (CAFE) Requirements Effect on Fuel Economy Since CAFE standards were first introduced in 1974, the fuel economy of cars has more than doubled, while the fuel economy of light trucks has increased by more than 50 percent. Proposed CAFE standards call for a continuation of increased fuel economy in new cars and trucks. To meet these future requirements, all aspects of vehicle operation are being looked at more critically than ever before. New technology being introduced in GM vehicles designed to increase vehicle efficiency and fuel economy include direct injection, cam phasing, turbocharging and active fuel management (AFM). The demands of these new technologies on engine oil also are taken into consideration when determining new oil specifications. AFM for example can help to achieve improved fuel economy. However alternately deactivating and activating the cylinders by not allowing the intake and exhaust valves to open contributes to additional stress on the engine oil. Another industry trend for meeting tough fuel economy mandates has been a shift toward lower viscosity oils. dexos 1(TM) will eventually be offered in several viscosity grades in accordance with engine needs: SAE 0W-20, 5W-20, 0W-30 and 5W-30. Using the right viscosity grade oil is critical for proper engine performance. Always refer to the Maintenance section of a vehicle Owner Manual for the proper viscosity grade for the engine being serviced. GM Oil Life System in Conjunction With dexos (TM) Supports Extended Oil Change Intervals To help conserve oil while maintaining engine protection, many GM vehicles are equipped with the GM Oil Life System. This system can provide oil change intervals that exceed the traditional 3,000 mile (4,830 km) recommendation. The dexos (TM) specification, with its requirements for improved oil robustness, compliments the GM Oil Life System by supporting extended oil change intervals over the lifetime of a vehicle. If all GM customers with GM Oil Life System equipped vehicles would use the system as intended, GM estimates that more than 100 million gallons of oil could be saved annually. GM dexos 2(TM) Information Center Website Refer to the following General Motors website for dexos 2(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 2(TM) Engine Oil Trademark and Icons Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 11-00-90-001 > Mar > 11 > Engine - GM dexos 1 and dexos 2(R) Oil Specifications > Page 3481 The dexos (TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos (TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos (TM)specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 2(TM) engine oil. GM dexos 2(TM) Engine Oil Specification - dexos 2(TM) is approved and recommended by GM for use in Europe starting in model year 2010 vehicles, regardless of where the vehicle was manufactured. - dexos 2(TM) is the recommended service fill oil for European gasoline engines. Important The Duramax(TM) diesel engine is the exception and requires lubricants meeting specification CJ-4. - dexos 2(TM) is the recommended service fill oil for European light-duty diesel engines and replaces GM-LL-B-025 and GM-LL-A-025. - dexos 2(TM) protects diesel engines from harmful soot deposits and is designed with limits on certain chemical components to prolong catalyst life and protect expensive emission reduction systems. It is a robust oil, resisting degradation between oil changes and maintaining optimum performance longer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Engine Oil: All Technical Service Bulletins Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 3486 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Number Incorrect/Incorrectly Assigned INFORMATION Bulletin No.: 05-08-46-004C Date: December 23, 2010 Subject: OnStar(R) Phone Number Concerns (Phone Number Incorrect/Assigned to Another Vehicle/Phone) That Occur During Diagnosis of OnStar(R) System Models: 2000-2011 GM Passenger Cars and Trucks Equipped with OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to update model years up to 2011. Please discard Corporate Bulletin Number 05-08-46-004B (Section 08 - Body and Accessories). During diagnosis of an OnStar(R) concern, the technician may be told that the OnStar(R) phone number is incorrect or tied to another vehicle and/or phone of some kind. To resolve these concerns, the Tech 2(R) with software version 22.005 (or higher), has the capability to change the OnStar(R) phone number. Service Procedure 1. With the Tech 2(R), build the vehicle to specifications within the Diagnostics area of the Tech 2(R). 2. For vehicles with physical-based diagnostics - under Body, go to the OnStar(R) section. Then select the Special Functions menu. For vehicles with functional-based diagnostics - under Body and Accessories, go to the Cellular Communication section. Select Module Setup and then Vehicle Communication Interface Module. 3. Locate the Program Phone Number prompt and select it. The original phone number will be displayed on the Tech 2(R) screen. 4. Contact the OnStar(R) team at the GM Technical Assistance Center (TAC) to obtain a new phone number. 5. Highlight the digits of the phone number one at a time and enter the new phone number using the number keys on the Tech 2(R). 6. Press the Soft key at the base of the screen for Done once these numbers have been changed on the screen. 7. Press the Soft key for Done again. The area code or new phone number has now been programmed into the phone. 8. Cycle the ignition to Off and open the driver's door. 9. Press the blue OnStar(R) button to make sure that a normal connection can be made to the OnStar(R) call center. If applicable, make sure the Hands-Free Calling (HFC) works properly by making a phone call. 10. If the system is working properly, fax or voicemail a case closing into the OnStar(R) team at TAC with the results. Dealers in Canada should submit case closing information through the GM infoNET. Please follow this diagnostic process thoroughly and complete each step. If the condition exhibited is resolved WITHOUT completing every step, the remaining steps do not need to be performed. If the procedure above does not resolve the condition, you must contact TAC for further assistance. This diagnostic approach was developed specifically for this condition and should not automatically be used for other vehicles with similar symptoms. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned > Page 3492 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-44-007D > May > 09 > OnStar(R) - Negative Impact of Cloth/Vinyl Roofs Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Negative Impact of Cloth/Vinyl Roofs INFORMATION Bulletin No.: 02-08-44-007D Date: May 12, 2009 Subject: Negative Impact of Dealer-Installed Cloth/Vinyl Roofs on XM Radio and/or OnStar(R) Systems Models: 2002-2009 Passenger Cars and Trucks (Including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X with XM Radio (RPO U2K) and/or OnStar(R) (RPO UE1) .............................................................................................................................................................. .................................................................................. Supercede: This bulletin is being revised to include the 2009 model year. Please discard Corporate Bulletin Number 02-08-44-007C (Section 08 - Body and Accessories). .............................................................................................................................................................. .................................................................................. Dealers should not install a cloth or vinyl roof on vehicles that have been ordered with the XM radio option (RPO U2K) and/or OnStar(R) (RPO UE1). The performance of these systems may be negatively impacted by the installation of the cloth/vinyl roof. Additionally, water leaks may result from installing a cloth or vinyl roof on vehicles with roof-mounted antenna systems. Relocating the antenna to another spot on the vehicle exterior, in order to install a cloth or vinyl roof, is not advised either. The performance of the OnStar(R) and XM Radio antennas has been optimized for their current locations. Relocating the antennas may result in a performance degradation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Analog/Digital System Information INFORMATION Bulletin No.: 06-08-46-008C Date: September 18, 2008 Subject: Information on OnStar(R) Dual-Mode (Analog/Digital) Systems Models Supercede: This bulletin is being revised to correct the model year range for the Chevrolet Impala and Monte Carlo and update the reference to GM Dealerworld. Please discard Corporate Bulletin Number 06-08-46-008B (Section 08 - Body and Accessories). All 2000-2003 model year vehicles equipped with OnStar® from the list above were built with Analog/Digital-Ready OnStar(R) Hardware. Some of these vehicles may have been upgraded to Dual-Mode (Analog/Digital). Certain 2004-2005 model year vehicles equipped with OnStar(R) from the list above may have been either: ^ Originally built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware with Dual-Mode (Analog/Digital) OnStar(R) Hardware OR ^ Upgraded to Dual-Mode (Analog/Digital) Hardware All 2006 model year and newer vehicles equipped with OnStar(R) were built at the factory with Dual-Mode (Analog/Digital) OnStar(R) Hardware. If a vehicle has Dual-Mode (Analog/Digital) OnStar(R) Hardware, then the system is capable of operating on both the analog and digital cellular Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information > Page 3501 networks, and will not require an upgrade in connection with the cellular industry's transition to the digital network. In order to verify the type of OnStar(R) Hardware in a vehicle, type the VIN into the VIN look-up tool, which is available at the OnStar(R) Online Enrollment website within GM GlobalConnect (for U.S. dealers) or InfoNet (for Canadian dealers). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 08-08-46-004 > Aug > 08 > OnStar(R) - Aftermarket Device Interference Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Aftermarket Device Interference Information INFORMATION Bulletin No.: 08-08-46-004 Date: August 14, 2008 Subject: Information on Aftermarket Device Interference with OnStar(R) Diagnostic Services Models: 2009 and Prior GM Passenger Car and Truck (including Saturn) 2009 and Prior HUMMER H2, H3 Models 2009 and Prior Saab 9-7X with OnStar(R) (RPO UE1) This bulletin is being issued to provide dealer service personnel with information regarding aftermarket devices connected to the Diagnostic Link Connector (DLC) and the impact to OnStar(R) diagnostic probes and Vehicle Diagnostic e-mails. Certain aftermarket devices, when connected to the Diagnostic Link Connector, such as, but not limited to, Scan Tools, Trip Computers, Fuel Economy Analyzers and Insurance Tracking Devices, interfere with OnStar's ability to perform a diagnostic probe when requested (via a blue button call) by a subscriber. These devices also prohibit the ability to gather diagnostic and tire pressure data for a subscriber's scheduled OnStar(R) Vehicle Diagnostic (OVD) e-mail. These aftermarket devices utilize the Vehicles serial data bus to perform data requests and/or information gathering. When these devices are requesting data, OnStar(R) is designed not to interfere with any data request being made by these devices as required by OBD II regulations. The OnStar(R) advisor is unable to definitively detect the presence of these devices and will only be able to inform the caller or requester of the unsuccessful or incomplete probe and may in some cases refer the subscriber/requester to take the vehicle to a dealer for diagnosis of the concern. When performing a diagnostic check for an unsuccessful or incomplete OnStar(R) diagnostic probe, or for concerns regarding completeness of the OnStar(R) Vehicle Diagnostic (OVD) e-mail, verify that an aftermarket device was not present at the time of the requested probe. Regarding the OVD e-mail, if an aftermarket device is interfering (including a Scan Tool of any type), the e-mail will consistently display a "yellow" indication in diagnostics section for all vehicle systems except the OnStar(R) System and Tire Pressure data (not available on all vehicles) will not be displayed (i.e. section is collapsed). Successful diagnostic probes and complete OVD e-mails will resume following the removal or disconnecting of the off-board device. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 08-08-46-002 > Jun > 08 > OnStar(R) - False Crash Detection Customer Calling Emergency Contact Module: All Technical Service Bulletins OnStar(R) - False Crash Detection Customer Calling TECHNICAL Bulletin No.: 08-08-46-002 Date: June 26, 2008 Subject: OnStar(R) Calls Unwanted, False Crash Detection Customer Calling (Reprogram SDM) Models: 2007 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL with OnStar(R) (RPO UE1) Condition Some customers may comment on receiving unwanted calls from the OnStar(R) Center. Cause During certain extreme vehicle maneuvers, the vehicle SDM may mistakenly detect a crash event and generate a call to the OnStar(R) call Center. The OnStar(R) advisor is connected to the vehicle to see if everyone is alright and if a request for emergency help is needed. Correction A revised SDM Operating System software has been developed to address this issue. Reprogram the Sensing and Diagnostic Module (SDM) with the controller option described as "SDM Sensing and Diagnostic Module" under Operating System using the TIS2WEB Service Programming System (SPS) application. As always, make sure your Tech 2(R) is updated with the latest software version. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 00-08-46-004C > Jan > 08 > OnStar(R) - Re-establishing OnStar(R) Communications Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Re-establishing OnStar(R) Communications Bulletin No.: 00-08-46-004C Date: January 17, 2008 INFORMATION Subject: Re-establishing Communications with OnStar(R) Center After Battery Disconnect Models: 2000-2008 GM Passenger Cars and Trucks (Including Saturn and Saab) with Digital OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 00-08-46-004B (Section 08 - Body and Accessories). When servicing any of the above models and a battery cable is disconnected or power to the OnStar(R) Vehicle Communication Interface Module (VCIM) is interrupted for any reason the following procedure must be performed to verify proper Global Positioning System (GPS) function. Never swap OnStar(R) Vehicle Communication Interface Modules (VCIM) from other vehicles. Transfer of OnStar(R) modules from other vehicles should not be done. Each OnStar(R) module has a unique identification number. The VCIM has a specific Station Identification (STID). This identification number is used by the National Cellular Telephone Network and OnStar(R) systems and is stored in General Motors Vehicle History files by VIN. After completing ALL repairs to the vehicle you must perform the following procedure: Move the vehicle into an open area of the service lot. Sit in the vehicle with the engine running and the radio turned on for five minutes. Press the OnStar(R) button in the vehicle. When the OnStar(R) advisor answers ask the advisor to verify the current location of the vehicle. If the vehicle location is different than the location the OnStar(R) advisor gives contact GM Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis of a failed VCIM and, if appropriate, order a replacement part. Replacement parts are usually shipped out within 24 hours, and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part, you will avoid a non-return core charge. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Incorrect GPS Position Reported During Call Bulletin No.: 02-08-46-006C Date: January 08, 2008 INFORMATION Subject: Incorrect OnStar(R) Global Positioning System (GPS) Location Reported During OnStar(R) Call Models: 2000-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 02-08-46-006B (Section 08 - Body and Accessories). A small number of the above-mentioned vehicles may exhibit a condition in which the vehicle reports an inaccurate location to the OnStar(R) Call Center. This condition can only be identified via a button press to the OnStar(R) Call Center by the customer. Call Center personnel will be able to identify this inaccurate location condition. Customers will then be notified through the mail by OnStar(R) if their vehicle exhibits this condition. Once this condition has been identified OnStar(R) will instruct the customer to return to the dealership to have this condition corrected. It is not necessary to reconfigure the vehicle after the following procedure. In order to correct this condition you must cycle power to the OnStar(R) system. This can be done by either removing the fuses powering the OnStar(R) system or disconnecting the OnStar(R) module (VCIM) from the vehicle. As a last resort you can disconnect the vehicle's battery. The power needs to be removed from the system for approximately 15 minutes. After completing this procedure the vehicle should be taken to an area with an unobstructed view of the sky. The vehicle should be kept running for approximately 10 minutes to allow the vehicle to reacquire the global positioning system (GPS). Then contact the OnStar(R) Call Center via the blue OnStar(R) button and ask the advisor to verify the GPS position. If the OnStar(R) advisor still has an inaccurate GPS location refer to the Navigation Systems and Cellular Communications sub-sections in the Service Manual in order to diagnose and repair the concern. If the normal diagnostics lead to module replacement you will need to contact Technical Assistance (TAC) and choose the OnStar(R) prompt. GM OnStar(R) TAC will assist in the diagnosis and if appropriate order a replacement part. Replacement parts are usually shipped out within 24 hours and a pre-paid return package label will be included for returning the faulty part. By returning the faulty part you will avoid a significant non-return core charge. Warranty Information (excluding Saab US Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab US Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call > Page 3518 For vehicles repaired under warranty use, the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Loss of GPS Signal/Hands Free Issues Bulletin No.: 02-08-46-007C Date: November 19, 2007 INFORMATION Subject: Information on OnStar(R) System - Possible Loss of GPS Signal, Hands-Free Calling Minutes Expire Prematurely and/or Inability to Add Hands-Free Calling Minutes Models: 2001-2008 GM Passenger Cars and Light Duty Trucks (Including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X with OnStar(R) System (RPO UE1) Supercede: This bulletin is being revised to add the 2008 model year, warranty information and to provide GPS signal recovery steps (under Dealer Action heading) to do PRIOR to determining if the VIU/VCIM needs replacement. Please discard Corporate Bulletin Number 02-08-46-007B (Section 08 - Body & Accessories). If the vehicle currently has analog-upgradable OnStar(R) hardware, then the customer should be made aware of the digital upgrade program per the latest version of Service Bulletin # 05-08-46-006. Any analog OnStar system that is not upgraded prior to the end of 2007 will be deactivated due to the upcoming phase-out of the analog cellular network in the U.S. and Canada. If the vehicle has recently been upgraded or has had a service replacement unit installed, this bulletin may not be applicable. Certain 2001-2008 model year vehicles equipped with OnStar(R) may exhibit a condition with the Global Positioning System (GPS) that causes inaccuracies in the GPS clock. The GPS system is internal to the OnStar(R) Vehicle Interface Unit (VIU) or the Vehicle Communication Interface Module (VCIM). This inaccuracy can result in a symptom where the OnStar(R) Call Center is unable to obtain an accurate GPS signal, hands-Free Calling minutes expire prematurely and/or the inability to add Hands-Free calling minutes. Customer Notification OnStar(R) will notify the customer by mail with instructions to contact their dealership service department. Dealer Action Not all vehicles will require VIU/VCIM replacement. The GPS signal in some vehicles may be recoverable. To determine if the signal is recoverable, simply connect the Tech2(R) and using the GPS information data display option, observe the GPS date and time. If the date/time stamps are equal to a date approximately 19 years in the future, the GPS clock has exceeded its capacity and the VIU/VCIM will need to be replaced. If the date/time stamp is in the past or near future, the GPS clock has simply generated an inaccurate value and may be recoverable by performing the following power-up reset. To initiate a power-up reset, battery voltage (batt. +) must be removed from the VIU/VCIM. The preferred methods, in order, of initiating the reset are outlined below. Remove the fuse that supplies Battery positive (Batt. +) voltage to the module (refer to the applicable Service Information schematics for the appropriate fuse). The next preferred method is to remove the connector to the OnStar(R) unit that Batt + is contained. The least preferable method is to remove the negative terminal of the vehicle battery. This will not only initiate the power-up reset, but it may also result in the loss of radio presets and other stored personalization information/settings in other modules as well. After initiating the power-up reset, the GPS data will be set to the defaulted date and time and will require an acquisition of the GPS signal in order to gain the proper date and time. Acquiring the GPS signal requires running the vehicle in an open/unobstructed view of the sky. First, contact OnStar(R) Technical Support by pressing the blue button. Allow the OnStar(R) Technical Advisor to activate the GPS recovery process. This should take approximately 10 minutes. Continue to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 3523 monitor the Tech2(R) for the current time and date. REMINDER - Keep in mind that the time displayed on the Tech2(R) is in Greenwich Mean Time (GMT) and the offset is based on the time zones relationship to GMT. If replacement of the VIU/VCIM is necessary, you MUST reconfigure the OnStar® system. Failure to reconfigure the system will result in an additional customer visit for repair. OnStar® VIU, Generations 2 and 3, will require the technician to press the blue OnStar® button to reconfigure the vehicle with an OnStar® advisor. OnStar(R) VCIM, Generations 4-7 will require the technician to reconfigure the vehicle with the use of the TIS2WEB and SPS applications (pass thru only), along with the Tech2(R). The configuration and set-up procedure is a two-step process that must be completed step-by-step without interruption or delay in between each step. This procedure enables an automated activation without a button press by the technician to the OnStar(R) Call Center. Following this procedure, it may take up to 24 hours for all OnStar(R) services to be fully activated. How to Order Parts If the OnStar(R) GPS date/time stamp is non-recoverable and the unit needs to be replaced, dealers in the U.S. should contact Autocraft Electronics select the catalog item that contains this bulletin number. Canadian dealers should contact MASS Electronics. Dealers DO NOT need to call the GM Technical Assistance Center (TAC) for replacement approval. Autocraft Electronics and MASS Electronics will be responsible for verifying that the subject vehicle is a candidate for a replacement VIU/VCIM. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 3524 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information Emergency Contact Module: All Technical Service Bulletins OnStar(R) - Language Change Information Bulletin No.: 05-08-46-009B Date: June 29, 2007 INFORMATION Subject: Language Change for OnStar(R) System (U.S. and Canada Only) Models: 2006-2008 GM Passenger Cars and Light Duty Trucks (including Saturn) 2006-2008 HUMMER H2, H3 2006-2008 Saab 9-7X with OnStar(R) (RPO UE1) Built After and Including VIN Breakpoints Listed Below (2006 MY Only) Attention: This bulletin only applies to vehicles equipped with OnStar(R) Generation 6.1 or later with a Station Identification (STID) Number in the following range: 16,000,000-17,000,000 or 20,000,000-21,999,999 or 23,500,001-26,000,000 Supercede: This bulletin is being revised to update the service procedure and add a Canadian procedure. Please discard Corporate Bulletin Numbers 05-08-46-009A and 05-08-46-008A (Section 08 - Body and Accessories). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3529 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3530 Built After and Including the VIN Breakpoints shown. The Generation (Gen) 6.1 OnStar(R) system found in these vehicles has the capability to change the default English voice recognition to French or Spanish. Changing the language of the OnStar(R) system will change the following features to the language you select: Voice recognition command prompts will be played in the language selected. The voice recognition system will only recognize commands given in the selected language. Once completed, this process completely changes all voice recognition and voice commands of the OnStar(R) system. The process will need to be repeated in its entirety to change to a different language, including English. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3531 Method 1 Method 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3532 Method 3 The Gen 6.1 version of OnStar(R) does not require the use of the Service Programming System (SPS) to change the voice recognition system. However, there are three ways to change the language. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-004C > Dec > 10 > OnStar(R) - Number Incorrect/Incorrectly Assigned > Page 3538 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 06-08-46-008C > Sep > 08 > OnStar(R) - Analog/Digital System Information > Page 3547 networks, and will not require an upgrade in connection with the cellular industry's transition to the digital network. In order to verify the type of OnStar(R) Hardware in a vehicle, type the VIN into the VIN look-up tool, which is available at the OnStar(R) Online Enrollment website within GM GlobalConnect (for U.S. dealers) or InfoNet (for Canadian dealers). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-006C > Jan > 08 > OnStar(R) - Incorrect GPS Position Reported During Call > Page 3564 For vehicles repaired under warranty use, the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 3569 monitor the Tech2(R) for the current time and date. REMINDER - Keep in mind that the time displayed on the Tech2(R) is in Greenwich Mean Time (GMT) and the offset is based on the time zones relationship to GMT. If replacement of the VIU/VCIM is necessary, you MUST reconfigure the OnStar® system. Failure to reconfigure the system will result in an additional customer visit for repair. OnStar® VIU, Generations 2 and 3, will require the technician to press the blue OnStar® button to reconfigure the vehicle with an OnStar® advisor. OnStar(R) VCIM, Generations 4-7 will require the technician to reconfigure the vehicle with the use of the TIS2WEB and SPS applications (pass thru only), along with the Tech2(R). The configuration and set-up procedure is a two-step process that must be completed step-by-step without interruption or delay in between each step. This procedure enables an automated activation without a button press by the technician to the OnStar(R) Call Center. Following this procedure, it may take up to 24 hours for all OnStar(R) services to be fully activated. How to Order Parts If the OnStar(R) GPS date/time stamp is non-recoverable and the unit needs to be replaced, dealers in the U.S. should contact Autocraft Electronics select the catalog item that contains this bulletin number. Canadian dealers should contact MASS Electronics. Dealers DO NOT need to call the GM Technical Assistance Center (TAC) for replacement approval. Autocraft Electronics and MASS Electronics will be responsible for verifying that the subject vehicle is a candidate for a replacement VIU/VCIM. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 02-08-46-007C > Nov > 07 > OnStar(R) - Loss of GPS Signal/Hands Free Issues > Page 3570 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3575 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3576 Built After and Including the VIN Breakpoints shown. The Generation (Gen) 6.1 OnStar(R) system found in these vehicles has the capability to change the default English voice recognition to French or Spanish. Changing the language of the OnStar(R) system will change the following features to the language you select: Voice recognition command prompts will be played in the language selected. The voice recognition system will only recognize commands given in the selected language. Once completed, this process completely changes all voice recognition and voice commands of the OnStar(R) system. The process will need to be repeated in its entirety to change to a different language, including English. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3577 Method 1 Method 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 05-08-46-009B > Jun > 07 > OnStar(R) - Language Change Information > Page 3578 Method 3 The Gen 6.1 version of OnStar(R) does not require the use of the Service Programming System (SPS) to change the voice recognition system. However, there are three ways to change the language. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Specifications > Capacity Specifications Engine Oil: Capacity Specifications Engine Oil with Filter ............................................................................................................................ ............................................... 6.0 quarts (5.7 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Specifications > Capacity Specifications > Page 3581 Engine Oil: Fluid Type Specifications ENGINE OIL TYPE LOOK FOR TWO THINGS: 1.Your vehicle's engine requires oil meeting GM Standard GM6094M. 2.SAE 5W-30 is best for your vehicle. These numbers on an oil container show its viscosity, or thickness. Do not use other viscosity oils such as SAE 20W-50. Oils meeting these requirements should also have the starburst symbol on the container. This symbol indicates that the oil has been certified by the American Petroleum Institute (API). You should look for this information on the oil container, and use only those oils that are identified as meeting GM Standard GM6094M and have the starburst symbol on the front of the oil container. NOTICE: Use only engine oil identified as meeting GM Standard GM6094M and showing the American Petroleum Institute Certified For Gasoline Engines starburst symbol. Failure to use the recommended oil can result in engine damage not covered by your warranty. GM Goodwrench oil meets all the requirements for your vehicle. If you are in an area of extreme cold, where the temperature falls below -20°F (-29°C), it is recommended that you use either an SAE 5W-30 synthetic oil or an SAE 0W-30 oil. Both will provide easier cold starting and better protection for your engine at extremely low temperatures. ENGINE OIL ADDITIVES Do not add anything to your oil. The recommended oils with the starburst symbol that meet GM Standard GM6094M are all you will need for good performance and engine protection. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Specifications > Page 3582 Engine Oil: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure Important: In order to completely drain the oil from the oil pan internal baffling, the bottom of the oil pan must be level during the oil drain procedure. 1. Open the hood. 2. Remove the oil fill cap. 3. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Place a oil drain pan under the oil pan drain plug. 5. Remove the oil pan drain plug. 6. Drain the engine oil. 7. Wipe the excess oil from the drain plug hole and plug. 8. Remove the oil filter from the engine block. Important: Check the old oil filter to ensure that the filter seal is not left on the engine block. 9. Wipe the excess oil from the oil filter mounting. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Engine Oil > Component Information > Specifications > Page 3583 1. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the oil filter to the engine block. Tighten the oil filter to 30 Nm (22 ft. lbs.). 3. Install the oil drain plug to the engine block. Tighten the oil pan drain plug to 25 Nm (18 ft. lbs.). 4. Lower the vehicle. 5. Fill the crankcase with the proper quantity and grade of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 6. Remove the oil level indicator. 7. Wipe the indicator with a clean cloth. 8. Install the oil level indicator. 9. Remove the oil level indicator in order to check the level. 10. Add oil if necessary. 11. Close the hood. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Power Steering Fluid > Component Information > Specifications Power Steering Fluid: Specifications POWER STEERING SYSTEM GM Power Steering Fluid GM P/N 89021184 (Canadian P/N 89021186) or equivalent. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Power Steering Fluid > Component Information > Specifications > Page 3587 Power Steering Fluid: Service Precautions Using Proper Power Steering Fluid Notice Notice: When adding fluid or making a complete fluid change, always use the proper power steering fluid. Failure to use the proper fluid will cause hose and seal damage and fluid leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant > Component Information > Technical Service Bulletins > A/C - Refrigerant Recovery/Recycling/Equipment Refrigerant: Technical Service Bulletins A/C - Refrigerant Recovery/Recycling/Equipment Bulletin No.: 08-01-38-001 Date: January 25, 2008 INFORMATION Subject: Information On New GE-48800 CoolTech Refrigerant Recovery/Recharge Equipment Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Attention: This bulletin is being issued to announce the release of GM approved Air Conditioning (A/C) Refrigerant Recovery and Recharging Equipment that meets the new Society of Automotive Engineers (SAE) J2788 Refrigerant Recovery Standards. The ACR2000 (J-43600) cannot be manufactured in its current state after December 2007 and will be superseded by GE-48800. The new J2788 standard does not require that GM Dealers replace their ACR2000 units. ACR2000's currently in use are very capable of servicing today's refrigerant systems when used correctly and can continue to be used. Details regarding the new SAE J2788 standard are outlined in GM Bulletin 07-01-38-004. Effective February 1 2008, new A/C Refrigerant Recovery/Recharging equipment (P/N GE-48800) will be released as a required replacement for the previously essential ACR2000 (J-43600). This equipment is SAE J2788 compliant and meets GM requirements for A/C Refrigerant System Repairs on all General Motors vehicles, including Hybrid systems with Polyolester (POE) refrigerant oil. This equipment will not be shipped as an essential tool to GM Dealerships. In addition, this equipment is Hybrid compliant and designed to prevent oil cross contamination when servicing Hybrid vehicles with Electric A/C Compressors that use POE refrigerant oil. The ACR2000 (J-43600) will need to be retrofitted with a J-43600-50 (Hose - ACR2000 Oil Flush Loop) to be able to perform Hybrid A/C service work. All Hybrid dealers will receive the J-43600-50, with installation instructions, as a component of the Hybrid essential tool package. Dealerships that do not sell Hybrids, but may need to service Hybrids, can obtain J-43600-50 from SPX Kent Moore. Refer to GM Bulletin 08-01-39-001 for the ACR2000 Hose Flush procedure. The High Voltage (HV) electric A/C compressor used on Two Mode Hybrid vehicles uses a Polyolester (POE) refrigerant oil instead of a Polyalkylene Glycol (PAG) synthetic refrigerant oil. This is due to the better electrical resistance of the POE oil and its ability to provide HV isolation. Failure to flush the hoses before adding refrigerant to a Hybrid vehicle with an electric A/C compressor may result in an unacceptable amount of PAG oil entering the refrigerant system. It may cause a Battery Energy Control Module Hybrid Battery Voltage System Isolation Lost Diagnostic Trouble Code (DTC P1AE7) to be set. Additionally, the A/C system warranty will be voided. Warranty Submission Requirements The Electronically Generated Repair Data (snapshot summary) and printer functions have been eliminated from the GE-48800. The VGA display and temperature probes were eliminated to reduce equipment costs. As a result, effective immediately the 18 digit "Snapshot/Charge Summary" code is no longer required for Air Conditioning (A/C) refrigerant system repairs that are submitted for warranty reimbursement. The charge summary data from before and after system repairs will continue to required, but documented on the repair order only. Both high and low pressures and the recovery and charge amounts should be noted during the repair and entered on the repair order. If using ACR2000 (J-43600), the "Snapshot/Charge Summary" printouts should continue to be attached to the shops copy of the repair order. The labor codes that are affected by this requirement are D3000 through D4500. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant > Component Information > Technical Service Bulletins > A/C - Refrigerant Recovery/Recycling/Equipment > Page 3592 Refrigerant: Technical Service Bulletins A/C - Contaminated R134A Refrigerant Bulletin No.: 06-01-39-007 Date: July 25, 2006 INFORMATION Subject: Contaminated R134a Refrigerant Found on Market for Automotive Air-Conditioning Systems Models: 2007 and Prior GM Passenger Cars and Trucks (including Saturn) 2007 and Prior HUMMER H2, H3 2007 and Prior Saab 9-7X Attention: This bulletin should be directed to the Service Manager as well as the Parts Manager. Commercially Available Contaminated R134a Refrigerant Impurities have been found in new commercially available containers of R134a. High levels of contaminates may cause decreased performance, and be detrimental to some air-conditioning components. Accompanying these contaminates has been high levels of moisture. Tip: Excessive moisture may cause system concerns such as orifice tube freeze-up and reduced performance. Industry Reaction: New Industry Purity Standards Due to the potential availability of these lower quality refrigerants, the Society of Automotive Engineers (SAE), and the Air Conditioning and Refrigeration Industry (ARI) are in the process of instituting reliable standards that will be carried on the labels of future R134a refrigerant containers. This identifying symbol will be your assurance of a product that conforms to the minimum standard for OEM Automotive Air-Conditioning use. How Can You Protect Yourself Today? It is recommended to use GM or ACDelco(R) sourced refrigerants for all A/C repair work. These refrigerants meet General Motors own internal standards for quality and purity, insuring that your completed repairs are as good as the way it left the factory. Parts Information The part numbers shown are available through GMSPO or ACDelco(R). The nearest ACDelco(R) distributor in your area can be found by calling 1-800-223-3526 (U.S. Only). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant > Component Information > Technical Service Bulletins > A/C - Refrigerant Recovery/Recycling/Equipment > Page 3593 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant > Component Information > Specifications > Capacity Specifications Refrigerant: Capacity Specifications Refrigerant System Capacities Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant > Component Information > Specifications > Capacity Specifications > Page 3596 Refrigerant: Fluid Type Specifications Refrigerant System Capacities Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant > Component Information > Specifications > Page 3597 Refrigerant: Service and Repair Refrigerant Recovery and Recharging Tools Required * J 43600 ACR 2000 Air Conditioning Service Center * J 45037 A/C Oil Injector Caution: - Avoid breathing the A/C Refrigerant 134a (R-134a) and the lubricant vapor or the mist. Exposure may irritate the eyes, nose, and throat. Work in a well ventilated area. In order to remove R-134a from the A/C system, use service equipment that is certified to meet the requirements of SAE J 2210 (R-134a recycling equipment). If an accidental system discharge occurs, ventilate the work area before continuing service. Additional health and safety information may be obtained from the refrigerant and lubricant manufacturers. - For personal protection, goggles and gloves should be worn and a clean cloth wrapped around fittings, valves, and connections when doing work that includes opening the refrigerant system. If R-134a comes in contact with any part of the body severe frostbite and personal injury can result. The exposed area should be flushed immediately with cold water and prompt medical help should be obtained. Notice: - R-134a is the only approved refrigerant for use in this vehicle. The use of any other refrigerant may result in poor system performance or component failure. - To avoid system damage use only R-134a dedicated tools when servicing the A/C system. - Use only Polyalkylene Glycol Synthetic Refrigerant Oil (PAG) for internal circulation through the R-134a A/C system and only 525 viscosity mineral oil on fitting threads and O-rings. If lubricants other than those specified are used, compressor failure and/or fitting seizure may result. - R-12 refrigerant and R-134a refrigerant must never be mixed, even in the smallest of amounts, as they are incompatible with each other. If the refrigerants are mixed, compressor failure is likely to occur. Refer to the manufacturer instructions included with the service equipment before servicing. The J 43600 is a complete air conditioning service center for R-134a. The ACR 2000 recovers, recycles, evacuates and recharges A/C refrigerant quickly, accurately and automatically. The unit has a display screen that contains the function controls and displays prompts that will lead the technician through the recover, recycle, evacuate and recharge operations. R-134a is recovered into and charged out of an internal storage vessel. The ACR 2000 automatically replenishes this vessel from an external source tank in order to maintain a constant 5.45-6.82 kg (12-15 lbs) of A/C refrigerant. The ACR 2000 has a built in A/C refrigerant identifier that will test for contamination, prior to recovery and will notify the technician if there are foreign gases present in the A/C system. If foreign gases are present, the ACR 2000 will not recover the refrigerant from the A/C system. The ACR 2000 also features automatic air purge, single pass recycling and an automatic oil drain. Refer to the J 43600 ACR 2000 manual for operation and setup instruction. Always recharge the A/C System with the proper amount of R-134a. Refer to Refrigerant System Capacities for the correct amount. A/C Refrigerant System Oil Charge Replenishing If oil was removed from the A/C system during the recovery process or due to component replacement, the oil must be replenished. Oil can be injected into a charged system using J 45037. For the proper quantities of oil to add to the A/C refrigerant system, Refer to Refrigerant System Capacities. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fluids > Refrigerant Oil > Component Information > Specifications Refrigerant Oil: Specifications REFRIGERANT OIL Polyalkylene glycol (PAG) Oil ................................................................................................................ GM P/N 12378526 (Canadian P/N 88900060) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Brake Bleeding > System Information > Service and Repair > Antilock Brake System Automated Bleed Procedure Brake Bleeding: Service and Repair Antilock Brake System Automated Bleed Procedure Antilock Brake System Automated Bleed Procedure Notice: When adding fluid to the brake master cylinder reservoir, use only Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. The use of any type of fluid other than the recommended type of brake fluid, may cause contamination which could result in damage to the internal rubber seals and/or rubber linings of hydraulic brake system components. Notice: Refer to Brake Fluid Effects on Paint and Electrical Components Notice. Important: This procedure may be performed on all vehicles EXCEPT those equipped with option code JL4, Vehicle Stability Enhancement System (VSES). Important: The base hydraulic brake system must be bled before performing this automated bleeding procedure. If you have not yet performed the base hydraulic brake system bleeding procedure, refer to Hydraulic Brake System Bleeding (Manual) before proceeding. 1. Install a scan tool to the vehicle. 2. Start the engine and allow the engine to idle. 3. Depress the brake pedal firmly and maintain steady pressure on the pedal. 4. Using the scan tool, begin the automated bleed procedure. 5. Follow the instructions on the scan tool to complete the automated bleed procedure. Release the brake pedal between each test sequence. 6. Turn the ignition OFF. 7. Remove the scan tool from the vehicle. 8. Fill the brake master cylinder reservoir to the maximum-fill level with Delco Supreme II® GM P/N 12377967 (Canadian P/N 992667) or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 9. Bleed the hydraulic brake system. Refer to Hydraulic Brake System Bleeding (Manual). 10. With the ignition OFF, apply the brakes 3-5 times, or until the brake pedal becomes firm, in order to deplete the brake booster power reserve. 11. Slowly depress and release the brake pedal. Observe the feel of the brake pedal. 12. If the brake pedal feels spongy, repeat the automated bleeding procedure. If the brake pedal still feels spongy after repeating the automated bleeding procedure inspect the brake system for external leaks. Refer to Brake System External Leak Inspection. See: Brakes and Traction Control/Hydraulic System/Testing and Inspection/Component Tests and General Diagnostics/Brake System External Leak Inspection 13. Turn the ignition key ON, with the engine OFF. Check to see if the brake system warning lamp remains illuminated. 14. If the brake system warning lamp remains illuminated, DO NOT allow the vehicle to be driven until it is diagnosed and repaired. Refer to Symptoms - Hydraulic Brakes. See: Brakes and Traction Control/Hydraulic System/Testing and Inspection/Symptom Related Diagnostic Procedures/Symptoms - Hydraulic Brakes 15. Drive the vehicle to exceed 13 km/h (8 mph) to allow ABS initialization to occur. Observe brake pedal feel. 16. If the brake pedal feels spongy, repeat the automated bleeding procedure until a firm brake pedal is obtained. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Brake Bleeding > System Information > Service and Repair > Antilock Brake System Automated Bleed Procedure > Page 3605 Brake Bleeding: Service and Repair Hydraulic Brake System Bleeding Hydraulic Brake System Bleeding (Manual) Caution: Refer to Brake Fluid Irritant Caution. Notice: Refer to Brake Fluid Effects on Paint and Electrical Components Notice. Notice: When adding fluid to the brake master cylinder reservoir, use only Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. The use of any type of fluid other than the recommended type of brake fluid, may cause contamination which could result in damage to the internal rubber seals and/or rubber linings of hydraulic brake system components. 1. Place a clean shop cloth beneath the brake master cylinder to prevent brake fluid spills. 2. With the ignition OFF and the brakes cool, apply the brakes 3-5 times, or until the brake pedal effort increases significantly, in order to deplete the brake booster power reserve. 3. If you have performed a brake master cylinder bench bleeding on this vehicle, or if you disconnected the brake pipes from the master cylinder, you must perform the following steps: 1. Ensure that the brake master cylinder reservoir is full to the maximum-fill level. If necessary add Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. If removal of the reservoir cap and diaphragm is necessary, clean the outside of the reservoir on and around the cap prior to removal. 2. With the rear brake pipe installed securely to the master cylinder, loosen and separate the front brake pipe from the front port of the brake master cylinder. 3. Allow a small amount of brake fluid to gravity bleed from the open port of the master cylinder. 4. Reconnect the brake pipe to the master cylinder port and tighten securely. 5. Have an assistant slowly depress the brake pedal fully and maintain steady pressure on the pedal. 6. Loosen the same brake pipe to purge air from the open port of the master cylinder. 7. Tighten the brake pipe, then have the assistant slowly release the brake pedal. 8. Wait 15 seconds, then repeat steps 3.3 3.7 until all air is purged from the same port of the master cylinder. 9. With the front brake pipe installed securely to the master cylinder, after all air has been purged from the front port of the master cylinder, loosen and separate the rear brake pipe from the master cylinder, then repeat steps 3.3 - 3.8. 10. After completing the final master cylinder port bleeding procedure, ensure that both of the brake pipe-to-master cylinder fittings are properly tightened. 4. Fill the brake master cylinder reservoir with Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. Ensure that the brake master cylinder reservoir remains at least half-full during this bleeding procedure. Add fluid as needed to maintain the proper level. Clean the outside of the reservoir on and around the reservoir cap prior to removing the cap and diaphragm. 5. Install a proper box-end wrench onto the RIGHT REAR wheel hydraulic circuit bleeder valve. 6. Install a transparent hose over the end of the bleeder valve. 7. Submerge the open end of the transparent hose into a transparent container partially filled with Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 8. Have an assistant slowly depress the brake pedal fully and maintain steady pressure on the pedal. 9. Loosen the bleeder valve to purge air from the wheel hydraulic circuit. 10. Tighten the bleeder valve, then have the assistant slowly release the brake pedal. 11. Wait 15 seconds, then repeat steps 8 - 10 until all air is purged from the same wheel hydraulic circuit. 12. With the right rear wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the right rear hydraulic circuit install a proper box-end wrench onto the LEFT REAR wheel hydraulic circuit bleeder valve. 13. Install a transparent hose over the end of the bleeder valve, then repeat steps 7-11. 14. With the left rear wheel hydraulic circuit bleeder valve tightened securely, after all air purged from the left rear hydraulic circuit, install a proper box-end wrench onto the RIGHT FRONT wheel hydraulic circuit bleeder valve. 15. Install a transparent hose over the end of the bleeder valve, then repeat steps 7-11. 16. With the right front wheel hydraulic circuit bleeder valve tightened securely, after all air has been purged from the right front hydraulic circuit, install a proper box-end wrench onto the LEFT FRONT wheel hydraulic circuit bleeder valve. 17. Install a transparent hose over the end of the bleeder valve, then repeat steps 7-11. 18. After completing the final wheel hydraulic circuit bleeding procedure, ensure that each of the 4 wheel hydraulic circuit bleeder valves are properly tightened. 19. Fill the brake master cylinder reservoir to the maximum-fill level with Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 20. Slowly depress and release the brake pedal. Observe the feel of the brake pedal. 21. If the brake pedal feels spongy, repeat the bleeding procedure again. If the brake pedal still feels spongy after repeating the bleeding procedure, perform the following steps: 1. Inspect the brake system for external leaks. Refer to Brake System External Leak Inspection. See: Brakes and Traction Control/Hydraulic System/Testing and Inspection/Component Tests and General Diagnostics/Brake System External Leak Inspection 2. Pressure bleed the hydraulic brake system in order to purge any air that may still be trapped in the system. 22. Turn the ignition key ON, with the engine OFF. Check to see if the brake system warning lamp remains illuminated. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Brake Bleeding > System Information > Service and Repair > Antilock Brake System Automated Bleed Procedure > Page 3606 23. Important: If the brake system warning lamp remains illuminated, DO NOT allow the vehicle to be driven until it is diagnosed and repaired. If the brake system warning lamp remains illuminated, refer to Symptoms - Hydraulic Brakes. See: Brakes and Traction Control/Hydraulic System/Testing and Inspection/Symptom Related Diagnostic Procedures/Symptoms - Hydraulic Brakes Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Brake Bleeding > System Information > Service and Repair > Antilock Brake System Automated Bleed Procedure > Page 3607 Brake Bleeding: Service and Repair Master Cylinder Bench Bleeding Master Cylinder Bench Bleeding Caution: Refer to Brake Fluid Irritant Caution. Notice: When adding fluid to the brake master cylinder reservoir, use only Delco Supreme II®, GM P/N 12377967 (Canadian P/N 992667), or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. The use of any type of fluid other than the recommended type of brake fluid, may cause contamination which could result in damage to the internal rubber seals and/or rubber linings of hydraulic brake system components. 1. Secure the mounting flange of the brake master cylinder in a bench vise so that the rear of the primary piston is accessible. 2. Remove the master cylinder reservoir cap and diaphragm. 3. Install suitable fittings to the master cylinder ports that match the type of flare seat required and also provide for hose attachment. 4. Install transparent hoses to the fittings installed to the master cylinder ports, then route the hoses into the master cylinder reservoir. 5. Fill the master cylinder reservoir to at least the half-way point with Delco Supreme II® (GM P/N 12377967) or equivalent DOT-3 brake fluid from a clean, sealed brake fluid container. 6. Ensure that the ends of the transparent hoses running into the master cylinder reservoir are fully submerged in the brake fluid. 7. Using a smooth, round-ended tool, depress and release the primary piston as far as it will travel, a depth of about 25 mm (1 inch), several times. Observe the flow of fluid coming from the ports. As air is bled from the primary and secondary pistons, the effort required to depress the primary piston will increase and the amount of travel will decrease. 8. Continue to depress and release the primary piston until fluid flows freely from the ports with no evidence of air bubbles. 9. Remove the transparent hoses from the master cylinder reservoir. 10. Install the master cylinder reservoir cap and diaphragm. 11. Remove the fittings with the transparent hoses from the master cylinder ports. Wrap the master cylinder with a clean shop cloth to prevent brake fluid spills. 12. Remove the master cylinder from the vise. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Air Bag(s) Arming and Disarming > System Information > Service and Repair Air Bag(s) Arming and Disarming: Service and Repair SIR Disabling and Enabling SIR component location affects how a vehicle should be serviced. There are parts of the SIR system installed in various locations around a vehicle. To find the location of the SIR components Refer to SIR Identification Views. There are several reasons for disabling the SIR system, such as repairs to the SIR system or servicing a component near or attached to an SIR component. There are several ways to disable the SIR system depending on what type of service is being performed. The following information covers the proper procedures for disabling/enabling the SIR system. SIR Service Precautions Caution: When performing service on or near the SIR components or the SIR wiring, the SIR system must be disabled. Failure to observe the correct procedure could cause deployment of the SIR components. Serious injury can occur. Failure to observe the correct procedure could also result in unnecessary SIR system repairs. The inflatable restraint sensing and diagnostic module (SDM) maintains a reserved energy supply. The reserved energy supply provides deployment power for the air bags if the SDM loses battery power during a collision. Deployment power is available for as much as 1 minute after disconnecting the vehicle power. Waiting 1 minute before working on the system after disabling the SIR system prevents deployment of the air bags from the reserved energy supply. General Service Instructions The following are general service instructions which must be followed in order to properly repair the vehicle and return it to its original integrity: * Do not expose inflator modules to temperatures above 65°C (150°F). * Verify the correct replacement part number. Do not substitute a component from a different vehicle. * Use only original GM replacement parts available from your authorized GM dealer. Do not use salvaged parts for repairs to the SIR system. Discard any of the following components if it has been dropped from a height of 91 cm (3 feet) or greater: * Inflatable restraint sensing and diagnostic module (SDM) * Any Inflatable restraint air bag module * Inflatable restraint steering wheel module coil * Any Inflatable restraint sensor * Inflatable restraint seat belt pretensioners * Inflatable restraint Passenger Presence System (PPS) module or sensor Disabling Procedure - Air Bag Fuse 1. Turn the steering wheel so that the vehicles wheels are pointing straight ahead. 2. Place the ignition in the OFF position. Important: The SDM may have more than one fused power input. To ensure there is no unwanted SIR deployment, personal injury, or unnecessary SIR system repairs, remove all fuses supplying power to the SDM. With all SDM fuses removed and the ignition switch in the ON position, the AIR BAG warning indicator illuminates. This is normal operation, and does not indicate a SIR system malfunction. 3. Locate and remove the fuse(s) supplying power to the SDM. Refer to SIR Schematics or Electrical Center Identification Views. 4. Wait 1 minute before working on the system. Enabling Procedure - Air Bag Fuse 1. Place the ignition in the OFF position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Air Bag(s) Arming and Disarming > System Information > Service and Repair > Page 3611 2. Install the fuse(s) supplying power to the SDM. Refer to SIR Schematics or Electrical Center Identification Views. 3. Turn the ignition switch to the ON position. The AIR BAG indicator will flash then turn OFF. 4. Perform the Diagnostic System Check - Vehicle if the AIR BAG warning indicator does not operate as described. Refer to Diagnostic System Check - Vehicle. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle Disabling Procedure - Negative Battery Cable 1. Turn the steering wheel so that the vehicles wheels are pointing straight ahead. 2. Place the ignition in the OFF position. 3. Disconnect the negative battery cable from the battery. 4. Wait 1 minute before working on system. Enabling Procedure - Negative Battery Cable 1. Place the ignition in the OFF position. 2. Connect the negative battery cable to the battery. 3. Turn the ignition switch to the ON position. The AIR BAG indicator will flash then turn OFF. 4. Perform the Diagnostic System Check - Vehicle if the AIR BAG warning indicator does not operate as described. Refer to Diagnostic System Check - Vehicle. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > Customer Interest: > 06-08-44-009A > Aug > 08 > Electrical - Various Rear Door Electrical Malfunctions Fuse: Customer Interest Electrical - Various Rear Door Electrical Malfunctions TECHNICAL Bulletin No.: 06-08-44-009A Date: August 04, 2008 Subject: Rear Door Locks/Rear Windows/Courtesy Lamps/Rear Speakers Inoperative, Blown Fuse, SIR DTC Codes (Inspect/Repair, Wrap Wire Harness) Models: 2007-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Avalanche, Silverado (Crew Cab Only), Suburban, Tahoe 2007-2009 GMC Sierra (Crew Cab Only), Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-08-45-009 (Section 08 - Body and Accessories). Condition Some customers may comment on one or all of the following conditions: ^ Rear door locks inoperative ^ Rear windows inoperative ^ Door courtesy lamps inoperative or stay on at times ^ Rear speakers inoperative ^ Any fuse (related to the rear doors) that is blown/shorted ^ SIR codes related to the pretensioner ^ Interior dimming inoperative Cause The B-pillar wiring harness around the seat belt retractor may be or become chaffed/damaged. The correction listed below is intended to repair any damage and prevent future concerns. Correction Important: This repair operation is intended to be done on both B-pillars. 1. Remove the lower B-pillar cover. 2. Disconnect the Supplemental Inflatable Restraint (SIR) connector. 3. Inspect the wiring harness in the B-pillar around the seat belt retractor. 4. Make any necessary wiring harness repairs. 5. Wrap the "entire" harness with electrical tape. 6. Install conduit tubing around the harness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > Customer Interest: > 06-08-44-009A > Aug > 08 > Electrical - Various Rear Door Electrical Malfunctions > Page 3621 7. Install the lower B-pillar cover. Parts Information Warranty Information Important: The labor operation associated with this bulletin is written for inspection of the B-pillar wiring harness and, if necessary, repair. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Fuse: > 06-08-44-009A > Aug > 08 > Electrical - Various Rear Door Electrical Malfunctions Fuse: All Technical Service Bulletins Electrical - Various Rear Door Electrical Malfunctions TECHNICAL Bulletin No.: 06-08-44-009A Date: August 04, 2008 Subject: Rear Door Locks/Rear Windows/Courtesy Lamps/Rear Speakers Inoperative, Blown Fuse, SIR DTC Codes (Inspect/Repair, Wrap Wire Harness) Models: 2007-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Avalanche, Silverado (Crew Cab Only), Suburban, Tahoe 2007-2009 GMC Sierra (Crew Cab Only), Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-08-45-009 (Section 08 - Body and Accessories). Condition Some customers may comment on one or all of the following conditions: ^ Rear door locks inoperative ^ Rear windows inoperative ^ Door courtesy lamps inoperative or stay on at times ^ Rear speakers inoperative ^ Any fuse (related to the rear doors) that is blown/shorted ^ SIR codes related to the pretensioner ^ Interior dimming inoperative Cause The B-pillar wiring harness around the seat belt retractor may be or become chaffed/damaged. The correction listed below is intended to repair any damage and prevent future concerns. Correction Important: This repair operation is intended to be done on both B-pillars. 1. Remove the lower B-pillar cover. 2. Disconnect the Supplemental Inflatable Restraint (SIR) connector. 3. Inspect the wiring harness in the B-pillar around the seat belt retractor. 4. Make any necessary wiring harness repairs. 5. Wrap the "entire" harness with electrical tape. 6. Install conduit tubing around the harness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Fuse: > 06-08-44-009A > Aug > 08 > Electrical - Various Rear Door Electrical Malfunctions > Page 3627 7. Install the lower B-pillar cover. Parts Information Warranty Information Important: The labor operation associated with this bulletin is written for inspection of the B-pillar wiring harness and, if necessary, repair. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Fuse: > 07-08-45-002 > Sep > 07 > Electrical - Aftermarket Fuse Warning Fuse: All Technical Service Bulletins Electrical - Aftermarket Fuse Warning Bulletin No.: 07-08-45-002 Date: September 05, 2007 ADVANCED SERVICE INFORMATION Subject: Service Alert: Concerns With Aftermarket Fuses in GM Vehicles Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2008 and Prior Saab 9-7X Concerns with Harbor Freight Tools "Storehouse" Branded Blade Type Fuses General Motors has become aware of a fuse recall by Harbor Freight Tools/Storehouse for a variety of aftermarket fuses. In two cases, these fuses have not provided protection for the wiring system of the vehicles they were customer installed in. Upon testing the 15 amp version, it was found that the fuse still would not "open" when shorted directly across the battery terminals. How to Identify These Fuses Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Fuse: > 07-08-45-002 > Sep > 07 > Electrical - Aftermarket Fuse Warning > Page 3632 ERROR: stackunderflow OFFENDING COMMAND: ~ STACK: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuse: > 07-08-45-002 > Sep > 07 > Electrical - Aftermarket Fuse Warning Fuse: All Technical Service Bulletins Electrical - Aftermarket Fuse Warning Bulletin No.: 07-08-45-002 Date: September 05, 2007 ADVANCED SERVICE INFORMATION Subject: Service Alert: Concerns With Aftermarket Fuses in GM Vehicles Models: 2008 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2008 and Prior Saab 9-7X Concerns with Harbor Freight Tools "Storehouse" Branded Blade Type Fuses General Motors has become aware of a fuse recall by Harbor Freight Tools/Storehouse for a variety of aftermarket fuses. In two cases, these fuses have not provided protection for the wiring system of the vehicles they were customer installed in. Upon testing the 15 amp version, it was found that the fuse still would not "open" when shorted directly across the battery terminals. How to Identify These Fuses Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuse: > 07-08-45-002 > Sep > 07 > Electrical - Aftermarket Fuse Warning > Page 3638 ERROR: stackunderflow OFFENDING COMMAND: ~ STACK: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Locations > Underhood Fuse Block - Cooling Fan Fuse: Locations Underhood Fuse Block - Cooling Fan Fuse Block - Underhood - Cooling Fan (10 Series) Fuse Block - Underhood - Cooling Fan (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Locations > Underhood Fuse Block - Cooling Fan > Page 3641 Fuse: Locations I/P Fuse Block Fuse Block - I/P Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Locations > Underhood Fuse Block - Cooling Fan > Page 3642 Fuse Block - I/P Label Usage Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Locations > Underhood Fuse Block - Cooling Fan > Page 3643 Fuse: Locations Underhood Fuse Block Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Locations > Underhood Fuse Block - Cooling Fan > Page 3644 Fuse Block - Underhood Label Usage (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Locations > Underhood Fuse Block - Cooling Fan > Page 3645 Fuse Block - Underhood Label Usage (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions Fuse: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3648 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3649 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3650 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3651 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3652 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3653 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3654 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3655 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3656 Fuse: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3657 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3658 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3659 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3660 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3661 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3662 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3663 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3664 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3665 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3666 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3667 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3668 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3669 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3670 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3671 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3672 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3673 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3674 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3675 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3676 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3677 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3678 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3679 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3680 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3681 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3682 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3683 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3684 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3685 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3686 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3687 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3688 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3689 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3690 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3691 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3692 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3693 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3694 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3695 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3696 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3697 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3698 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3699 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3700 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3701 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3702 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3703 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3704 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3705 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3706 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3707 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3708 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3709 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3710 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3711 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3712 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3713 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3714 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3715 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3716 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3717 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3718 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3719 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3720 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3721 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3722 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3723 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3724 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3725 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3726 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3727 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3728 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3729 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3730 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3731 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3732 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3733 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3734 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3735 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3736 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3737 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3738 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Diagrams > Diagram Information and Instructions > Page 3739 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Application and ID > Underhood Fuse Block Fuse: Application and ID Underhood Fuse Block Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Application and ID > Underhood Fuse Block > Page 3742 Fuse Block - Underhood Label Usage (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Application and ID > Underhood Fuse Block > Page 3743 Fuse Block - Underhood Label Usage (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Application and ID > Underhood Fuse Block > Page 3744 Fuse: Application and ID Underhood Fuse Block - Cooling Fan Fuse Block - Underhood - Cooling Fan (10 Series) Fuse Block - Underhood - Cooling Fan (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Application and ID > Underhood Fuse Block > Page 3745 Fuse: Application and ID I/P Fuse Block Fuse Block - I/P Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse > Component Information > Application and ID > Underhood Fuse Block > Page 3746 Fuse Block - I/P Label Usage Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Locations Fuse Block: Locations Body Control Module (BCM) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Locations > Page 3750 Junction Block - I/P Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Locations > Page 3751 LF Of Engine Compartment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Locations > Page 3752 Throttle Actuator Control (TAC) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Locations > Page 3753 Powertrain Control Module (PCM) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions Fuse Block: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3756 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3757 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3758 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3759 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3760 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3761 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3762 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3763 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3764 Fuse Block: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3765 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3766 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3767 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3768 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3769 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3770 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3771 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3772 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3773 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3774 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3775 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3776 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3777 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3778 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3779 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3780 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3781 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3782 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3783 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3784 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3785 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3786 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3787 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3788 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3789 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3790 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3791 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3792 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3793 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3794 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3795 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3796 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3797 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3798 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3799 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3800 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3801 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3802 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3803 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3804 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3805 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3806 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3807 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3808 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3809 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3810 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3811 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3812 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3813 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3814 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3815 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3816 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3817 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3818 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3819 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3820 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3821 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3822 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3823 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3824 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3825 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3826 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3827 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3828 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3829 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3830 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3831 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3832 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3833 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3834 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3835 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3836 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3837 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3838 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3839 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3840 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3841 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3842 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3843 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3844 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3845 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3846 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3847 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3848 Fuse Block: Connector Views Junction Block - Rear Lamps - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3849 Junction Block - Rear Lamps - C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3850 Junction Block - Rear Lamps - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3851 Junction Block - Rear Lamps - C4 Underhood Fuse Block Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3852 Fuse Block - Underhood Top View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3853 Fuse Block - Underhood Bottom View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3854 Fuse Block - Underhood C1 (Pin A1 To C1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3855 Fuse Block - Underhood C1 (Pin C2 To F10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3856 Fuse Block - Underhood C1 (Pin F11 To F12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3857 Fuse Block - Underhood C2 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3858 Fuse Block - Underhood C2 (Pin B11 To F7) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3859 Fuse Block - Underhood C2 (Pin F8 To F12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3860 Fuse Block - Underhood C3 (Pin A1 To D2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3861 Fuse Block - Underhood C3 (Pin D3 To F6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3862 Fuse Block - Underhood C4 (Pin A1 To C5) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3863 Fuse Block - Underhood C4 (Pin C6 To F6) Fuse Block - Underhood C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3864 Fuse Block - Underhood C6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3865 Fuse Block - Underhood C7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3866 Fuse Block - Underhood C9 Underhood Fuse Block - Cooling Fan Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3867 Fuse Block - Underhood - Cooling Fan Top View (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3868 Fuse Block - Underhood - Cooling Fan Bottom View (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3869 Fuse Block - Underhood - Cooling Fan (10 Series) Wire Entry Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3870 Fuse Block - Underhood - Cooling Fan (10 Series) Wire Entry (Pin A1 To H8) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3871 Fuse Block - Underhood - Cooling Fan (10 Series) Connector I/P Fuse Block Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3872 Fuse Block - I/P Top View (Except RPO Code YE9) Fuse Block - I/P Top View (With RPO Code YE9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3873 Fuse Block - I/P Bottom View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3874 Fuse Block - I/P C1 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3875 Fuse Block - I/P C1 (Pin B11 To F5) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3876 Fuse Block - I/P C1 (Pin F6 To F12) Fuse Block - I/P C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3877 Fuse Block - I/P C3 (Pin A To H) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3878 Fuse Block - I/P C3 (Pin J To M) Fuse Block - I/P C4 (Crew Cab) I/P Junction Block Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3879 Junction Block - I/P Top View Junction Block - I/P Bottom View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3880 Junction Block - I/P Wire Entry Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3881 Junction Block - I/P Wire Entry (Pin 2A To 4M) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3882 Junction Block - I/P Wire Entry (Pin 5A To 8F) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3883 Junction Block - I/P C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3884 Junction Block - I/P C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3885 Junction Block - I/P C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3886 Junction Block - I/P C6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3887 Junction Block - I/P C7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3888 Junction Block - I/P C8 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3889 Junction Block - Rear Lamps Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3890 Junction Block - Rear Lamps C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3891 Junction Block - Rear Lamps C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3892 Junction Block - Rear Lamps C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Diagrams > Diagram Information and Instructions > Page 3893 Junction Block - Rear Lamps C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side Fuse Block: Service and Repair Instrument Panel Electrical Center or Junction Block Replacement - Left Side INSTRUMENT PANEL ELECTRICAL CENTER OR JUNCTION BLOCK REPLACEMENT - LEFT SIDE REMOVAL PROCEDURE 1. Remove the left side end panel. 2. Remove the knee bolster. 3. Disconnect all the wiring connectors from the fuse block. 4. Remove all the fuses. 5. Remove the turn signal relay from the back of the fuse block. 6. From behind the fuse block, remove the retaining bolt. 7. Insert a screw driver between the fuse block and the wire harness block to separate. 8. Push on the retainers in order to remove the fuse block. 9. Remove the fuse block from the vehicle. INSTALLATION PROCEDURE 1. Install the fuse block onto the I/P assembly until it clicks in place. 2. Install the wire harness block to the back of the fuse block. 3. NOTE: Refer to Fastener Notice. Install the bolt. Tighten the bolt to 6 N.m (53 lb in). 4. Install the turn signal relay to the back of the fuse block. 5. Using the wiring diagram on the cover of the fuse panel, install the fuses. 6. Install the electrical connectors. 7. Install the knee bolster. 8. Install the left side end panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side > Page 3896 Fuse Block: Service and Repair Body Wiring Harness Junction Block Replacement BODY WIRING HARNESS JUNCTION BLOCK REPLACEMENT REMOVAL PROCEDURE 1. Remove the cover retaining nut. 2. Remove the cover by pushing in the tabs. 3. Remove the harness from the front of the junction block. 4. Remove the junction block from the bracket by pressing to release the tabs. 5. Remove the junction block in order to gain access to the rear of the block to remove the retaining bolts. 6. Remove the retaining bolts. 7. Separate the wire harness block from the junction block by inserting a screw driver in between. 8. Remove the junction block from the vehicle. INSTALLATION PROCEDURE 1. Install the wire harness block to the junction block. 2. NOTE: Refer to Fastener Notice. Install the retaining bolts. Tighten the bolts to 6 N.m (53 lb in). 3. Install the junction block to the bracket. 4. Push on the top part until it clicks in place. 5. Connect the harness to the front of the junction block. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side > Page 3897 6. Install the cover to the junction block until it clicks in place. 7. Hand tighten the retaining nut until seated. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side > Page 3898 Fuse Block: Service and Repair Instrument Panel Electrical Center or Junction Block Replacement - Right Side INSTRUMENT PANEL ELECTRICAL CENTER OR JUNCTION BLOCK REPLACEMENT - RIGHT SIDE REMOVAL PROCEDURE 1. Remove the right side end panel. 2. Push in the tabs in order to remove the fuse block. 3. Pull out the fuse block out of the instrument panel (I/P) in order to remove the retaining bolt. 4. Loosen the bolt. 5. Insert a screw driver between the wire harness block and fuse block in order to separate. 6. Separate the fuse block from the I/P harness block. 7. Remove the I/P wiring harness block from the vehicle. INSTALLATION PROCEDURE 1. Install the fuse block to the I/P wire harness block. 2. NOTE: Refer to Fastener Notice. Install the retaining bolt. Tighten the bolt to 6 N.m (53 lb in). 3. Install the fuse block to the I/P until it clicks in place. 4. Connect the wiring connectors to the fuse block. 5. Install the right side end panel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side > Page 3899 Fuse Block: Service and Repair Underhood Electrical Center or Junction Block Replacement UNDERHOOD ELECTRICAL CENTER OR JUNCTION BLOCK REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the negative battery cable. 2. Remove the left fender upper brace. 3. Remove the electrical center brace cover assemble by lifting the cover (3) outwards to clear the tabs. 4. Remove all fuses and relays. 5. Push on the tab (3) so that the electrical center can be rotated on the studs located at (2). 6. Remove all connectors by removing the bolt (1) for each connector. 7. Disconnect all connectors from the electrical center block. 8. Push on the tabs (2) in order to lift the electrical center (1) out of the housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side > Page 3900 9. To replace the engine electrical center bracket remove the 4 retaining bolts (1). 10. Remove the engine electrical center bracket assembly from the fender. INSTALLATION PROCEDURE 1. Install the engine electrical center bracket assembly to the front fender. 2. NOTE: Refer to Fastener Notice. Install the 4 retaining bolts (1). Tighten the 4 retaining bolts (1) to 9 N.m (80 lb in). 3. Align the electrical center block (1) stubs in the slots so that the tabs (2) retains it in place. 4. Connect the wire connectors to the lower portion of the electrical center block. 5. Connect the wire connectors with the bolts to the electrical center block. Tighten all connector bolts (1) to 9 N.m (80 lb in). 6. Ensure all wire connectors are securely connected. 7. Set the electrical center block in its resting position till the tabs (3) locks in place. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Fuse Block > Component Information > Service and Repair > Instrument Panel Electrical Center or Junction Block Replacement - Left Side > Page 3901 8. Install the lower part of the cover (1). 9. With the cover (2) off, use the fuse location information to install all fuses and relays. 10. Install the cover. 11. Install the fender upper brace. 12. Install the 4 fender upper brace bolts. Tighten the 4 retaining bolts to 25 N.m (18 lb ft). 13. Connect the negative battery cable. 14. Start vehicle and ensure all components function properly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations C210 And Relay Block - I/P - C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3905 Relay Box: Diagrams Relay Block - I/P Top View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3906 Relay Block - I/P Bottom View Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3907 Relay Block - I/P C1 (Pin A1 To B6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3908 Relay Block - I/P C1 (Pin B7 To E9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3909 Relay Block - I/P C1 (Pin E10 To F12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3910 Relay Block - I/P C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3911 Relay Block - I/P C4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3912 Relay Block - I/P C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3913 Relay Block - I/P C7 (With RPO Code Z82) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3914 Relay Block - I/P C8 (With RPO Code 5G4/5X7/5Y0/TRW) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3915 Relay Block - I/P C9 (Pin A To L) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3916 Relay Block - I/P C9 (Pin M) Relay Block - I/P C10 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Fuses and Circuit Breakers > Relay Box > Component Information > Locations > Page 3917 Relay Box: Application and ID Relay Block - I/P Label Relay Block - I/P Label Usage Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips Low Tire Pressure Indicator: Technical Service Bulletins Tire Pressure Monitor - TPM System Message/Service Tips # 09-03-16-002A: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information - (Apr 27, 2010) Subject: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information Models: 2006-2011 Cars and Light Duty Trucks (Including Saturn and Saab) 2006-2010 HUMMER H2, H3 ATTENTION The information found in this bulletin is to be used as a dealership service consultant procedures for customers coming into the service lane with an illuminated "low tire light" or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. Maintaining proper tire pressures is an Owner's Maintenance item and is not covered under warranty. This bulletin is being revised to add model years and update additional bulletin reference information. Please discard Corporate Bulletin Number 09-03-16-002 (Section 03 -- Suspension). Customer Concerns and Confusion with the Tire Pressure Monitoring (TPM) System The following procedure should be used by dealership service consultants when a customer comes into the service drive with a "low tire light" on or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. The service consultant should perform the following steps: Procedure Turn the key to ON, without starting the engine. ^ If the low tire light comes on and stays on solid with a check tire pressure/low tire pressure/add air to tire message (on vehicles equipped with DIC), advise the customer: - The system is working properly. - Properly adjusting all tire air pressures to the recommended levels and driving the vehicle will turn the light off (refer to the Tire and Loading Information label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". ^ If the Tire Pressure Monitor (TPM) light blinks for one minute then stays on solid with a service tire monitor system message (on vehicles equipped with DIC): - A TPM system problem exists. The vehicle should be written up accordingly and sent to your service department for further DTC diagnosis and service. - If dashes (--) are displayed in only one or two of the tire pressure readouts, it is likely caused by a previous TPM system relearn that was performed incorrectly due to interference from another vehicle's TPM system during the relearn process (refer to the Important statement later in this bulletin regarding TPM relearn with a Tech 2(R)). - If dashes (--) are displayed in all four of the tire pressure readouts, there is a system problem. Follow the appropriate SI service procedures. ^ If a customer indicates the low tire light comes on for a few minutes when the vehicle is started, then goes off after driving a while, advise the customer: - The system is working properly. - Most likely, air pressure in one or more of the tires is low enough to turn the light on when tires are cold. After driving for a while, tires will heat Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3923 up, allowing tire air pressure to increase above the threshold causing the light to go off. Properly adjusting all tire air pressures to the recommended levels will correct this (Refer to the Tire and Loading Information Label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". For more detailed information, refer to Corporate Bulletin Number 07-03-16-004C and TPMS Training Course 13044.12T2. Tire Pressure Light At key on, without starting the vehicle: Steady Solid Glowing TPM Indicator If the TPM indicator appears as a steady glowing yellow lamp (as above), the system is functioning properly and you should add air to the tires to correct this condition. Blinking TPM Indicator If the TPM indicator appears as a BLINKING yellow lamp for one minute and then stays on solid, diagnostic service is needed. The Effect of Outside Temperature on Tire Pressures Important: As a rule of thumb, tire pressure will change about 7kPa (1 psi) for every 6°C (10°F) decrease in temperature - Tire pressure will drop when it gets colder outside, and rise when it gets warmer. Under certain situations such as extreme outside temperature changes, the system may bring on a solid light with a check tire pressure message. This should be considered normal and the system is working properly. The light will turn off upon adding the proper amount of air to the tires (refer to the Tire & Loading Information label in the driver's door opening). When properly adjusting tire air pressure, the following steps are important to help optimize the system and prolong bringing a tire pressure light on: ^ Use an accurate, high quality tire pressure gauge. ^ Never set the tire pressure below the specified placard value regardless of tire temperature or ambient temperature. ^ Tire pressure should be set to the specified placard pressure at the lowest seasonal temperature the vehicle will encounter during operation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3924 ^ When adding proper tire air pressure, it is important to remember fluctuations in outside air temperatures and tire temperatures effect tire air pressures. ^ After you have added the proper tire pressure, if the vehicle has a DIC (after the system has updated), check to see if DIC displays are the same readings as the tire pressure gauge used (adjust as necessary). ^ Only perform a TPM sensor re-learn after a tire rotation or system part replacements and use the Tech 2(R) to initiate the relearn whenever possible to avoid invalid sensor I.D. learns. Important: Always take outside temperature and tire temperature into consideration to properly set tire pressures. Foe example, on colder days (20°F/-7°C), if setting tire pressure when the vehicle has been indoors (60°F/16°C) or the tires are warm from being driven, it will be necessary to compensate for the low outside temperature by adding 21-27 kPa (3-4 psi) more then the placecard pressure. At some later time, when the vehicle has been parked outside for a while, the tires will cool off and the pressures will drop back into the placecard range. Important: Recently, nitrogen gas (for use in inflating tires) has become available to the general customer through some retailers. The use of nitrogen gas to inflate tires is a technology used in automobile racing. Tires inflated with nitrogen gas may exhibit less of a pressure change in response to outside temperature changes. Nitrogen gas inflation is compatible with GM TPM sensors. For additional information, refer to Corporate Service Bulletin 05-03-10-020C. Important: All Models (Except the Pontiac Vibe): Do not perform a TPM relearn at PDI, the system has already been set at the Assembly Plant. Do not perform a TPM relearn after adding air to the tires. The low tire light is similar to the low fuel indicator and adding something (fuel, air) to the vehicle makes that light turn back off again. Note that because of system behavior, some vehicles must be driven a short distance before the sensors recognize the increase in pressure and turns the light off again. Pontiac Vibe Only: Do not use the TPMS reset button to turn off the light. The system will update and light will turn off when all tire pressures have been adjusted followed by short distance drive. Important: All models (except the Pontiac Vibe): Each tire monitor sensor is learned to a specific vehicle corner. When performing a TPM relearn (only after a tire rotation or replacement of a TPM sensor or Module), always use the Tech2(R) to initiate the J 46079 relearned process. Tech 2(R) - initiated relearns lock out other vehicle TPM signals that may be broadcasting in the area. Only signals initiated by the J 46079 tool will be accepted. This method avoids storing false TPM I.D.s and will prevent customers from returning with dashes (--) displayed in tire pressure readouts and/or a flashing tire pressure monitor (TPM) light. Checking the four TPM I.D.s with the Tech 2(R) prior to and following relearn to verify they are the same can prevent invalid I.D. learns. Pontiac Vibe Only: Tire Monitor Sensors are not learned to a specific vehicle corner. Do not perform a TPM Reset after tire rotation. The TPMS Reset button must only be used during pre-delivery inspection by the dealer to initialize the system (after all tire pressures have been adjusted properly) or when a Tire Pressure Monitor System component is replaced. The J 46079 tool does not work on Vibe TPM sensors. A TPMS relearn on Vibe must be preformed with a Tech 2(R) to set the TPMS Module in learn mode. The TPMS sensor IDs are entered through the Tech 2(R). Refer to SI for further Vibe TPMS information. Labor Operation and Repair Order/Warranty System Claim Required Documentation Important: The ONLY time labor operation E0726 or E0722 should be used is to diagnose for a system issue. That should ONLY occur if, at key ON, without starting the engine, the Tire Pressure Monitor (TPM) blinks for one minute and then stays on solid with a Service Tire Monitor System message (on vehicles equipped with a DIC) If that occurs, a TPM system problem exists and the system will have set a DTC. If one of these operastions is used, the following Repair Order and Warranty System documentation are required: ^ Document the customer complaint on the Repair Order. ^ Document the TPMS DTC that has set on the Repair Order. ^ Enter the TPMS DTC in the Warranty System (WINS) in the Failure Code/DTC field on the claim submission (refer to the Claims Processing Manual, Section IV, Warranty claim Data, Page 6, Item G). If the above information is not documented on the Repair Order and Warranty System, the claim may be rejected. If the Warranty Parts Center (WPC) generates a request, this repair order documentation must be sent back. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3925 Customer TPMS Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3926 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3927 Frequently Asked Questions Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Maintenance Required Lamp/Indicator > Component Information > Service and Repair Maintenance Required Lamp/Indicator: Service and Repair SERVICE VEHICLE SOON or SERVICE ENGINE SOON INDICATOR Your vehicle is equipped with a "SERVICE VEHICLE SOON"or a "SERVICE ENGINE SOON" indicator. This indicator is not a maintenance indicator and does not mean a maintenance service is required. For additional "SERVICE VEHICLE SOON"or a "SERVICE ENGINE SOON" indicator information refer to Malfunction Indicator Lamp. For Maintenance Required Lamp/Indicator, refer to Oil Change Reminder Lamp. See: Oil Change Reminder Lamp/Service and Repair Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Diagnosis MALFUNCTION INDICATOR LAMP (MIL) DIAGNOSIS DIAGNOSTIC INSTRUCTIONS - Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check Vehicle - Review Strategy Based Diagnosis for an overview of the diagnostic approach. - Diagnostic Procedure Instructions provides an overview of each diagnostic category. CIRCUIT/SYSTEM DESCRIPTION The malfunction indicator lamp (MIL) is located on the instrument panel cluster (IPC). The MIL informs the driver that an emission system fault has occurred and that the engine control system requires service. The engine control module (ECM) performs a self test for the MIL lamp and its circuitry by commanding the MIL ON and OFF every time the engine is started. The ECM monitors the MIL control circuit for conditions that are incorrect for the commanded states of the MIL. Ignition voltage is supplied to the malfunction indicator lamp (MIL). The engine control module (ECM) turns the MIL ON by grounding the MIL control circuit. CIRCUIT/SYSTEM VERIFICATION The MIL should turn ON and OFF when commanded with a scan tool. CIRCUIT/SYSTEM TESTING 1. Ignition OFF, disconnect the harness connector at the instrument panel cluster (IPC). 2. Ignition ON, verify that a test lamp illuminates between the ignition circuit and ground. - If the test lamp does not illuminate, test the ignition circuit for a short to ground or an open/high resistance. If the circuit tests normal and the ignition circuit fuse is open, replace the IPC. 3. Connect a test lamp between the control circuit and the ignition circuit. 4. Command the MIL On and OFF with a scan tool. The test lamp should turn ON and OFF when changing between the commanded states. - If the test lamp is always ON, test the control circuit for a short to ground. If the circuit tests normal, replace the ECM. - If the test lamp is always OFF, test the control circuit for a short to voltage or an open/high resistance. If the circuit tests normal, replace the ECM. 5. If all circuits test normal, replace the IPC. REPAIR INSTRUCTIONS Perform the Diagnostic Repair Verification after completing the diagnostic procedure. See: Powertrain Management/Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/Verification Tests and Procedures Control Module References for ECM and IPC replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 3935 Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Always On MALFUNCTION INDICATOR LAMP (MIL) ALWAYS ON CIRCUIT DESCRIPTION Voltage is supplied directly to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. MIL OPERATION The MIL is located on the instrument panel cluster (IPC). MIL FUNCTION - The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. - The MIL illuminates during a bulb test and a system test. - A DTC will be stored if a MIL is requested by the diagnostic. MIL ILLUMINATION - The MIL will illuminate with ignition switch ON and the engine not running. - The MIL will turn OFF when the engine is started. - The MIL will remain ON if the self-diagnostic system has detected a malfunction. - The MIL may turn OFF if the malfunction is not present. - If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. - If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. DIAGNOSTIC AIDS If the problem is intermittent, refer to Testing for Intermittent Conditions and Poor Connections. See: Testing and Inspection/Component Tests and General Diagnostics TEST DESCRIPTION Step 1 - Step 7 The number below refers to the step number on the diagnostic table. 2. This step determines if the condition is with the MIL control circuit or the PCM. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 3936 Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Inoperative MALFUNCTION INDICATOR LAMP (MIL) INOPERATIVE CIRCUIT DESCRIPTION Voltage is supplied directly to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. There should be a steady MIL with the ignition ON and the engine OFF. MIL OPERATION The MIL is located on the instrument panel cluster (IPC). MIL FUNCTION - The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. - The MIL illuminates during a bulb test and a system test. - A DTC will be stored if a MIL is requested by the PCM. MIL ILLUMINATION - The MIL will illuminate with ignition switch ON and the engine not running. - The MIL will turn OFF when the engine is started. - The MIL will remain ON if the self-diagnostic system has detected a malfunction. - The MIL may turn OFF if the malfunction is not present. - If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. - If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. TEST DESCRIPTION Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 3937 Step 1 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 3938 Step 14 - Step 16 The number below refers to the step number on the diagnostic table. 4. This step tests for a short to voltage on the MIL control circuit. With the fuse removed there should be no voltage on the MIL control circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Oil Change Reminder Lamp > Component Information > Service and Repair Oil Change Reminder Lamp: Service and Repair Engine Oil Life System When to Change Engine Oil Your vehicle has a computer system that lets you know when to change the engine oil and filter. This is based on engine revolutions and engine temperature, and not on mileage. Based on driving conditions, the mileage at which an oil change will be indicated can vary considerably. For the oil life system to work properly, you must reset the system every time the oil is changed. When the system has calculated that oil life has been diminished, it will indicate that an oil change is necessary. A CHANGE ENGINE OIL message will come on. See DIC Warnings and Messages . Change the oil as soon as possible within the next 600 miles (1 000 km). It is possible that, if you are driving under the best conditions, the oil life system may not indicate that an oil change is necessary for over a year. However, the engine oil and filter must be changed at least once a year and at this time the system must be reset. Your dealer has GM-trained service people who will perform this work using genuine GM parts and reset the system. It is also important to check the oil regularly and keep it at the proper level. If the system is ever reset accidentally, you must change the oil at 3,000 miles (5 000 km) since your last oil change. Remember to reset the oil life system whenever the oil is changed. How to Reset the Engine Oil Life System (Gasoline Engine) (From Owner's Manual) The Engine Oil Life System calculates when to change the engine oil and filter based on vehicle use. Any time the oil is changed, reset the system so it can calculate when the next oil change is required. If a situation occurs where you change the oil prior to a CHANGE ENGINE OIL message being turned on, reset the system. To reset the Engine Oil Life System, do the following: 1. Turn the ignition key to RUN with the engine off. 2. Fully press and release the accelerator pedal three times within five seconds. - If the OIL LIFE RESET message displays for 10 seconds, the system is resetting. 3. Turn the ignition key to LOCK. If the CHANGE ENGINE OIL message comes back on when you start your vehicle, the engine oil life system has not reset. Repeat the procedure. If it still does not reset, see your dealer for service. How to Reset the Engine Oil Life System (Diesel Engine) (From Owner's Manual) The Engine Oil Life System calculates when to change the engine oil and filter based on vehicle use. Whenever the oil is changed, reset the system so it can calculate when the next oil change is required. If a situation occurs where you change the oil prior to a CHANGE ENGINE OIL message (pickup models) or a change engine oil light (van models) being turned on, reset the system. To reset the Engine Oil Life System: 1. Turn the ignition key to ON/ RUN with the engine off. 2. Fully press and release the accelerator pedal three times within five seconds. - Pickup Models: If the OIL LIFE RESET message displays for 10 seconds, the system is resetting. - Van Models: If the change engine oil light flashes for five seconds, the system is reset. 3. Turn the ignition key to LOCK/OFF. If the message or light comes back on when you start your vehicle, the engine oil life system has not reset. Repeat the procedure. If it still does not reset, see your dealer/retailer for service. GM Oil Life System Resetting (From Service Manual) When the system has calculated that oil life has been diminished, it will indicate that an oil change is necessary. A CHANGE ENGINE OIL SOON message will come ON. Change the engine oil as soon as possible within the next 1 000 km (600 miles). It is possible that, if driving under the best conditions, the oil life system may not indicate that an oil change is necessary for over a year. However, the engine oil and filter must be changed at least once a year and at this time the system must be reset. If the system is ever reset accidentally, change the engine oil at 5 000 km (3,000 miles) since last oil change. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Service Reminder Indicators > Oil Change Reminder Lamp > Component Information > Service and Repair > Page 3942 How to Reset the Engine Oil Life System (From Service Manual) 1. Turn the ignition key to RUN with the engine OFF. 2. Fully press and release the accelerator pedal 3 times within 5 seconds. If the OIL LIFE RESET message flashes for 10 seconds, the system is resetting. 3. Turn the key to LOCK. If the CHANGE ENGINE OIL SOON message comes back on when you start the vehicle, the ENGINE OIL LIFE SYSTEM has not reset. Repeat the procedure. What to Do with Used Oil Used engine oil contains certain elements that may be unhealthy for your skin and could even cause cancer. Do not let used oil stay on your skin for very long. Clean your skin and nails with soap and water, or a good hand cleaner. Wash or properly dispose of clothing or rags containing used engine oil. See the manufacturer's warnings about the use and disposal of oil products. Used oil can be a threat to the environment. If you change your own oil, be sure to drain all the oil from the filter before disposal. Never dispose of oil by putting it in the trash, pouring it on the ground, into sewers, or into streams or bodies of water. Instead, recycle it by taking it to a place that collects used oil. If you have a problem properly disposing of used oil, ask your dealer, a service station, or a local recycling center for help. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Vehicle Lifting > Component Information > Service Precautions Vehicle Lifting: Service Precautions Vehicle Lifting Caution Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Vehicle Lifting > Component Information > Service and Repair > General Information Vehicle Lifting: Service and Repair General Information Lifting and Jacking the Vehicle Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and strap the vehicle to the hoist. Caution: To avoid any vehicle damage, serious personal injury or death, always use the jackstands to support the vehicle when lifting the vehicle with a jack. Notice: Perform the following steps before beginning any vehicle lifting or jacking procedure: * Remove or secure all of the vehicle's contents in order to avoid any shifting or any movement that may occur during the vehicle lifting or jacking procedure. * The lifting equipment or the jacking equipment weight rating must meet or exceed the weight of the vehicle and any vehicle contents. * The lifting equipment or the jacking equipment must meet the operational standards of the lifting equipment or jacking equipment's manufacturer. * Perform the vehicle lifting or jacking procedure on a clean, hard, dry, level surface. * Perform the vehicle lifting or jacking procedure only at the identified lift points. DO NOT allow the lifting equipment or jacking equipment to contact any other vehicle components. Failure to perform the previous steps could result in damage to the lifting equipment or the jacking equipment, the vehicle, and/or the vehicle's contents. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Vehicle Lifting > Component Information > Service and Repair > General Information > Page 3949 Vehicle Lifting: Service and Repair Vehicle Jacking Vehicle Jacking * Park the vehicle on a clean, hard, level surface before jacking the vehicle. * Any time you lift the vehicle on one end, chock the wheels at the opposite end. * Use jack stands in order to provide support. * When supporting the vehicle using jack stands, place the jack stands under the side rails or the axle. * When lifting under the rear differential, do not allow the jack pad to contact the rear stabilizer bar or mounting hardware. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Vehicle Lifting > Component Information > Service and Repair > General Information > Page 3950 Vehicle Lifting: Service and Repair Vehicle Lifting Vehicle Lifting * Ensure that the lifting equipment meets weight requirements and is in good working order. Always follow the lift manufacturer's instructions. * You may lift and support the front of the vehicle at the front suspension near the wheel assemblies. Ensure that the arms of the front cradle are extended as close to the steering knuckle as possible. * Ensure that the vehicle is centered on the hoist before attempting to lift. * When using a suspension-contact hoist, ensure that the rear cradle has adequate clearance for the rear stabilizer bar. * When lifting or jacking a vehicle, be certain that the lift pads do not contact the exhaust system, brake pipes, cables, HVAC lines, wiring harnesses, fuel lines, or underbody. Such contact may result in damage or unsatisfactory vehicle performance. * When using a frame-contact hoist, only place the pads on flat surfaces. Do not place pads within 50 mm (2 in) of any radius. * Before lifting the vehicle, verify that the vehicle loads are secure and equally distributed. * When major components are removed from the vehicle when supported on a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and secure the vehicle frame to the hoist pads nearest the component to be removed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Relays and Modules - Wheels and Tires > Tire Pressure Module > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Module: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Relays and Modules - Wheels and Tires > Tire Pressure Module > Component Information > Technical Service Bulletins > Page 3956 Tire Pressure Module: Diagrams Tire Pressure Monitoring System Connector End Views Tire Pressure Monitor (TPM) Module Tire Pressure Monitor (TPM) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Relays and Modules - Wheels and Tires > Tire Pressure Module > Component Information > Technical Service Bulletins > Page 3957 Tire Pressure Module: Service and Repair Control Module Setup Passenger Door Module (PDM) Setup After passenger door module (PDM) switch assembly replacement, the following procedures must be performed in the order that they appear for the Tire Pressure Monitor (TPM) System to function properly. The PDM also requires keyless entry transmitter programming after replacement. Refer to Transmitter Synchronization. TPM System Enable The service replacement PDM switch assembly comes with the TPM System disabled to allow the same part number PDM to be used in both TPM and non-TPM equipped vehicles. Once the TPM option is enabled in the PDM, it cannot be disabled. Before proceeding with the steps below, ensure the vehicle is equipped with TPM (UJ6). Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. With the scan tool, select Chassis. 4. Select Tire Pressure Monitor. 5. Select Special Functions. 6. Select TPM Option Enable. 7. Press the exit key to escape. Tire Type/Pressure Selection Since there are different tire types and pressure combinations for different vehicles, it is necessary to select the correct tire type and tire pressures for the vehicle being serviced. 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. With the scan tool, select Chassis. 4. Select Tire Pressure Monitor. 5. Select Special Functions. 6. Select Tire Type/Pressure Selection. 7. Select P-Metric Standard. 8. Select the front tire pressure as noted on the vehicle driver door placard sticker. 9. Select the rear tire pressure as noted on the vehicle driver door placard sticker. 10. Verify the selections made are correct and press the enter key. The scan tool will flash Procedure in Progress, then display Procedure Complete. 11. Press the exit key to escape. Tire Pressure Sensor Learn After PDM switch assembly replacement, each of the tire pressure sensors unique identification codes must be learned into the PDM memory. Refer to Tire Pressure Sensor Learn. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Relays and Modules - Wheels and Tires > Tire Pressure Monitor Receiver / Transponder > Component Information > Technical Service Bulletins > Tire Monitor System - TPM Sensor Information Tire Pressure Monitor Receiver / Transponder: Technical Service Bulletins Tire Monitor System TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Sensor: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 3967 Tire Pressure Sensor: Technical Service Bulletins Tire Monitor System - TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 3968 Tire Pressure Sensor: Technical Service Bulletins Tires - Minimizing Damage to TPM Sensors INFORMATION Bulletin No.: 08-03-10-007 Date: May 16, 2008 Subject: Minimizing Damage to Tire Pressure Monitor (TPM) Sensors During Tire Mounting/Dismounting Models: 2009 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Wheel Mounted Tire Pressure Sensors Minimizing Damage To TPM Sensors All GM vehicles now in production and sold in the U.S., as well as many vehicles sold in Canada, feature Tire Pressure Monitoring Systems that have valve stem mounted Tire Pressure Sensors. When dismounting and mounting tires, care must be taken when breaking the bead loose from the wheel. If the tire machines bead breaking fixture is positioned too close to the tire pressure sensor, as the tire bead breaks away from the wheel it may be forced into, or catch on the edge of the tire pressure sensor. This can damage the sensor and require the sensor to be replaced. Care must also be taken when transferring the tire bead to the other side of the wheel rim. As the tire machine rotates and the tire bead is stretched around the wheel rim, the bead can come in contact with the sensor if it is not correctly positioned in relation to the mounting/dismounting head prior to tire mounting/dismounting. This can also cause sensor damage requiring replacement. Procedure Notice: Use a tire changing machine in order to dismount tires. Do not use hand tools or tire irons alone in order to remove the tire from the wheel. Damage to the tire beads or the wheel rim could result. Notice: Do not scratch or damage the clear coating on aluminum wheels with the tire changing equipment. Scratching the clear coating could cause the aluminum wheel to corrode and the clear coating to peel from the wheel. 1. Remove the valve core from the valve stem. 2. Deflate the tire completely. Important: Rim-clamp European-type tire changers are recommended. 3. Use the tire changer in order to remove the tire from the wheel. Follow steps 4-7 to remove the tire from the wheel. 4. When separating the tire bead from the wheel position the bead breaking fixture 90, 180 and 270 degrees from the valve stem. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 3969 5. Position the wheel and tire so the valve stem is situated at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the outer tire bead up and over the mounting/dismounting head. 6. Position the wheel and tire so that the valve stem is situated again at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the inner tire bead up and over the mounting/dismounting head. 7. Remove all residual liquid sealant from the inside of the tire and wheel surfaces. If any tire sealant is noted upon tire dismounting on vehicles equipped with TPM replace the tire pressure sensor. 8. Use a wire brush or coarse steel wool in order to remove any rubber, light rust or corrosion from the wheel bead seats. Important: If bead seat corrosion has been identified as an air loss concern on the wheel being worked on, refer to GM Service Bulletin # 08-03-10-006 for additional information on correcting the leak. 9. Apply GM P/N 12345884 (in Canada, P/N 5728223) or equivalent to the tire bead and the wheel rim. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 3970 10. Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. 11. Position the rim so that the valve stem (1) is situated at the 3 o'clock position relative to the head (2). This will protect the sensor when the bottom bead seats. 12. After the bottom bead is on the wheel, reposition the wheel and tire so that the valve stem is situated at the 9 o'clock position relative to the head. This will protect the sensor while mounting the tire bead to the outside of the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 3971 13. Use the tire changer in order to install the tire to the wheel. Caution: To avoid serious personal injury, do not stand over tire when inflating. The bead may break when the bead snaps over the safety hump. Do not exceed 275 kPa (40 psi) pressure when inflating any tire if beads are not seated. If 275 kPa (40 psi) pressure will not seat the beads, deflate, lubricate the beads and reinflate. Overinflating may cause the bead to break and cause serious personal injury. Important: Allowable bead seating pressure is 345 kPa (50 psi) on Extended Mobility Tires. 14. Inflate the tire until it passes the bead humps. Be sure that the valve core is not installed at this time. 15. Install the valve core to the valve core stem. 16. Inflate the tire to the proper air pressure. 17. Ensure that the locating rings are visible on both sides of the tire in order to verify that the tire bead is fully seated on the wheel. Parts Information The product shown above is available from GM SPO. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > Page 3972 Fastener Tightening Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Technical Service Bulletins > Page 3973 Tire Pressure Sensor: Locations Tire Pressure Monitoring System Component Views Tire Pressure Monitor Sensors 1 - Tire Pressure Monitor Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) Tire Pressure Sensor: Service and Repair Tire Pressure Indicator Sensor Replacement (Clamp In Style) Tire Pressure Indicator Sensor Replacement (Clamp In Style) Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Vehicle Lifting. 2. Remove the tire/wheel assembly from the vehicle. 3. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ When separating the tire bead from the wheel, position the bead breaking fixture 90 degrees from the valve stem. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the out side of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. 4. Important: If any tire sealant is noted upon tire dismounting, remove all residual liquid sealant from the inside of the tire and wheel surfaces. Remove the tire pressure sensor nut. 5. Remove the tire pressure sensor. Installation Procedure 1. Clean any dirt or debris from the grommet sealing area. 2. Insert the sensor in the wheel hole with the air passage facing away from the wheel. 3. Notice: Refer to Fastener Notice. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 Nm (62 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 3976 4. Important: Before reinstalling the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180° from the valve stem. ^ Position the bead transition area 45° counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. 5. Important: A service replacement tire pressure sensor is shipped in OFF mode. In this mode the sensor unique identification code cannot be learned into the remote control door lock receiver (RCDLR) memory. The sensor must be taken out of OFF mode by spinning the tire/wheel assembly above 32 km/h (20 mph) in order to close the sensors internal roll switch for at least 10 seconds. Install the tire/wheel assembly on the vehicle. 6. Lower the vehicle. 7. Learn the tire pressure sensors. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 3977 Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor Grommet Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Vehicle Lifting. 2. Remove the tire/wheel assembly from the vehicle. 3. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ Position the bead breaking fixture 90 degrees from the valve stem when separating the tire bead from the wheel. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. 4. Important: If any tire sealant is noted upon tire dismounting, replace the sensor. Refer to Tire Pressure Indicator Sensor Replacement (Clamp In Style). Also remove all residual liquid sealant from the inside of the tire and wheel surfaces. Remove the tire pressure sensor nut. 5. Remove the sensor from the wheel hole. 6. Remove the sensor grommet from the valve stem. Installation Procedure 1. Clean any dirt or debris from the grommet sealing areas. 2. Install the grommet on the sensor valve stem. 3. Insert the sensor in the wheel hole with the air passage facing away from the wheel. 4. Notice: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Sensors and Switches - Wheels and Tires > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 3978 Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 Nm (62 inch lbs.). 5. Important: Before installing the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting. 6. Install the tire/wheel assembly on the vehicle. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips Low Tire Pressure Indicator: Technical Service Bulletins Tire Pressure Monitor - TPM System Message/Service Tips # 09-03-16-002A: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information - (Apr 27, 2010) Subject: Dealership Service Consultant Procedure as Vehicle Comes into Service Drive for Tire Pressure Monitor (TPM) System Message, Light and Customer Information Models: 2006-2011 Cars and Light Duty Trucks (Including Saturn and Saab) 2006-2010 HUMMER H2, H3 ATTENTION The information found in this bulletin is to be used as a dealership service consultant procedures for customers coming into the service lane with an illuminated "low tire light" or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. Maintaining proper tire pressures is an Owner's Maintenance item and is not covered under warranty. This bulletin is being revised to add model years and update additional bulletin reference information. Please discard Corporate Bulletin Number 09-03-16-002 (Section 03 -- Suspension). Customer Concerns and Confusion with the Tire Pressure Monitoring (TPM) System The following procedure should be used by dealership service consultants when a customer comes into the service drive with a "low tire light" on or comments on a check tire pressure/low tire pressure/add air to tire or service tire monitor system message. The service consultant should perform the following steps: Procedure Turn the key to ON, without starting the engine. ^ If the low tire light comes on and stays on solid with a check tire pressure/low tire pressure/add air to tire message (on vehicles equipped with DIC), advise the customer: - The system is working properly. - Properly adjusting all tire air pressures to the recommended levels and driving the vehicle will turn the light off (refer to the Tire and Loading Information label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". ^ If the Tire Pressure Monitor (TPM) light blinks for one minute then stays on solid with a service tire monitor system message (on vehicles equipped with DIC): - A TPM system problem exists. The vehicle should be written up accordingly and sent to your service department for further DTC diagnosis and service. - If dashes (--) are displayed in only one or two of the tire pressure readouts, it is likely caused by a previous TPM system relearn that was performed incorrectly due to interference from another vehicle's TPM system during the relearn process (refer to the Important statement later in this bulletin regarding TPM relearn with a Tech 2(R)). - If dashes (--) are displayed in all four of the tire pressure readouts, there is a system problem. Follow the appropriate SI service procedures. ^ If a customer indicates the low tire light comes on for a few minutes when the vehicle is started, then goes off after driving a while, advise the customer: - The system is working properly. - Most likely, air pressure in one or more of the tires is low enough to turn the light on when tires are cold. After driving for a while, tires will heat Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3984 up, allowing tire air pressure to increase above the threshold causing the light to go off. Properly adjusting all tire air pressures to the recommended levels will correct this (Refer to the Tire and Loading Information Label on the driver side door). - More detailed information can be found in the Owner Manual. - Service is not covered under warranty - this maintenance is the responsibility of the owner. - Give the customer a copy of the "GM Customer TPMS Information". For more detailed information, refer to Corporate Bulletin Number 07-03-16-004C and TPMS Training Course 13044.12T2. Tire Pressure Light At key on, without starting the vehicle: Steady Solid Glowing TPM Indicator If the TPM indicator appears as a steady glowing yellow lamp (as above), the system is functioning properly and you should add air to the tires to correct this condition. Blinking TPM Indicator If the TPM indicator appears as a BLINKING yellow lamp for one minute and then stays on solid, diagnostic service is needed. The Effect of Outside Temperature on Tire Pressures Important: As a rule of thumb, tire pressure will change about 7kPa (1 psi) for every 6°C (10°F) decrease in temperature - Tire pressure will drop when it gets colder outside, and rise when it gets warmer. Under certain situations such as extreme outside temperature changes, the system may bring on a solid light with a check tire pressure message. This should be considered normal and the system is working properly. The light will turn off upon adding the proper amount of air to the tires (refer to the Tire & Loading Information label in the driver's door opening). When properly adjusting tire air pressure, the following steps are important to help optimize the system and prolong bringing a tire pressure light on: ^ Use an accurate, high quality tire pressure gauge. ^ Never set the tire pressure below the specified placard value regardless of tire temperature or ambient temperature. ^ Tire pressure should be set to the specified placard pressure at the lowest seasonal temperature the vehicle will encounter during operation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3985 ^ When adding proper tire air pressure, it is important to remember fluctuations in outside air temperatures and tire temperatures effect tire air pressures. ^ After you have added the proper tire pressure, if the vehicle has a DIC (after the system has updated), check to see if DIC displays are the same readings as the tire pressure gauge used (adjust as necessary). ^ Only perform a TPM sensor re-learn after a tire rotation or system part replacements and use the Tech 2(R) to initiate the relearn whenever possible to avoid invalid sensor I.D. learns. Important: Always take outside temperature and tire temperature into consideration to properly set tire pressures. Foe example, on colder days (20°F/-7°C), if setting tire pressure when the vehicle has been indoors (60°F/16°C) or the tires are warm from being driven, it will be necessary to compensate for the low outside temperature by adding 21-27 kPa (3-4 psi) more then the placecard pressure. At some later time, when the vehicle has been parked outside for a while, the tires will cool off and the pressures will drop back into the placecard range. Important: Recently, nitrogen gas (for use in inflating tires) has become available to the general customer through some retailers. The use of nitrogen gas to inflate tires is a technology used in automobile racing. Tires inflated with nitrogen gas may exhibit less of a pressure change in response to outside temperature changes. Nitrogen gas inflation is compatible with GM TPM sensors. For additional information, refer to Corporate Service Bulletin 05-03-10-020C. Important: All Models (Except the Pontiac Vibe): Do not perform a TPM relearn at PDI, the system has already been set at the Assembly Plant. Do not perform a TPM relearn after adding air to the tires. The low tire light is similar to the low fuel indicator and adding something (fuel, air) to the vehicle makes that light turn back off again. Note that because of system behavior, some vehicles must be driven a short distance before the sensors recognize the increase in pressure and turns the light off again. Pontiac Vibe Only: Do not use the TPMS reset button to turn off the light. The system will update and light will turn off when all tire pressures have been adjusted followed by short distance drive. Important: All models (except the Pontiac Vibe): Each tire monitor sensor is learned to a specific vehicle corner. When performing a TPM relearn (only after a tire rotation or replacement of a TPM sensor or Module), always use the Tech2(R) to initiate the J 46079 relearned process. Tech 2(R) - initiated relearns lock out other vehicle TPM signals that may be broadcasting in the area. Only signals initiated by the J 46079 tool will be accepted. This method avoids storing false TPM I.D.s and will prevent customers from returning with dashes (--) displayed in tire pressure readouts and/or a flashing tire pressure monitor (TPM) light. Checking the four TPM I.D.s with the Tech 2(R) prior to and following relearn to verify they are the same can prevent invalid I.D. learns. Pontiac Vibe Only: Tire Monitor Sensors are not learned to a specific vehicle corner. Do not perform a TPM Reset after tire rotation. The TPMS Reset button must only be used during pre-delivery inspection by the dealer to initialize the system (after all tire pressures have been adjusted properly) or when a Tire Pressure Monitor System component is replaced. The J 46079 tool does not work on Vibe TPM sensors. A TPMS relearn on Vibe must be preformed with a Tech 2(R) to set the TPMS Module in learn mode. The TPMS sensor IDs are entered through the Tech 2(R). Refer to SI for further Vibe TPMS information. Labor Operation and Repair Order/Warranty System Claim Required Documentation Important: The ONLY time labor operation E0726 or E0722 should be used is to diagnose for a system issue. That should ONLY occur if, at key ON, without starting the engine, the Tire Pressure Monitor (TPM) blinks for one minute and then stays on solid with a Service Tire Monitor System message (on vehicles equipped with a DIC) If that occurs, a TPM system problem exists and the system will have set a DTC. If one of these operastions is used, the following Repair Order and Warranty System documentation are required: ^ Document the customer complaint on the Repair Order. ^ Document the TPMS DTC that has set on the Repair Order. ^ Enter the TPMS DTC in the Warranty System (WINS) in the Failure Code/DTC field on the claim submission (refer to the Claims Processing Manual, Section IV, Warranty claim Data, Page 6, Item G). If the above information is not documented on the Repair Order and Warranty System, the claim may be rejected. If the Warranty Parts Center (WPC) generates a request, this repair order documentation must be sent back. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3986 Customer TPMS Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3987 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Low Tire Pressure Indicator > Component Information > Technical Service Bulletins > Tire Pressure Monitor - TPM System Message/Service Tips > Page 3988 Frequently Asked Questions Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Module > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Module: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Module > Component Information > Technical Service Bulletins > Page 3993 Tire Pressure Module: Diagrams Tire Pressure Monitoring System Connector End Views Tire Pressure Monitor (TPM) Module Tire Pressure Monitor (TPM) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Module > Component Information > Technical Service Bulletins > Page 3994 Tire Pressure Module: Service and Repair Control Module Setup Passenger Door Module (PDM) Setup After passenger door module (PDM) switch assembly replacement, the following procedures must be performed in the order that they appear for the Tire Pressure Monitor (TPM) System to function properly. The PDM also requires keyless entry transmitter programming after replacement. Refer to Transmitter Synchronization. TPM System Enable The service replacement PDM switch assembly comes with the TPM System disabled to allow the same part number PDM to be used in both TPM and non-TPM equipped vehicles. Once the TPM option is enabled in the PDM, it cannot be disabled. Before proceeding with the steps below, ensure the vehicle is equipped with TPM (UJ6). Refer to Vehicle Certification, Tire Placard, Anti-Theft, and Service Parts ID Label. 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. With the scan tool, select Chassis. 4. Select Tire Pressure Monitor. 5. Select Special Functions. 6. Select TPM Option Enable. 7. Press the exit key to escape. Tire Type/Pressure Selection Since there are different tire types and pressure combinations for different vehicles, it is necessary to select the correct tire type and tire pressures for the vehicle being serviced. 1. Install a scan tool. 2. Turn ON the ignition, with the engine OFF. 3. With the scan tool, select Chassis. 4. Select Tire Pressure Monitor. 5. Select Special Functions. 6. Select Tire Type/Pressure Selection. 7. Select P-Metric Standard. 8. Select the front tire pressure as noted on the vehicle driver door placard sticker. 9. Select the rear tire pressure as noted on the vehicle driver door placard sticker. 10. Verify the selections made are correct and press the enter key. The scan tool will flash Procedure in Progress, then display Procedure Complete. 11. Press the exit key to escape. Tire Pressure Sensor Learn After PDM switch assembly replacement, each of the tire pressure sensors unique identification codes must be learned into the PDM memory. Refer to Tire Pressure Sensor Learn. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Monitor Receiver / Transponder > Component Information > Technical Service Bulletins > Tire Monitor System - TPM Sensor Information Tire Pressure Monitor Receiver / Transponder: Technical Service Bulletins Tire Monitor System TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs Tire Pressure Sensor: Technical Service Bulletins TPMS System - Service And Re-Learning Sensor IDs INFORMATION Bulletin No.: 10-03-16-001 Date: July 19, 2010 Subject: TPMS System Service and Re-Learning Sensor IDs Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2 2009 and Prior HUMMER H3 2010 and Prior Saturn Models 2009 and Prior Saab 9-7X with Wheel-Mounted Tire Pressure Sensors In the event that the spare tire, which is normally not equipped with a tire pressure monitor (TPM) sensor, is installed in place of one of the road tires and the vehicle is driven above 40 km/h (25 mph) for 20 minutes or more, the TPM indicator icon on the instrument panel cluster (IPC) will flash for approximately one minute and then remain on steady each time the ignition is turned ON, indicating a diagnostic trouble code (DTC) has been set. The driver information center (DIC), if equipped, will also display a SERVICE TIRE MONITOR type message. When the road tire is repaired and reinstalled in the original location, the TPM indicator icon illumination and DIC message may remain displayed until the DTC is cleared. To ensure that the TPM indicator and the DIC message are cleared after service, it is necessary to clear any TPM DTCs using a scan tool. If a scan tool is unavailable, performing the TPM relearn procedure using a TPM diagnostic tool will provide the same results. It is advised to perform the relearn procedure away from other vehicles to prevent picking up a stray sensor signal. If one or more of the TPM sensors are missing or damaged and have been replaced, then the relearn procedure must be performed. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 4003 Tire Pressure Sensor: Technical Service Bulletins Tire Monitor System - TPM Sensor Information INFORMATION Bulletin No.: 08-03-16-003 Date: May 12, 2008 Subject: Warranty Reduction - Transfer of Tire Pressure Monitoring (TPM) Sensors to Replacement Wheels and Allowable TPM Sensor Replacements Models: 2000-2009 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7x with On-Wheel TPM Sensors TPM Sensor / Wheel Warranty Reviews During the last warranty review period it was noted that wheels being returned under the GM New Vehicle Warranty were being shipped back to General Motors with the TPM sensor still attached to the wheel. Return rates ran as high as 60% with the TPM sensors still attached. Operational TPM sensors should not be returned to GM and are to be transferred to replacement wheels if they become necessary. Important: Operational TPM Sensors that are returned under warranty to General Motors will be charged back to the dealer.Sensors have a 10 year /150,000 mile (240,000 km) battery life, and should be transferred if one or more wheels are replaced. TPM Valve Stem / Grommet (0-ring) Replacement When the TPM sensors are transferred to new wheels you should replace the component used to seal the TPM sensor stem to the wheel. On sensors with an aluminum stem and visible nut on the outside of the wheel a replacement grommet (0-ring) should be used to assure a proper seal. The sensor retaining nut (except Aveo) should be tightened to 7 N.m (62 lb in) for all vehicles except Pontiac Vibe (4.0 N.m (35.4 lb in)). Important: ^ DO NOT overtorque the retaining nut. Notice: ^ Factory installed TPM Sensors come with plastic aluminum or nickel-plated brass stem caps. These caps should not be changed. Chrome plated steel caps may cause corrosion of aluminum valve stems due to incompatibility of the metals. On current style sensors the entire rubber stem is replaceable. The service interval on the revised TPM sensor with replaceable stem is the same as for any other traditional valve stem. Replace the stem at the time of tire replacement sensor transfer or whenever air seepage is suspected at the valve stem. When replacing the valve stem tighten the screw to 1.3 N.m (11.5 lb in). For either style of TPM sensor see the service parts guide for the correct GM part numbers to order and use. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 4004 Tire Pressure Sensor: Technical Service Bulletins Tires - Minimizing Damage to TPM Sensors INFORMATION Bulletin No.: 08-03-10-007 Date: May 16, 2008 Subject: Minimizing Damage to Tire Pressure Monitor (TPM) Sensors During Tire Mounting/Dismounting Models: 2009 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Wheel Mounted Tire Pressure Sensors Minimizing Damage To TPM Sensors All GM vehicles now in production and sold in the U.S., as well as many vehicles sold in Canada, feature Tire Pressure Monitoring Systems that have valve stem mounted Tire Pressure Sensors. When dismounting and mounting tires, care must be taken when breaking the bead loose from the wheel. If the tire machines bead breaking fixture is positioned too close to the tire pressure sensor, as the tire bead breaks away from the wheel it may be forced into, or catch on the edge of the tire pressure sensor. This can damage the sensor and require the sensor to be replaced. Care must also be taken when transferring the tire bead to the other side of the wheel rim. As the tire machine rotates and the tire bead is stretched around the wheel rim, the bead can come in contact with the sensor if it is not correctly positioned in relation to the mounting/dismounting head prior to tire mounting/dismounting. This can also cause sensor damage requiring replacement. Procedure Notice: Use a tire changing machine in order to dismount tires. Do not use hand tools or tire irons alone in order to remove the tire from the wheel. Damage to the tire beads or the wheel rim could result. Notice: Do not scratch or damage the clear coating on aluminum wheels with the tire changing equipment. Scratching the clear coating could cause the aluminum wheel to corrode and the clear coating to peel from the wheel. 1. Remove the valve core from the valve stem. 2. Deflate the tire completely. Important: Rim-clamp European-type tire changers are recommended. 3. Use the tire changer in order to remove the tire from the wheel. Follow steps 4-7 to remove the tire from the wheel. 4. When separating the tire bead from the wheel position the bead breaking fixture 90, 180 and 270 degrees from the valve stem. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 4005 5. Position the wheel and tire so the valve stem is situated at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the outer tire bead up and over the mounting/dismounting head. 6. Position the wheel and tire so that the valve stem is situated again at the 2 o'clock position relative to the head. The tire iron or pry bar can be inserted when prying the inner tire bead up and over the mounting/dismounting head. 7. Remove all residual liquid sealant from the inside of the tire and wheel surfaces. If any tire sealant is noted upon tire dismounting on vehicles equipped with TPM replace the tire pressure sensor. 8. Use a wire brush or coarse steel wool in order to remove any rubber, light rust or corrosion from the wheel bead seats. Important: If bead seat corrosion has been identified as an air loss concern on the wheel being worked on, refer to GM Service Bulletin # 08-03-10-006 for additional information on correcting the leak. 9. Apply GM P/N 12345884 (in Canada, P/N 5728223) or equivalent to the tire bead and the wheel rim. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 4006 10. Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. 11. Position the rim so that the valve stem (1) is situated at the 3 o'clock position relative to the head (2). This will protect the sensor when the bottom bead seats. 12. After the bottom bead is on the wheel, reposition the wheel and tire so that the valve stem is situated at the 9 o'clock position relative to the head. This will protect the sensor while mounting the tire bead to the outside of the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > TPMS System - Service And Re-Learning Sensor IDs > Page 4007 13. Use the tire changer in order to install the tire to the wheel. Caution: To avoid serious personal injury, do not stand over tire when inflating. The bead may break when the bead snaps over the safety hump. Do not exceed 275 kPa (40 psi) pressure when inflating any tire if beads are not seated. If 275 kPa (40 psi) pressure will not seat the beads, deflate, lubricate the beads and reinflate. Overinflating may cause the bead to break and cause serious personal injury. Important: Allowable bead seating pressure is 345 kPa (50 psi) on Extended Mobility Tires. 14. Inflate the tire until it passes the bead humps. Be sure that the valve core is not installed at this time. 15. Install the valve core to the valve core stem. 16. Inflate the tire to the proper air pressure. 17. Ensure that the locating rings are visible on both sides of the tire in order to verify that the tire bead is fully seated on the wheel. Parts Information The product shown above is available from GM SPO. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > Page 4008 Fastener Tightening Specifications Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Technical Service Bulletins > Page 4009 Tire Pressure Sensor: Locations Tire Pressure Monitoring System Component Views Tire Pressure Monitor Sensors 1 - Tire Pressure Monitor Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) Tire Pressure Sensor: Service and Repair Tire Pressure Indicator Sensor Replacement (Clamp In Style) Tire Pressure Indicator Sensor Replacement (Clamp In Style) Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Vehicle Lifting. 2. Remove the tire/wheel assembly from the vehicle. 3. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ When separating the tire bead from the wheel, position the bead breaking fixture 90 degrees from the valve stem. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the out side of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. 4. Important: If any tire sealant is noted upon tire dismounting, remove all residual liquid sealant from the inside of the tire and wheel surfaces. Remove the tire pressure sensor nut. 5. Remove the tire pressure sensor. Installation Procedure 1. Clean any dirt or debris from the grommet sealing area. 2. Insert the sensor in the wheel hole with the air passage facing away from the wheel. 3. Notice: Refer to Fastener Notice. Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 Nm (62 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 4012 4. Important: Before reinstalling the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180° from the valve stem. ^ Position the bead transition area 45° counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. 5. Important: A service replacement tire pressure sensor is shipped in OFF mode. In this mode the sensor unique identification code cannot be learned into the remote control door lock receiver (RCDLR) memory. The sensor must be taken out of OFF mode by spinning the tire/wheel assembly above 32 km/h (20 mph) in order to close the sensors internal roll switch for at least 10 seconds. Install the tire/wheel assembly on the vehicle. 6. Lower the vehicle. 7. Learn the tire pressure sensors. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 4013 Tire Pressure Sensor: Service and Repair Tire Pressure Sensor Grommet Replacement Tire Pressure Sensor Grommet Replacement Removal Procedure 1. Raise the vehicle on a suitable support. Refer to Vehicle Lifting. 2. Remove the tire/wheel assembly from the vehicle. 3. Important: Before the tire is removed from the wheel, note the following items to avoid tire pressure sensor damage upon tire dismounting: ^ Place the sensors cap and valve on a dry clean surface after removal. The cap is aluminum and the valve is nickel plated to prevent corrosion and are not to be substituted with a cap or valve made of any other material. ^ Position the bead breaking fixture 90 degrees from the valve stem when separating the tire bead from the wheel. ^ Position the mounting/dismounting head so the tire iron, or pry bar can be inserted slightly clockwise of the sensor body when prying the tire bead up and over the mounting/dismounting head. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the outside of the wheel rim. ^ Repeat items for inner bead. Remove the tire from the wheel. 4. Important: If any tire sealant is noted upon tire dismounting, replace the sensor. Refer to Tire Pressure Indicator Sensor Replacement (Clamp In Style). Also remove all residual liquid sealant from the inside of the tire and wheel surfaces. Remove the tire pressure sensor nut. 5. Remove the sensor from the wheel hole. 6. Remove the sensor grommet from the valve stem. Installation Procedure 1. Clean any dirt or debris from the grommet sealing areas. 2. Install the grommet on the sensor valve stem. 3. Insert the sensor in the wheel hole with the air passage facing away from the wheel. 4. Notice: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tire Monitoring System > Tire Pressure Sensor > Component Information > Service and Repair > Tire Pressure Indicator Sensor Replacement (Clamp In Style) > Page 4014 Install the sensor nut and position the sensor body parallel to the inside wheel surface while torquing. Tighten the sensor nut to 7 Nm (62 inch lbs.). 5. Important: Before installing the tire on the wheel, note the following items to avoid tire pressure sensor damage upon tire mounting: ^ Position the mounting/dismounting head 180 degrees from the valve stem. ^ Position the bead transition area 45 degrees counterclockwise of the valve stem. ^ Using the tire machine, rotate the tire/wheel assembly clockwise when transferring the tire bead to the inside of the wheel rim. ^ Repeat items for outer bead. Install the tire on the wheel. Refer to Tire Mounting and Dismounting. 6. Install the tire/wheel assembly on the vehicle. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Tires > Spare Tire > Component Information > Technical Service Bulletins > Tire/Wheel - Spare Tire Is Non-Matching To Other Tires Spare Tire: Technical Service Bulletins Tire/Wheel - Spare Tire Is Non-Matching To Other Tires INFORMATION Bulletin No.: 02-03-10-001E Date: November 01, 2010 Subject: Spare Tire is a Different Size than Other Tires Models: 2002-2011 Cadillac Escalade Models 1999-2007 Chevrolet Silverado (Classic) 2000-2011 Chevrolet Suburban, Tahoe 2002-2011 Chevrolet Avalanche 1999-2007 GMC Sierra (Classic) 2001 GMC Sierra C3 2001-2011 GMC Yukon Models 2002-2011 GMC Sierra Denali Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 02-03-10-001D (Section 03 - Suspension). This bulletin is being issued to supply additional information concerning the spare tire on the above vehicles. You or your customers may have noticed that the spare tire has a 16-inch diameter steel wheel or 17-inch diameter aluminum wheel while the road tires have a 17-inch, 18-inch, 20-inch or 22-inch diameter aluminum wheel. Although the spare tire has a different wheel diameter and may be a different brand, the rolling circumference is nearly identical to the road tires. The size difference will not cause a concern because the spare and the other tires will travel the same distance in one revolution. This combination of non-matching tires is used most often on full-size trucks. These vehicles use a road tire and wheel combination that may be too large to conveniently fit the storage compartment space of the vehicle. The customer may not be able to easily remove the spare tire/wheel from the storage area because of its size and/or weight. A steel spare wheel, rather than an aluminum one, may be used since the spare is stowed under the vehicle where it is exposed to road and weather elements. A steel wheel is less likely to incur cosmetic damage while in the stowed position for long periods of time. Please provide this information to your customers. Also, remind your customers of the importance of following the tire maintenance schedule as listed in their Owner Manual. Additional tire care information can be found by visiting www.gmtiresafety.com or contacting GM toll-free. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap Wheels: Customer Interest Tires/Wheels - Rattle Noise from Wheel Or Hub Cap TECHNICAL Bulletin No.: 07-03-10-012D Date: April 12, 2011 Subject: Rattle Noise from Wheel or Hub Cap While Driving, Loose Wheel Nut Caps or Wheel Nut Caps May Not Tighten on Wheel Nuts (Inspect/Replace Wheel Nut Caps As Necessary) Models: 2007-2012 Chevrolet Express, Silverado, Suburban 1500, 2500 and 3500 Series 2007-2012 GMC Savana, Sierra, Yukon XL 1500, 2500 and 3500 Series with 8 Lug Wheel Nut Center Caps (RPOs NX7, NZ7, PY0, PY2, PY9, P03, P25, QB5, QC1, QR5, Q9A) Supercede: This bulletin is being revised to update the model year information. Please discard Corporate Bulletin Number 07-03-10-012C (Section 03 - Suspension). Condition Some customers may comment on a rattle noise from the wheel or hub cap while driving. Other customers may comment on loose wheel nut caps or caps that may not tighten on the wheel nuts. Cause Depending on the generation of the wheel caps, the issue may be overtorqued wheel nut caps or may be caused by the lack of internal threads inside the wheel nut caps. The wheel nut cap (1) is correctly threaded. The wheel nut cap (2) shows the insufficient threads. Correction Important The wheel nut caps are serviced separately from the center wheel hub cap for most hub caps. Refer to the GM electronic parts catalog (EPC) for details. Inspect each wheel nut cap and replace as necessary using the steps below. 1. Remove the wheel hub cap from the vehicle. 2. Place the front of the wheel hub cap down on a protected clean work bench being careful not to scratch or damage the hub cap surface. 3. Inspect all the wheel nut caps, marking any bad wheel nut caps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap > Page 4028 Tip The bad wheel nut cap can be removed by placing a drift or punch inside the center of the nut cap and using a hammer to tap the wheel nut cap out of the hub cap. 4. From inside the hub cap, apply direct pressure to one side of the wheel nut cap rim (1). The wheel nut cap will tip down and pop out of the wheel hub cap hole when enough pressure is applied. Repeat this procedure for any additional wheel nut caps that need to be replaced. 5. Flip the hub cap over on the work bench. The emblem side should be up. Tip A 22 mm (7/8 in) socket placed over the wheel nut cap may be used along with a hammer to tap the new wheel nut cap back into the hub cap hole. 6. Install the new wheel nut cap into the existing hub cap hole by applying direct pressure to the front center of the wheel nut cap. 7. Install the wheel hub cap onto the vehicle and tighten the wheel nut caps. 8. Repeat this entire procedure for each additional hub cap. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) Wheels: Customer Interest Wheels/Tires - Tire Radial Force Variation (RFV) INFORMATION Bulletin No.: 00-03-10-006F Date: May 04, 2010 Subject: Information on Tire Radial Force Variation (RFV) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X 2000-2005 Saturn L Series 2003-2007 Saturn ION Supercede: This bulletin is being revised to considerably expand the available information on Radial Force Variation (RFV) and should be reviewed in whole. Please discard Corporate Bulletin Number 00-03-10-006E (Section 03 - Suspension). Important - Before measuring tires on equipment such as the Hunter GSP9700, the vehicle MUST be driven a minimum of 16 km (10 mi) to ensure removal of any flat-spotting. Refer to Corporate Bulletin Number 03-03-10-007E - Tire/Wheel Characteristics of GM Original Equipment Tires. - Equipment such as the Hunter GSP9700 MUST be calibrated prior to measuring tire/wheel assemblies for each vehicle. The purpose of this bulletin is to provide guidance to GM dealers when using tire force variation measurement equipment, such as the Hunter GSP9700. This type of equipment can be a valuable tool in diagnosing vehicle ride concerns. The most common ride concern involving tire radial force variation is highway speed shake on smooth roads. Tire related smooth road highway speed shake can be caused by three conditions: imbalance, out of round and tire force variation. These three conditions are not necessarily related. All three conditions must be addressed. Imbalance is normally addressed first, because it is the simpler of the three to correct. Off-vehicle, two plane dynamic wheel balancers are readily available and can accurately correct any imbalance. Balancer calibration and maintenance, proper attachment of the wheel to the balancer, and proper balance weights, are all factors required for a quality balance. However, a perfectly balanced tire/wheel assembly can still be "oval shaped" and cause a vibration. Before balancing, perform the following procedures. Tire and Wheel Diagnosis 1. Set the tire pressure to the placard values. 2. With the vehicle raised, ensure the wheels are centered on the hub by loosening all wheel nuts and hand-tightening all nuts first by hand while shaking the wheel, then torque to specifications using a torque wrench, NOT a torque stick. 3. Visually inspect the tires and the wheels. Inspect for evidence of the following conditions and correct as necessary: - Missing balance weights - Bent rim flange - Irregular tire wear - Incomplete bead seating - Tire irregularities (including pressure settings) - Mud/ice build-up in wheel - Stones in the tire tread - Remove any aftermarket wheels and/or tires and restore vehicle to original condition prior to diagnosing a smooth road shake condition. 4. Road test the vehicle using the Electronic Vibration Analyzer (EVA) essential tool. Drive for a sufficient distance on a known, smooth road surface to duplicate the condition. Determine if the vehicle is sensitive to brake apply. If the brakes are applied lightly and the pulsation felt in the steering wheel increases, refer to the Brakes section of the service manual that deals with brake-induced pulsation. If you can start to hear the vibration as a low boom noise (in addition to feeling it), but cannot see it, the vehicle likely has a first order (one pulse per propshaft revolution) driveline vibration. Driveline first order vibrations are high enough in frequency that most humans can start to hear them at highway speeds, but are too high to be able to be easily seen. These issues can be caused by driveline imbalance or misalignment. If the vehicle exhibits this low boom and the booming pulses in-and-out on a regular basis (like a throbbing), chances are good that the vehicle could have driveline vibration. This type Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 4033 of vibration is normally felt more in the "seat of the pants" than the steering wheel. 5. Next, record the Hertz (Hz) reading as displayed by the EVA onto the tire data worksheet found at the end of this bulletin. This should be done after a tire break-in period of at least 16 km (10 mi) at 72 km/h (45 mph) or greater, in order to eliminate any possible tire flat-spotting. This reading confirms what the vehicle vibration frequency is prior to vehicle service and documents the amount of improvement occurring as the result of the various steps taken to repair. Completing the Steering Wheel Shake Worksheet below is required. A copy of the completed worksheet must be saved with the R.O. and a copy included with any parts returned to the Warranty Parts Center for analysis. A reading of 35 to 50 Hz typically indicates a first order propshaft vibration. If this is the situation, refer to Corporate Bulletin Number 08-07-30-044D. Generally, a reading between 10 and 20 Hz indicates a tire/wheel vibration and if this is the reading obtained, continue using this bulletin. If the tire 1st order vibration goes away and stays away during this evaluation, the cause is likely tire flat-spotting. Tire flat-spotting vibration may come and go at any speed over 72 km/h (45 mph) during the first 10 minutes of operation, if vibration continues after 10 minutes of driving at speeds greater than 72 km/h (45 mph), tire flat-spotting can be ruled out as the cause for vibration. 6. If flat-spotting is the cause, provide the explanation that this has occurred due to the vehicle being parked for long periods of time and that the nature of the tire is to take a set. Refer to Corporate Bulletin Number 03-03-10-007E: Information on Tire/Wheel Characteristics (Vibration, Balance, Shake, Flat Spotting) of GM Original Equipment Tires. 7. If the road test indicates a shake/vibration exists, check the imbalance of each tire/wheel assembly on a known, calibrated, off-car dynamic balancer.Make sure the mounting surface of the wheel and the surface of the balancer are absolutely clean and free of debris. Be sure to chose the proper cone/collet for the wheel, and always use the pilot bore for centering. Never center the wheel using the hub-cap bore since it is not a precision machined surface. If any assembly calls for more than 1/4 ounce on either rim flange, remove all balance weights and rebalance to as close to zero as possible. If you can see the vibration (along with feeling it) in the steering wheel (driving straight without your hands on the wheel), it is very likely to be a tire/wheel first order (one pulse per revolution) disturbance. First order disturbances can be caused by imbalance as well as non-uniformities in tires, wheels or hubs. This first order frequency is too low for a human to hear, but if the amplitude is high enough, it can be seen. If a vibration or shake still exists after balancing, any out of round conditions, of the wheel, and force variation conditions of the tire, must be addressed. Equipment such as the Hunter GSP9700 can address both (it is also a wheel balancer). Tire radial force vibration (RFV) can be defined as the amount of stiffness variation the tire will produce in one revolution under a constant load. Radial force variation is what the vehicle feels because the load (weight) of the vehicle is always on the tires. Although free runout of tires (not under load) is not always a good indicator of a smooth ride, it is critical that total tire/wheel assembly runout be within specification. Equipment such as the Hunter GSP9700 loads the tire, similar to on the vehicle, and measures radial force variation of the tire/wheel assembly. Note that the wheel is affecting the tire's RFV measurement at this point. To isolate the wheel, its runout must be measured. This can be easily done on the Hunter, without the need to set up dial indicators. If the wheel meets the runout specification, the tire's RFV can then be addressed. After measuring the tire/wheel assembly under load, and the wheel alone, the machine then calculates (predicts) the radial force variation of the tire. However, because this is a prediction that can include mounting inaccuracies, and the load wheel is much smaller in diameter than used in tire production, this type of service equipment should NOT be used to audit new tires. Rather, it should be used as a service diagnostic tool to minimize radial force variation of the tire/wheel assembly. Equipment such as the Hunter GSP9700 does an excellent job of measuring wheel runout, and of finding the low point of the wheel (for runout) and the high point of the tire (for radial force variation). This allows the tire to be matched mounted to the wheel for lowest tire/wheel assembly force variation. The machine will simplify this process into easy steps. The following assembly radial force variation numbers should be used as a guide: When measuring RFV and match mounting tires perform the following steps. Measuring Wheel Runout and Assembly Radial Force Variation Important The completed worksheet at the end of this bulletin must be attached to the hard copy of the repair order. - Measure radial force variation and radial runout. - If a road force/balancing machine is used, record the radial force variation (RFV) on the worksheet at the end of this bulletin. It may be of benefit to have the lowest RFV assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires onto the subject vehicle. - If a runout/balancing machine is used, record the radial runout of the tire/wheel assemblies on the worksheet at the end of this bulletin. If one or more of the tire/wheel assemblies are more than.040 in (1.02 mm), match mount the tire to the wheel to get below.040 in (1.02 mm). For sensitive customers, readings of 0.030 inch (0.76 mm) or less are preferable, it may also be of benefit to have the lowest runout assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 4034 onto the subject vehicle. - After match mounting, the tire/wheel assembly must be rebalanced. If match mounting tires to in-spec wheels produces assembly values higher than these, tire replacement may be necessary. Replacing tires at lower values will probably mean good tires are being condemned. Because tires can sometimes become temporarily flat-spotted, which will affect force variation, it is important that the vehicle be driven at least 16 km (10 mi) prior to measuring. Tire pressure must also be adjusted to the usage pressure on the vehicle's tire placard prior to measuring. Most GM vehicles will tolerate radial force variation up to these levels. However, some vehicles are more sensitive, and may require lower levels. Also, there are other tire parameters that equipment such as the Hunter GSP9700 cannot measure that may be a factor. In such cases, TAC should be contacted for further instructions. Important - When mounting a GM wheel to a wheel balancer/force variation machine, always use the wheel's center pilot hole. This is the primary centering mechanism on all GM wheels; the bolt holes are secondary. Usually a back cone method to the machine should be used. For added accuracy and repeatability, a flange plate should be used to clamp the wheel onto the cone and machine. This system is offered by all balancer manufacturers in GM's dealer program. - Any type of service equipment that removes tread rubber by grinding, buffing or truing is NOT recommended, and may void the tire warranty. However, tires may have been ground by the tire company as part of their tire manufacturing process. This is a legitimate procedure. Steering Wheel Shake Worksheet When diagnosing vibration concerns, use the following worksheet in conjunction with the appropriate Vibration Analysis-Road testing procedure in the Vibration Correction sub-section in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 4035 Refer to the appropriate section of SI for specifications and repair procedures that are related to the vibration concern. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels Wheels: Customer Interest Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels TECHNICAL Bulletin No.: 05-03-10-003F Date: April 27, 2010 Subject: Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Cast Aluminum Wheels Supercede: This bulletin is being revised to update the model years and the bulletin reference information. Please discard Corporate Bulletin Number 05-03-10-003E (Section 03 - Suspension). Condition Some customers may comment on a low tire pressure condition. Diagnosis of the low tire pressure condition indicates an air leak through the cast aluminum wheel. Cause Porosity in the cast aluminum wheel may be the cause. Notice This bulletin specifically addresses issues related to the wheel casting that may result in an air leak. For issues related to corrosion of the wheel in service, please refer to Corporate Bulletin Number 08-03-10-006C - Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat). Correction 1. Remove the tire and wheel assembly from the vehicle. Refer to the appropriate service procedure in SI. 2. Locate the leaking area by inflating the tire to 276 kPa (40 psi) and dipping the tire/wheel assembly in a water bath, or use a spray bottle with soap and water to locate the specific leak location. Important - If the porosity leak is located in the bead area of the aluminum rim (where the tire meets the rim), the wheel should be replaced. - If two or more leaks are located on one wheel, the wheel should be replaced. 3. If air bubbles are observed, mark the location. - If the leak location is on the tire/rubber area, refer to Corporate Bulletin Number 04-03-10-001F Tire Puncture Repair Procedures for All Cars and Light Duty Trucks. - If the leak is located on the aluminum wheel area, continue with the next step. 4. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 5. Dismount the tire from the wheel. Refer to Tire Mounting and Dismounting. 6. Remove the tire pressure sensor. Refer to Tire Pressure Sensor removal procedure in SI. 7. Scuff the INSIDE rim surface at the leak area with #80 grit paper and clean the area with general purpose cleaner, such as 3M(R) General Purpose Adhesive Cleaner, P/N 08984, or equivalent. 8. Apply a 3 mm (0.12 in) thick layer of Silicone - Adhesive/Sealant, P/N 12378478 (in Canada, use 88900041), or equivalent, to the leak area. 9. Allow for the adhesive/sealant to dry. Notice Caution must be used when mounting the tire so as not to damage the sealer. Damaging the repair area may result in an air leak. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels > Page 4040 10. Align the inscribed mark on the tire with the valve stem on the wheel. 11. Reinstall the Tire Pressure Sensor. Refer to Tire Pressure Sensor installation procedure in SI. 12. Mount the tire on the wheel. Refer to Tire Mounting and Dismounting. 13. Pressurize the tire to 276 kPa (40 psi) and inspect for leaks. 14. Adjust tire pressure to meet the placard specification. 15. Balance the tire/wheel assembly. Refer to Tire and Wheel Assembly Balancing - Off-Vehicle. 16. Install the tire and wheel assembly onto the vehicle. Refer to the appropriate service procedure in SI. Parts Information Warranty Information (excluding Saab U.S. Models) Important The Silicone - Adhesive/Sealant comes in a case quantity of six. ONLY charge warranty one tube of adhesive/sealant per wheel repair. For vehicles repaired under warranty, use: One leak repair per wheel. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON Wheels: Customer Interest Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON TECHNICAL Bulletin No.: 08-03-10-006C Date: April 27, 2010 Subject: Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat) Models: 2000-2011 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2010 HUMMER H3 2005-2009 Saab 9-7X Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 08-03-10-006B (Section 03 - Suspension). Condition Some customers may comment on a tire that slowly loses air pressure over a period of days or weeks. Cause Abrasive elements in the environment may intrude between the tire and wheel at the bead seat. There is always some relative motion between the tire and wheel (when the vehicle is driven) and this motion may cause the abrasive particles to wear the wheel and tire materials. As the wear continues, there may also be intrusion at the tire/wheel interface by corrosive media from the environment. Eventually a path for air develops and a 'slow' leak may ensue. This corrosion may appear on the inboard or outboard bead seating surface of the wheel. This corrosion will not be visible until the tire is dismounted from the wheel. Notice This bulletin specifically addresses issues related to wheel bead seat corrosion that may result in an air leak. For issues related to porosity of the wheel casting that may result in an air leak, please refer to Corporate Bulletin Number 05-03-10-006F - Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Correction In most cases, this type of air loss can be corrected by following the procedure below. Important DO NOT replace a wheel for slow air loss unless you have evaluated and/or tried to repair the wheel with the procedure below. Notice The repair is no longer advised or applicable for chromed aluminum wheels. 1. Remove the wheel and tire assembly for diagnosis. Refer to Tire and Wheel Removal and Installation in SI. 2. After a water dunk tank leak test, if you determine the source of the air leak to be around the bead seat of the wheel, dismount the tire to examine the bead seat. Shown below is a typical area of bead seat corrosion.Typical Location of Bead Seat Corrosion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 4045 Important Other forms of slow air leaks are possible. If the body of the tire, valve stem and wheel flange show no signs of air seepage, refer to Corporate Bulletin Number 05-03-10-003D for additional information on possible wheel porosity issues. 3. Bead seat corrosion is identified by what appears like blistering of the wheel finish, causing a rough or uneven surface that is difficult for the tire to maintain a proper seal on. Below is a close-up photo of bead seat corrosion on an aluminum wheel that was sufficient to cause slow air loss. Close-Up of Bead Seat Corrosion 4. If corrosion is found on the wheel bead seat, measure the affected area as shown below. - For vehicles with 32,186 km (20,000 mi) or less, the total allowable combined linear area of repairable corrosion is 100 mm (4 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. - For vehicles that have exceeded 32,186 km (20,000 mi), the total allowable combined linear area of repairable corrosion is 200 mm (8 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. 5. In order to correct the wheel leak, use a clean-up (fine cut) sanding disc or biscuit to remove the corrosion and any flaking paint. You should remove the corrosion back far enough until you reach material that is stable and firmly bonded to the wheel. Try to taper the edge of any flaking paint as best you can in order to avoid sharp edges that may increase the chance of a leak reoccurring. The photo below shows an acceptable repaired surface. Notice Corrosion that extends up the lip of the wheel, where after the clean-up process it would be visible with the tire mounted, is only acceptable on the inboard flange. The inboard flange is not visible with the wheel assembly in the mounted position. If any loose coatings or corrosion extend to the visible surfaces on the FACE of the wheel, that wheel must be replaced. Important Remove ONLY the material required to eliminate the corrosion from the bead seating surface. DO NOT remove excessive amounts of material. ALWAYS keep the sealing surface as smooth and level as possible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 4046 Acceptably Prepared (Cleaned-Up) Wheel Surface 6. Once the corrosion has been eliminated, you should coat the repaired area with a commercially available tire sealant such as Patch Brand Bead Sealant or equivalent. Commercially available bead sealants are black rubber-like coatings that will permanently fill and seal the resurfaced bead seat. At 21°C (70°F) ambient temperature, this sealant will set-up sufficiently for tire mounting in about 10 minutes.Coated and Sealed Bead Seat 7. Remount the tire and install the repaired wheel and tire assembly. Refer to Tire and Wheel Removal and Installation in SI. Parts Information Patch Brand Bead Sealer is available from Myers Tires at 1-800-998-9897 or on the web at www.myerstiresupply.com. The one-quart size can of sealer will repair about 20 wheels. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > Customer Interest: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 4047 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Staining/Pitting/Corrosion INFORMATION Bulletin No.: 00-03-10-002F Date: April 21, 2011 Subject: Chemical Staining, Pitting, Corrosion and/or Spotted Appearance of Chromed Aluminum Wheels Models: 2012 and Prior GM Cars and Trucks Supercede: This bulletin is being revised to update model years, suggest additional restorative products and add additional corrosion information. Please discard Corporate Bulletin Number 00-03-10-002E (Section 03 - Suspension). Important You may give a copy of this bulletin to the customer. What is Chemical Staining of Chrome Wheels? Figure 1 Chemical staining in most cases results from acid based cleaners (refer to Figure 1 for an example). These stains are frequently milky, black, or greenish in appearance. They result from using cleaning solutions that contain acids on chrome wheels. Soap and water is usually sufficient to clean wheels. If the customer insists on using a wheel cleaner they should only use one that specifically states that it is safe for chromed wheels and does not contain anything in the following list. (Dealers should also survey any products they use during prep or normal cleaning of stock units for these chemicals.) - Ammonium Bifluoride (fluoride source for dissolution of chrome) - Hydrofluoric Acid (directly dissolves chrome) - Hydrochloric Acid (directly dissolves chrome) - Sodium Dodecylbenzenesulfonic Acid - Sulfamic Acid - Phosphoric Acid - Hydroxyacetic Acid Notice Many wheel cleaner instructions advise to take care to avoid contact with painted surfaces. Most customers think of painted surfaces as the fenders, quarter panels and other exterior sheet metal. Many vehicles have painted brake calipers. Acidic wheel cleaners may craze, crack, or discolor the paint on the brake calipers. Damage from wheel cleaners is not covered under the vehicle new car warranty. Soap and water applied with a soft brush is usually all that is required to clean the calipers. Whenever any wheel cleaner is used, it must be THOROUGHLY rinsed off of the wheel with clean, clear water. Special care must be taken to rinse under the hub cap, balance weights, wheel nuts, lug nut caps, between the wheel cladding and off the back side of the wheel. Wheels returned to the Warranty Parts Center (WPC) that exhibit damage from wheel cleaners most often have the damage around and under the wheel weight where the cleaner was incompletely flushed away. Notice Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 4053 Do not use cleaning solutions that contain hydrofluoric, oxalic and most other acids on chrome wheels (or any wheels). If the customer is unsure of the chemical make-up of a particular wheel cleaner, it should be avoided. For wheels showing signs of milky staining from acidic cleaners, refer to Customer Assistance and Instructions below. Warranty of Stained Chrome Wheels Stained wheels are not warrantable. Most acid based cleaners will permanently stain chrome wheels. Follow-up with dealers has confirmed that such cleaners were used on wheels that were returned to the Warranty Parts Center (WPC). Any stained wheels received by the WPC will be charged back to the dealership. To assist the customer, refer to Customer Assistance and Instructions below. Pitting or Spotted Appearance of Chrome Wheels Figure 2 A second type or staining or finish disturbance may result from road chemicals, such as calcium chloride used for dust control of unpaved roads. The staining will look like small pitting (refer to Figure 2). This staining will usually be on the leading edges of each wheel spoke, but may be uniformly distributed. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Important Road chemicals, such as calcium chloride used for dust control of unpaved roads, can also stain chrome wheels. The staining will look like small pitting. This staining will usually be on the leading edges of each wheel spoke. This is explained by the vehicle traveling in the forward direction while being splashed by the road chemical. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Warranty of Pitted or Spotted Chrome Wheels Wheels returned with pitting or spotting as a result of road chemicals may be replaced one time. Damage resulting from contact with these applied road chemicals is corrosive to the wheels finish and may cause damage if the wheels are not kept clean. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean if they are operating the vehicle in an area that applies calcium chloride or other dust controlling chemicals! "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). "Stardust" Corrosion of Chrome Wheels Figure 3 A third type of finish disturbance results from prolonged exposure to brake dust and resultant penetration of brake dust through the chrome. As brakes are applied hot particles of brake material are thrown off and tend to be forced through the leading edge of the wheel spoke windows by airflow. These Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 4054 hot particles embed themselves in the chrome layer and create a small pit. If the material is allowed to sit on the wheel while it is exposed to moisture or salt, it will corrode the wheel beneath the chrome leaving a pit or small blister in the chrome. Heavy brake dust build-up should be removed from wheels by using GM Chrome Cleaner and Polish, P/N 1050173 (in Canada use 10953013). For moderate cleaning, light brake dust build-up or water spots use GM Swirl Remover Polish, P/N 12377965 (in Canada, use Meguiars Plast-X(TM) Clear Plastic Cleaner and Polish #G12310C**). After cleaning, the wheel should be waxed using GM Cleaner Wax, P/N 12377966 (in Canada, use Meguiars Cleaner Wax #M0616C**), which will help protect the wheel from brake dust and reduce adhesion of any brake dust that gets on the wheel surface. For general maintenance cleaning, PEEK Metal Polish† may be used. It will clean and shine the chrome and leave behind a wax coating that may help protect the finish. Warranty of Stardust Corroded Chrome Wheels Wheels returned with pitting or spotting as a result of neglect and brake dust build-up may be replaced one time. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean and free of prolonged exposure to brake dust build-up. "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). Customer Assistance and Instructions GM has looked for ways customers may improve the appearance of wheels damaged by acidic cleaners. The following product and procedure has been found to dramatically improve the appearance of stained wheels. For wheels that have milky stains caused by acidic cleaners try the following: Notice THE 3M CHROME AND METAL POLISH REQUIRED FOR THIS PROCEDURE IS AN EXTREMELY AGGRESSIVE POLISH/CLEANER. THE WHEELS MUST BE CLEANED BEFORE APPLICATION TO AVOID SCRATCHING THE WHEEL SURFACE. THIS PRODUCT WILL REDUCE THE THICKNESS OF THE CHROME PLATING ON THE WHEEL AND IF USED INCORRECTLY OR EXCESSIVELY MAY REMOVE THE CHROME PLATING ALL TOGETHER, EXPOSING A LESS BRIGHT AND BRASSY COLORED SUB-LAYER. FOLLOW INSTRUCTIONS EXACTLY. 1. Wash the wheels with vigorously with soap and water. This step will clean and may reduce wheel staining. Flood all areas of the wheel with water to rinse. 2. Dry the wheels completely. Notice Begin with a small section of the wheel and with light pressure buff off polish and examine results. ONLY apply and rub with sufficient force and time to remove enough staining that you are satisfied with the results. Some wheels may be stained to the extent that you may only achieve a 50% improvement while others may be able to be restored to the original lustre. IN ALL CASES, only apply until the results are satisfactory. 3. Apply 3M Chrome and Metal Polish #39527* with a clean terry cloth towel. As you apply the polish, the staining will be diminished. 4. When dry, buff off the polish with a clean portion of the towel. 5. Repeat application of the 3M Chrome and Metal Polish until satisfied with the results. If continued applications fail to improve the appearance further discontinue use. This procedure will improve the appearance of the wheels and may, with repeated applications, restore the finish dramatically. For wheels that exhibit spotting from road chemicals the above procedure may marginally improve the condition but will not restore the finish or remove the pitting. In this type of staining the wheel finish has actually been removed in spots and no manner of cleaning will restore the finish. †*We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 4055 *This product is currently available from 3M. To obtain information for your local retail location please call 3M at 1-888-364-3577. **This product is currently available from Meguiars (Canada). To obtain information for your local retail location please call Meguiars at 1-800-347-5700 or at www.meguiarscanada.com. ^ This product is currently available from Tri-Peek International. To obtain information for your local retail location please call Tri-Peek at 1-877-615-4272 or at www.tripeek.com. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap Wheels: All Technical Service Bulletins Tires/Wheels - Rattle Noise from Wheel Or Hub Cap TECHNICAL Bulletin No.: 07-03-10-012D Date: April 12, 2011 Subject: Rattle Noise from Wheel or Hub Cap While Driving, Loose Wheel Nut Caps or Wheel Nut Caps May Not Tighten on Wheel Nuts (Inspect/Replace Wheel Nut Caps As Necessary) Models: 2007-2012 Chevrolet Express, Silverado, Suburban 1500, 2500 and 3500 Series 2007-2012 GMC Savana, Sierra, Yukon XL 1500, 2500 and 3500 Series with 8 Lug Wheel Nut Center Caps (RPOs NX7, NZ7, PY0, PY2, PY9, P03, P25, QB5, QC1, QR5, Q9A) Supercede: This bulletin is being revised to update the model year information. Please discard Corporate Bulletin Number 07-03-10-012C (Section 03 - Suspension). Condition Some customers may comment on a rattle noise from the wheel or hub cap while driving. Other customers may comment on loose wheel nut caps or caps that may not tighten on the wheel nuts. Cause Depending on the generation of the wheel caps, the issue may be overtorqued wheel nut caps or may be caused by the lack of internal threads inside the wheel nut caps. The wheel nut cap (1) is correctly threaded. The wheel nut cap (2) shows the insufficient threads. Correction Important The wheel nut caps are serviced separately from the center wheel hub cap for most hub caps. Refer to the GM electronic parts catalog (EPC) for details. Inspect each wheel nut cap and replace as necessary using the steps below. 1. Remove the wheel hub cap from the vehicle. 2. Place the front of the wheel hub cap down on a protected clean work bench being careful not to scratch or damage the hub cap surface. 3. Inspect all the wheel nut caps, marking any bad wheel nut caps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap > Page 4060 Tip The bad wheel nut cap can be removed by placing a drift or punch inside the center of the nut cap and using a hammer to tap the wheel nut cap out of the hub cap. 4. From inside the hub cap, apply direct pressure to one side of the wheel nut cap rim (1). The wheel nut cap will tip down and pop out of the wheel hub cap hole when enough pressure is applied. Repeat this procedure for any additional wheel nut caps that need to be replaced. 5. Flip the hub cap over on the work bench. The emblem side should be up. Tip A 22 mm (7/8 in) socket placed over the wheel nut cap may be used along with a hammer to tap the new wheel nut cap back into the hub cap hole. 6. Install the new wheel nut cap into the existing hub cap hole by applying direct pressure to the front center of the wheel nut cap. 7. Install the wheel hub cap onto the vehicle and tighten the wheel nut caps. 8. Repeat this entire procedure for each additional hub cap. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels Wheels: All Technical Service Bulletins Wheels/Tires - Refinishing Aluminum Wheels INFORMATION Bulletin No.: 99-08-51-007E Date: March 17, 2011 Subject: Refinishing Aluminum Wheels Models: 2012 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add additional model years. Please discard Corporate Bulletin Number 99-08-51-007D (Section 08 - Body and Accessories). This bulletin updates General Motor's position on refinishing aluminum wheels. GM does not endorse any repairs that involve welding, bending, straightening or re-machining. Only cosmetic refinishing of the wheel's coatings, using recommended procedures, is allowed. Evaluating Damage In evaluating damage, it is the GM Dealer's responsibility to inspect the wheel for corrosion, scrapes, gouges, etc. The Dealer must insure that such damage is not deeper than what can be sanded or polished off. The wheel must be inspected for cracks. If cracks are found, discard the wheel. Any wheels with bent rim flanges must not be repaired or refinished. Wheels that have been refinished by an outside company must be returned to the same vehicle. The Dealer must record the wheel ID stamp or the cast date on the wheel in order to assure this requirement. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. Aluminum Wheel Refinishing Recommendations - Chrome-plated aluminum wheels Re-plating these wheels is not recommended. - Polished aluminum wheels These wheels have a polyester or acrylic clearcoat on them. If the clearcoat is damaged, refinishing is possible. However, the required refinishing process cannot be performed in the dealer environment. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. - Painted aluminum wheels These wheels are painted using a primer, color coat, and clearcoat procedure. If the paint is damaged, refinishing is possible. As with polished wheels, all original coatings must be removed first. Media blasting is recommended. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for the re-painting of this type of wheel. - Bright, machined aluminum wheels These wheels have a polyester or acrylic clearcoat on them. In some cases, the recessed "pocket" areas of the wheel may be painted. Surface refinishing is possible. The wheel must be totally stripped by media blasting or other suitable means. The wheel should be resurfaced by using a sanding process rather than a machining process. This allows the least amount of material to be removed. Important Do not use any re-machining process that removes aluminum. This could affect the dimensions and function of the wheel. Painting is an option to re-clearcoating polished and bright machined aluminum wheels. Paint will better mask any surface imperfections and is somewhat more durable than clearcoat alone. GM recommends using Corsican SILVER WAEQ9283 for a fine "aluminum-like" look or Sparkle SILVER WA9967 for a very bright look. As an option, the body color may also be used. When using any of the painting options, it is recommended that all four wheels be refinished in order to maintain color uniformity. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for specific procedures and product recommendations. Refinisher's Responsibility - Outside Company Important Some outside companies are offering wheel refinishing services. Such refinished wheels will be permanently marked by the refinisher and are warranted by the refinisher. Any process that re-machines or otherwise re-manufactures the wheel should not be used. A refinisher's responsibility includes inspecting for cracks using the Zyglo system or the equivalent. Any cracked wheels must not be refinished. No welding, hammering or reforming of any kind is allowed. The wheel ID must be recorded and follow the wheel throughout the process in order to assure that the same wheel is returned. A plastic media blast may be used for clean up of the wheel. Hand and/or lathe sanding of the machined surface and the wheel window is allowed. Material removal, though, must be kept to a minimum. Re-machining of the wheel is not allowed. Paint and/or clear coat must not be present on the following surfaces: the nut chamfers, the wheel mounting surfaces and the wheel pilot hole. The refinisher must permanently ID stamp the wheel and warrant the painted/clearcoated surfaces for a minimum of one year or the remainder of the new vehicle warranty, whichever is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels > Page 4065 longer. Important Whenever a wheel is refinished, the mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. When re-mounting a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions Wheels: All Technical Service Bulletins Wheels - Changing Procedures/Precautions INFORMATION Bulletin No.: 06-03-10-010A Date: June 09, 2010 Subject: Information on Proper Wheel Changing Procedures and Cautions Models: 2011 and Prior GM Passenger Cars and Trucks 2010 and Prior HUMMER Models 2005-2009 Saab 9-7X 2005-2009 Saturn Vehicles Attention: Complete wheel changing instructions for each vehicle line can be found under Tire and Wheel Removal and Installation in Service Information (SI). This bulletin is intended to quickly review and reinforce simple but vital procedures to reduce the possibility of achieving low torque during wheel installation. Always refer to SI for wheel lug nut torque specifications and complete jacking instructions for safe wheel changing. Supercede: This bulletin is being revised to include the 2011 model year and update the available special tool list. Please discard Corporate Bulletin Number 06-03-10-010 (Section 03 Suspension). Frequency of Wheel Changes - Marketplace Driven Just a few years ago, the increasing longevity of tires along with greater resistance to punctures had greatly reduced the number of times wheels were removed to basically required tire rotation intervals. Today with the booming business in accessory wheels/special application tires (such as winter tires), consumers are having tire/wheel assemblies removed - replaced - or installed more than ever. With this increased activity, it opens up more of a chance for error on the part of the technician. This bulletin will review a few of the common concerns and mistakes to make yourself aware of. Proper Servicing Starts With the Right Tools The following tools have been made available to assist in proper wheel and tire removal and installation. - J 41013 Rotor Resurfacing Kit (or equivalent) - J 42450-A Wheel Hub Resurfacing Kit (or equivalent) Corroded Surfaces One area of concern is corrosion on the mating surfaces of the wheel to the hub on the vehicle. Excessive corrosion, dirt, rust or debris built up on these surfaces can mimic a properly tightened wheel in the service stall. Once the vehicle is driven, the debris may loosen, grind up or be washed away from water splash. This action may result in clearance at the mating surface of the wheel and an under-torqued condition. Caution Before installing a wheel, remove any buildup on the wheel mounting surface and brake drum or brake disc mounting surface. Installing wheels with poor metal-to-metal contact at the mounting surfaces can cause wheel nuts to loosen. This may cause a wheel to come off when the vehicle is moving, possibly resulting in a loss of control or personal injury. Whenever you remove the tire/wheel assemblies, you must inspect the mating surfaces. If corrosion is found, you should remove the debris with a die grinder equipped with a fine sanding pad, wire brush or cleaning disc. Just remove enough material to assure a clean, smooth mating surface. The J 41013 (or equivalent) can be used to clean the following surfaces: - The hub mounting surface - The brake rotor mounting surface - The wheel mounting surface Use the J 42450-A (or equivalent) to clean around the base of the studs and the hub. Lubricants, Grease and Fluids Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 4070 Some customers may use penetrating oils, grease or other lubricants on wheel studs to aid in removal or installation. Always use a suitable cleaner/solvent to remove these lubricants prior to installing the wheel and tire assemblies. Lubricants left on the wheel studs may cause improper readings of wheel nut torque. Always install wheels to clean, dry wheel studs ONLY. Notice Lubricants left on the wheel studs or vertical mounting surfaces between the wheel and the rotor or drum may cause the wheel to work itself loose after the vehicle is driven. Always install wheels to clean, dry wheel studs and surfaces ONLY. Beginning with 2011 model year vehicles, put a light coating of grease, GM P/N 1051344 (in Canada, P/N 9930370), on the inner surface of the wheel pilot hole to prevent wheel seizure to the axle or bearing hub. Wheel Stud and Lug Nut Damage Always inspect the wheel studs and lug nuts for signs of damage from crossthreading or abuse. You should never have to force wheel nuts down the stud. Lug nuts that are damaged may not retain properly, yet give the impression of fully tightening. Always inspect and replace any component suspected of damage. Tip Always start wheel nuts by hand! Be certain that all wheel nut threads have been engaged BEFORE tightening the nut. Important If the vehicle has directional tread tires, verify the directional arrow on the outboard side of the tire is pointing in the direction of forward rotation. Wheel Nut Tightening and Torque Improper wheel nut tightening can lead to brake pulsation and rotor damage. In order to avoid additional brake repairs, evenly tighten the wheel nuts to the proper torque specification as shown for each vehicle in SI. Always observe the proper wheel nut tightening sequence as shown below in order to avoid trapping the wheel on the wheel stud threads or clamping the wheel slightly off center resulting in vibration. The Most Important Service You Provide While the above information is well known, and wheel removal so common, technicians run the risk of becoming complacent on this very important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 4071 service operation. A simple distraction or time constraint that rushes the job may result in personal injury if the greatest of care is not exercised. Make it a habit to double check your work and to always side with caution when installing wheels. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) Wheels: All Technical Service Bulletins Wheels/Tires - Tire Radial Force Variation (RFV) INFORMATION Bulletin No.: 00-03-10-006F Date: May 04, 2010 Subject: Information on Tire Radial Force Variation (RFV) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X 2000-2005 Saturn L Series 2003-2007 Saturn ION Supercede: This bulletin is being revised to considerably expand the available information on Radial Force Variation (RFV) and should be reviewed in whole. Please discard Corporate Bulletin Number 00-03-10-006E (Section 03 - Suspension). Important - Before measuring tires on equipment such as the Hunter GSP9700, the vehicle MUST be driven a minimum of 16 km (10 mi) to ensure removal of any flat-spotting. Refer to Corporate Bulletin Number 03-03-10-007E - Tire/Wheel Characteristics of GM Original Equipment Tires. - Equipment such as the Hunter GSP9700 MUST be calibrated prior to measuring tire/wheel assemblies for each vehicle. The purpose of this bulletin is to provide guidance to GM dealers when using tire force variation measurement equipment, such as the Hunter GSP9700. This type of equipment can be a valuable tool in diagnosing vehicle ride concerns. The most common ride concern involving tire radial force variation is highway speed shake on smooth roads. Tire related smooth road highway speed shake can be caused by three conditions: imbalance, out of round and tire force variation. These three conditions are not necessarily related. All three conditions must be addressed. Imbalance is normally addressed first, because it is the simpler of the three to correct. Off-vehicle, two plane dynamic wheel balancers are readily available and can accurately correct any imbalance. Balancer calibration and maintenance, proper attachment of the wheel to the balancer, and proper balance weights, are all factors required for a quality balance. However, a perfectly balanced tire/wheel assembly can still be "oval shaped" and cause a vibration. Before balancing, perform the following procedures. Tire and Wheel Diagnosis 1. Set the tire pressure to the placard values. 2. With the vehicle raised, ensure the wheels are centered on the hub by loosening all wheel nuts and hand-tightening all nuts first by hand while shaking the wheel, then torque to specifications using a torque wrench, NOT a torque stick. 3. Visually inspect the tires and the wheels. Inspect for evidence of the following conditions and correct as necessary: - Missing balance weights - Bent rim flange - Irregular tire wear - Incomplete bead seating - Tire irregularities (including pressure settings) - Mud/ice build-up in wheel - Stones in the tire tread - Remove any aftermarket wheels and/or tires and restore vehicle to original condition prior to diagnosing a smooth road shake condition. 4. Road test the vehicle using the Electronic Vibration Analyzer (EVA) essential tool. Drive for a sufficient distance on a known, smooth road surface to duplicate the condition. Determine if the vehicle is sensitive to brake apply. If the brakes are applied lightly and the pulsation felt in the steering wheel increases, refer to the Brakes section of the service manual that deals with brake-induced pulsation. If you can start to hear the vibration as a low boom noise (in addition to feeling it), but cannot see it, the vehicle likely has a first order (one pulse per propshaft revolution) driveline vibration. Driveline first order vibrations are high enough in frequency that most humans can start to hear them at highway speeds, but are too high to be able to be easily seen. These issues can be caused by driveline imbalance or misalignment. If the vehicle exhibits this low boom and the booming pulses in-and-out on a regular basis (like a throbbing), chances are good that the vehicle could have driveline vibration. This type Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 4076 of vibration is normally felt more in the "seat of the pants" than the steering wheel. 5. Next, record the Hertz (Hz) reading as displayed by the EVA onto the tire data worksheet found at the end of this bulletin. This should be done after a tire break-in period of at least 16 km (10 mi) at 72 km/h (45 mph) or greater, in order to eliminate any possible tire flat-spotting. This reading confirms what the vehicle vibration frequency is prior to vehicle service and documents the amount of improvement occurring as the result of the various steps taken to repair. Completing the Steering Wheel Shake Worksheet below is required. A copy of the completed worksheet must be saved with the R.O. and a copy included with any parts returned to the Warranty Parts Center for analysis. A reading of 35 to 50 Hz typically indicates a first order propshaft vibration. If this is the situation, refer to Corporate Bulletin Number 08-07-30-044D. Generally, a reading between 10 and 20 Hz indicates a tire/wheel vibration and if this is the reading obtained, continue using this bulletin. If the tire 1st order vibration goes away and stays away during this evaluation, the cause is likely tire flat-spotting. Tire flat-spotting vibration may come and go at any speed over 72 km/h (45 mph) during the first 10 minutes of operation, if vibration continues after 10 minutes of driving at speeds greater than 72 km/h (45 mph), tire flat-spotting can be ruled out as the cause for vibration. 6. If flat-spotting is the cause, provide the explanation that this has occurred due to the vehicle being parked for long periods of time and that the nature of the tire is to take a set. Refer to Corporate Bulletin Number 03-03-10-007E: Information on Tire/Wheel Characteristics (Vibration, Balance, Shake, Flat Spotting) of GM Original Equipment Tires. 7. If the road test indicates a shake/vibration exists, check the imbalance of each tire/wheel assembly on a known, calibrated, off-car dynamic balancer.Make sure the mounting surface of the wheel and the surface of the balancer are absolutely clean and free of debris. Be sure to chose the proper cone/collet for the wheel, and always use the pilot bore for centering. Never center the wheel using the hub-cap bore since it is not a precision machined surface. If any assembly calls for more than 1/4 ounce on either rim flange, remove all balance weights and rebalance to as close to zero as possible. If you can see the vibration (along with feeling it) in the steering wheel (driving straight without your hands on the wheel), it is very likely to be a tire/wheel first order (one pulse per revolution) disturbance. First order disturbances can be caused by imbalance as well as non-uniformities in tires, wheels or hubs. This first order frequency is too low for a human to hear, but if the amplitude is high enough, it can be seen. If a vibration or shake still exists after balancing, any out of round conditions, of the wheel, and force variation conditions of the tire, must be addressed. Equipment such as the Hunter GSP9700 can address both (it is also a wheel balancer). Tire radial force vibration (RFV) can be defined as the amount of stiffness variation the tire will produce in one revolution under a constant load. Radial force variation is what the vehicle feels because the load (weight) of the vehicle is always on the tires. Although free runout of tires (not under load) is not always a good indicator of a smooth ride, it is critical that total tire/wheel assembly runout be within specification. Equipment such as the Hunter GSP9700 loads the tire, similar to on the vehicle, and measures radial force variation of the tire/wheel assembly. Note that the wheel is affecting the tire's RFV measurement at this point. To isolate the wheel, its runout must be measured. This can be easily done on the Hunter, without the need to set up dial indicators. If the wheel meets the runout specification, the tire's RFV can then be addressed. After measuring the tire/wheel assembly under load, and the wheel alone, the machine then calculates (predicts) the radial force variation of the tire. However, because this is a prediction that can include mounting inaccuracies, and the load wheel is much smaller in diameter than used in tire production, this type of service equipment should NOT be used to audit new tires. Rather, it should be used as a service diagnostic tool to minimize radial force variation of the tire/wheel assembly. Equipment such as the Hunter GSP9700 does an excellent job of measuring wheel runout, and of finding the low point of the wheel (for runout) and the high point of the tire (for radial force variation). This allows the tire to be matched mounted to the wheel for lowest tire/wheel assembly force variation. The machine will simplify this process into easy steps. The following assembly radial force variation numbers should be used as a guide: When measuring RFV and match mounting tires perform the following steps. Measuring Wheel Runout and Assembly Radial Force Variation Important The completed worksheet at the end of this bulletin must be attached to the hard copy of the repair order. - Measure radial force variation and radial runout. - If a road force/balancing machine is used, record the radial force variation (RFV) on the worksheet at the end of this bulletin. It may be of benefit to have the lowest RFV assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires onto the subject vehicle. - If a runout/balancing machine is used, record the radial runout of the tire/wheel assemblies on the worksheet at the end of this bulletin. If one or more of the tire/wheel assemblies are more than.040 in (1.02 mm), match mount the tire to the wheel to get below.040 in (1.02 mm). For sensitive customers, readings of 0.030 inch (0.76 mm) or less are preferable, it may also be of benefit to have the lowest runout assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 4077 onto the subject vehicle. - After match mounting, the tire/wheel assembly must be rebalanced. If match mounting tires to in-spec wheels produces assembly values higher than these, tire replacement may be necessary. Replacing tires at lower values will probably mean good tires are being condemned. Because tires can sometimes become temporarily flat-spotted, which will affect force variation, it is important that the vehicle be driven at least 16 km (10 mi) prior to measuring. Tire pressure must also be adjusted to the usage pressure on the vehicle's tire placard prior to measuring. Most GM vehicles will tolerate radial force variation up to these levels. However, some vehicles are more sensitive, and may require lower levels. Also, there are other tire parameters that equipment such as the Hunter GSP9700 cannot measure that may be a factor. In such cases, TAC should be contacted for further instructions. Important - When mounting a GM wheel to a wheel balancer/force variation machine, always use the wheel's center pilot hole. This is the primary centering mechanism on all GM wheels; the bolt holes are secondary. Usually a back cone method to the machine should be used. For added accuracy and repeatability, a flange plate should be used to clamp the wheel onto the cone and machine. This system is offered by all balancer manufacturers in GM's dealer program. - Any type of service equipment that removes tread rubber by grinding, buffing or truing is NOT recommended, and may void the tire warranty. However, tires may have been ground by the tire company as part of their tire manufacturing process. This is a legitimate procedure. Steering Wheel Shake Worksheet When diagnosing vibration concerns, use the following worksheet in conjunction with the appropriate Vibration Analysis-Road testing procedure in the Vibration Correction sub-section in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 4078 Refer to the appropriate section of SI for specifications and repair procedures that are related to the vibration concern. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels Wheels: All Technical Service Bulletins Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels TECHNICAL Bulletin No.: 05-03-10-003F Date: April 27, 2010 Subject: Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Cast Aluminum Wheels Supercede: This bulletin is being revised to update the model years and the bulletin reference information. Please discard Corporate Bulletin Number 05-03-10-003E (Section 03 - Suspension). Condition Some customers may comment on a low tire pressure condition. Diagnosis of the low tire pressure condition indicates an air leak through the cast aluminum wheel. Cause Porosity in the cast aluminum wheel may be the cause. Notice This bulletin specifically addresses issues related to the wheel casting that may result in an air leak. For issues related to corrosion of the wheel in service, please refer to Corporate Bulletin Number 08-03-10-006C - Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat). Correction 1. Remove the tire and wheel assembly from the vehicle. Refer to the appropriate service procedure in SI. 2. Locate the leaking area by inflating the tire to 276 kPa (40 psi) and dipping the tire/wheel assembly in a water bath, or use a spray bottle with soap and water to locate the specific leak location. Important - If the porosity leak is located in the bead area of the aluminum rim (where the tire meets the rim), the wheel should be replaced. - If two or more leaks are located on one wheel, the wheel should be replaced. 3. If air bubbles are observed, mark the location. - If the leak location is on the tire/rubber area, refer to Corporate Bulletin Number 04-03-10-001F Tire Puncture Repair Procedures for All Cars and Light Duty Trucks. - If the leak is located on the aluminum wheel area, continue with the next step. 4. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 5. Dismount the tire from the wheel. Refer to Tire Mounting and Dismounting. 6. Remove the tire pressure sensor. Refer to Tire Pressure Sensor removal procedure in SI. 7. Scuff the INSIDE rim surface at the leak area with #80 grit paper and clean the area with general purpose cleaner, such as 3M(R) General Purpose Adhesive Cleaner, P/N 08984, or equivalent. 8. Apply a 3 mm (0.12 in) thick layer of Silicone - Adhesive/Sealant, P/N 12378478 (in Canada, use 88900041), or equivalent, to the leak area. 9. Allow for the adhesive/sealant to dry. Notice Caution must be used when mounting the tire so as not to damage the sealer. Damaging the repair area may result in an air leak. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels > Page 4083 10. Align the inscribed mark on the tire with the valve stem on the wheel. 11. Reinstall the Tire Pressure Sensor. Refer to Tire Pressure Sensor installation procedure in SI. 12. Mount the tire on the wheel. Refer to Tire Mounting and Dismounting. 13. Pressurize the tire to 276 kPa (40 psi) and inspect for leaks. 14. Adjust tire pressure to meet the placard specification. 15. Balance the tire/wheel assembly. Refer to Tire and Wheel Assembly Balancing - Off-Vehicle. 16. Install the tire and wheel assembly onto the vehicle. Refer to the appropriate service procedure in SI. Parts Information Warranty Information (excluding Saab U.S. Models) Important The Silicone - Adhesive/Sealant comes in a case quantity of six. ONLY charge warranty one tube of adhesive/sealant per wheel repair. For vehicles repaired under warranty, use: One leak repair per wheel. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON Wheels: All Technical Service Bulletins Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON TECHNICAL Bulletin No.: 08-03-10-006C Date: April 27, 2010 Subject: Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat) Models: 2000-2011 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2010 HUMMER H3 2005-2009 Saab 9-7X Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 08-03-10-006B (Section 03 - Suspension). Condition Some customers may comment on a tire that slowly loses air pressure over a period of days or weeks. Cause Abrasive elements in the environment may intrude between the tire and wheel at the bead seat. There is always some relative motion between the tire and wheel (when the vehicle is driven) and this motion may cause the abrasive particles to wear the wheel and tire materials. As the wear continues, there may also be intrusion at the tire/wheel interface by corrosive media from the environment. Eventually a path for air develops and a 'slow' leak may ensue. This corrosion may appear on the inboard or outboard bead seating surface of the wheel. This corrosion will not be visible until the tire is dismounted from the wheel. Notice This bulletin specifically addresses issues related to wheel bead seat corrosion that may result in an air leak. For issues related to porosity of the wheel casting that may result in an air leak, please refer to Corporate Bulletin Number 05-03-10-006F - Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Correction In most cases, this type of air loss can be corrected by following the procedure below. Important DO NOT replace a wheel for slow air loss unless you have evaluated and/or tried to repair the wheel with the procedure below. Notice The repair is no longer advised or applicable for chromed aluminum wheels. 1. Remove the wheel and tire assembly for diagnosis. Refer to Tire and Wheel Removal and Installation in SI. 2. After a water dunk tank leak test, if you determine the source of the air leak to be around the bead seat of the wheel, dismount the tire to examine the bead seat. Shown below is a typical area of bead seat corrosion.Typical Location of Bead Seat Corrosion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 4088 Important Other forms of slow air leaks are possible. If the body of the tire, valve stem and wheel flange show no signs of air seepage, refer to Corporate Bulletin Number 05-03-10-003D for additional information on possible wheel porosity issues. 3. Bead seat corrosion is identified by what appears like blistering of the wheel finish, causing a rough or uneven surface that is difficult for the tire to maintain a proper seal on. Below is a close-up photo of bead seat corrosion on an aluminum wheel that was sufficient to cause slow air loss. Close-Up of Bead Seat Corrosion 4. If corrosion is found on the wheel bead seat, measure the affected area as shown below. - For vehicles with 32,186 km (20,000 mi) or less, the total allowable combined linear area of repairable corrosion is 100 mm (4 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. - For vehicles that have exceeded 32,186 km (20,000 mi), the total allowable combined linear area of repairable corrosion is 200 mm (8 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. 5. In order to correct the wheel leak, use a clean-up (fine cut) sanding disc or biscuit to remove the corrosion and any flaking paint. You should remove the corrosion back far enough until you reach material that is stable and firmly bonded to the wheel. Try to taper the edge of any flaking paint as best you can in order to avoid sharp edges that may increase the chance of a leak reoccurring. The photo below shows an acceptable repaired surface. Notice Corrosion that extends up the lip of the wheel, where after the clean-up process it would be visible with the tire mounted, is only acceptable on the inboard flange. The inboard flange is not visible with the wheel assembly in the mounted position. If any loose coatings or corrosion extend to the visible surfaces on the FACE of the wheel, that wheel must be replaced. Important Remove ONLY the material required to eliminate the corrosion from the bead seating surface. DO NOT remove excessive amounts of material. ALWAYS keep the sealing surface as smooth and level as possible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 4089 Acceptably Prepared (Cleaned-Up) Wheel Surface 6. Once the corrosion has been eliminated, you should coat the repaired area with a commercially available tire sealant such as Patch Brand Bead Sealant or equivalent. Commercially available bead sealants are black rubber-like coatings that will permanently fill and seal the resurfaced bead seat. At 21°C (70°F) ambient temperature, this sealant will set-up sufficiently for tire mounting in about 10 minutes.Coated and Sealed Bead Seat 7. Remount the tire and install the repaired wheel and tire assembly. Refer to Tire and Wheel Removal and Installation in SI. Parts Information Patch Brand Bead Sealer is available from Myers Tires at 1-800-998-9897 or on the web at www.myerstiresupply.com. The one-quart size can of sealer will repair about 20 wheels. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 4090 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 04-03-10-012B > Feb > 08 > Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Bulletin No.: 04-03-10-012B Date: February 01, 2008 INFORMATION Subject: Pitting and Brake Dust on Chrome wheels Models: 2008 and Prior GM Passenger Cars and Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 04-03-10-012A (Section 03 - Suspension). Analysis of Returned Wheels Chrome wheels returned under the New Vehicle Limited Warranty for pitting concerns have recently been evaluated. This condition is usually most severe in the vent (or window) area of the front wheels. This "pitting" may actually be brake dust that has been allowed to accumulate on the wheel. The longer this accumulation builds up, the more difficult it is to remove. Cleaning the Wheels In all cases, the returned wheels could be cleaned to their original condition using GM Vehicle Care Cleaner Wax, P/N 12377966 (in Canada, P/N 10952905). When using this product, you should confine your treatment to the areas of the wheel that show evidence of the brake dust build-up. This product is only for use on chromed steel or chromed aluminum wheels. Parts Information Warranty Information Wheel replacement for this condition is NOT applicable under the terms of the New Vehicle Limited Warranty. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM Wheels: All Technical Service Bulletins Wheels/Tires - 20 Inch Wheels Available From GM Bulletin No.: 03-03-10-006F Date: September 27, 2006 INFORMATION Subject: 20" Wheels Available Through GM Accessories Models: 1999-2007 Chevrolet Silverado 1500 Series Only (Classic) 1999-2007 GMC Sierra 1500 Series Only (Classic) Excludes 1999-2000 Vehicles with 4.3L Engine (VIN W - RPO L35) Excludes Vehicles with Quadrasteer (RPO NYS) Excludes Parallel Hybrid Truck (RPO HP2) Excludes 2001-2004 Vehicles with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4099 Refer to the Model Application Chart shown to verify usage. Supercede: This bulletin is being revised to include 2007 model year and calibration information. Please discard Corporate Bulletin Number 03-03-10-006E (Section 03 - Suspension). Tires GM has designed 20" wheels based on the Goodyear Eagle LS and LS2 P275/55R20 tire. The Goodyear Eagle LS tire has a Tire Performance Criteria spec # 1235 and the LS2 has a Tire Performance Criteria spec # 1245. These tires have been designed to GM's specific Tire Performance Criteria. GM's Tire Performance Criteria specifications meet or exceed all Federal safety guidelines. When mounting the tires, rubber lubricant, P/N 12345884 (in Canada, P/N 5728223), MUST be used. The vehicle should not be driven aggressively (hard acceleration or braking) for at least 6-8 hours after tire mounting to allow the lube to dry. Failure to do so may cause the tire to slip on the rim. This condition will affect wheel balance which could result in a vibration. Spare Tire A P265/75R16 or P265/70R17 tire should be used as a spare. Re-use the vehicle's original spare wheel to mount the spare tire. The spare tire should be used to drive the vehicle to a tire repair/replacement facility and is not intended for extended driving conditions. Tire Changers Dealers must have the correct level of tire changing equipment to perform tire changing services. GM requirements and recommendations for servicing glamour wheels are as follows: ^ Rim Clamp design ^ Runflat capable (preferred) ^ Side mounted bead breaking to reduce stress on the wheel and tire ^ No metal contact to the wheel at the clamping jaws Protective devices to prevent damage during mounting and dismounting operations Regulated air pressure to protect user and wheel assembly. Approved lubricant (P/N 12345884 [in Canada, P/N 5728223]) to avoid wheel slip and damage to the wheel For further information regarding equipment meeting the requirements for this program, call 1-800-GM-TOOLS. Balancing MC style coated weights are recommended and will provide the best balancing of the tire-wheel assembly. If stick-on weights are used, be sure to follow the manufacturers recommended installation procedure (SI Document ID # 664222) making sure the surface is clean and dry. Using the incorrect type of weights will result in improper fit, and such weights may fall off the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4100 Balancing of the tire and wheel assembly must be performed on a computerized balancer, capable of static and dynamic wheel balance modes. Assemblies should be balanced to within 1/4 ounce on either rim flange. Proper cones and adapters should be used, free of nicks and burrs to ensure proper balancing. Center Cap Install the center cap onto the wheel after the tire has been mounted and balanced, but BEFORE the assembly is installed onto the vehicle. The preferred method for center cap installation is to push in by hand. As an alternate, use a nonmetallic object to push the center cap into place. Attempting to "hammer-on" the caps may result in damage to the cap. Wheel (Lug) Nuts ALUMINUM WHEELS REQUIRE SPECIAL WHEEL NUTS. Each wheel nut should be torqued in the appropriate torque sequence (refer to graphic) and to 190 N.m (140 lb ft). The torque should be re-checked after the first 160 km (100 mi). To help protect the wheels from theft, a wheel lock kit is also available. Incorrect wheel nuts or improperly tightened wheel nuts can cause the wheel to become loose and even come off. This could lead to an accident. Be sure to use the correct wheel nuts. Wheel Nut Caps Install the wheel nut caps after tightening the wheel nuts. Install the wheel nut caps finger tight, plus 1/2 turn. Jounce Bumper This modification is required on all 2WD vehicles EXCEPT the following: Excludes: 2006-2007 2WD Extended Cab - Short Box (model C15553) 2006-2007 2WD Crew Cab - Short Box with Enhanced Trailering (RPO NHT) (model C15543) 2006-2007 2WD Extended Cab - Standard Box with Enhanced Trailering (RPO NHT) (model C15753) It will be required to replace the existing front suspension spring/jounce bumper with Jounce Bumper kit, P/N 12499481. The following procedure should be followed: Raise and support the vehicle. Remove the nut from the spring bumper stud. Remove the spring bumper. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4101 Install a new spring bumper assembly for 2WD 1500 Series Only with 20" wheels. Reuse the nut from the original bumper. Install the nut to the spring bumper stud. Tighten Tighten the nut to 30 N.m (22 lb ft). Remove the safety stands. Lower the vehicle. Knee Bolster Deflector This modification is required for the following vehicles and ONLY applies to Extended Cab Long Box (K15953) Pickup models: 1999-2005 Chevrolet Silverado and GMC Sierra (1500 Series Only): 2005 Vehicles Built in Pontiac (VIN Code E) prior to VIN Breakpoint 5E100134 2005 Vehicles Built in Oshawa (VIN Code 1) prior to VIN Breakpoint 51113131 2005 Vehicles Built in Ft. Wayne (VIN Code Z) prior to VIN Breakpoint 5Z126605 The following procedure should be followed: Apply the parking brake to prevent the vehicle from moving. Remove the fuse panel cover. Remove the I/P cluster trim plate bezel. Remove the knee bolster. Remove the 2 mm (0.078 in) thick knee bolster deflector. Install the 1.5 mm (0.059 in) thick knee bolster deflector, P/N 12499966. A detailed instruction sheet will be provided with the service part. Re-Programming Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4102 It will be necessary to reprogram the PCM for speedometer accuracy. Contact Techline to obtain a VCI number. Then refer to the table for the appropriate calibration part number based on the model year and axle ratio. Calibration Information Documentation Make a copy of the "Accessory Wheel and Tire Information Form" included in this bulletin. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4103 Provide all information required on the form. Make a copy of the completed form for the customer to keep in the vehicle along with their Owner's Manual. File the original completed form in the Dealership's Vehicle Service History folder. Because this is not a warranty repair, dealers will incur a charge to obtain a VCI number. A VCI number will only be available for the following models: 1999-2007 Chevrolet Silverado and GMC Sierra (1500 Series Only) EXCLUDES 1999-2000 vehicles equipped with 4.3L engine (RPO L35) EXCLUDES vehicles equipped with Quadrasteer (RPO NYS) EXCLUDES Parallel Hybrid Truck (RPO HP2) EXCLUDES 2001-2004 vehicles equipped with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Refer to the Model Application Chart to in the beginning of this bulletin to verify usage. Calibrations are not available for 1999 and 2000 model year vehicles with 3.08 axle. Calibrations are not available for 1999 and 2000 model year vehicles equipped with 4.3L engine (RPO L35). If original equipment tires/wheels are reinstalled, it will be necessary to reset the programming of the PCM and the ABS module to the original specifications. Labels After installing the recommended P275/55R20 tires, place the provided label on the vehicle. The label should be located on the doorjamb, near the original tire label, and should not cover up the original tire label. Be sure that the surface is clean and dry. The surface temperature should not be less than 21°C (70°F). The label is provided as a guide for tire inflation pressures and information relevant to occupant/cargo capacities. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4104 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4105 Parts Information Warranty Information Wheels All GM Accessories sold and permanently installed on a GM vehicle PRIOR to new vehicle delivery will be covered under the provisions of the New Vehicle Limited Warranty. For the U.S., in the event GM Accessories are installed AFTER the New Vehicle Delivery, or are replaced under the New Vehicle Warranty, they will be covered (parts and labor) for the balance of the vehicle warranty, but in no event less than 12 months/12,000 miles. This coverage is only effective for GM Accessories permanently installed by a GM dealer or a GM approved ADI (Accessory Distributor/Installer). For Canada, in the event GM Accessories are installed AFTER the New Vehicle Delivery, they will be covered (parts and labor) for the balance of the vehicle warranty, or up to 12 months/Unlimited kilometers depending on month installed. For replacement after the new vehicle warranty expires, but within the 12 months/unlimited kilometers coverage, refer to claim type "B" guidelines. GM Accessories sold over-the-counter, or those not requiring installation, will continue to receive the standard GM Dealer Parts Warranty of 12 months from the date of purchase (parts only). Tires Any approved tire installed on a GM Vehicle PRIOR to delivery will be covered under the provisions of the New Vehicle Limited Warranty. Tires are covered against defects in material and workmanship. Tires are warranted for defects "without" prorated charge for tread mileage. Subsequent replacements under this warranty will continue to be covered for the remainder of the New Vehicle Limited Warranty. Any approved tire installed on a GM Vehicle PRIOR to delivery may continue to be warranted on a prorated basis by the tire manufacturer once the New Vehicle Limited Warranty expires. Any approved tire installed AFTER delivery will be covered under the provisions of the tire manufacturer warranty. USA dealers should refer to GM Warranty Administration Bulletin 00-03-10-003I and GM Parts Process / Policy Bulletin IB03-001 for more information. Canadian dealers should refer to GM Warranty Administration Bulletin 01-03-10-003B. GM Warranty Claims Processing Only GM dealerships have the ability to file warranty claims for GM Parts and Accessories. Therefore, any warranty claims filed against such parts must be handled by the servicing GM dealership. This includes those parts purchased from a GM-approved ADI (Accessory Distributor / Installer). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4106 ACCESSORY WHEEL AND TIRE INFORMATION FORM You have just modified your vehicle by installing an "Accessory Package" which includes Wheels and Tires. This form contains important information about your accessory installation. In an effort to provide superior service to you, our customer, we ask that you please present this form to your Servicing Dealer when removing or installing wheels and tires on your vehicle. This form contains important information necessary to service your vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Staining/Pitting/Corrosion INFORMATION Bulletin No.: 00-03-10-002F Date: April 21, 2011 Subject: Chemical Staining, Pitting, Corrosion and/or Spotted Appearance of Chromed Aluminum Wheels Models: 2012 and Prior GM Cars and Trucks Supercede: This bulletin is being revised to update model years, suggest additional restorative products and add additional corrosion information. Please discard Corporate Bulletin Number 00-03-10-002E (Section 03 - Suspension). Important You may give a copy of this bulletin to the customer. What is Chemical Staining of Chrome Wheels? Figure 1 Chemical staining in most cases results from acid based cleaners (refer to Figure 1 for an example). These stains are frequently milky, black, or greenish in appearance. They result from using cleaning solutions that contain acids on chrome wheels. Soap and water is usually sufficient to clean wheels. If the customer insists on using a wheel cleaner they should only use one that specifically states that it is safe for chromed wheels and does not contain anything in the following list. (Dealers should also survey any products they use during prep or normal cleaning of stock units for these chemicals.) - Ammonium Bifluoride (fluoride source for dissolution of chrome) - Hydrofluoric Acid (directly dissolves chrome) - Hydrochloric Acid (directly dissolves chrome) - Sodium Dodecylbenzenesulfonic Acid - Sulfamic Acid - Phosphoric Acid - Hydroxyacetic Acid Notice Many wheel cleaner instructions advise to take care to avoid contact with painted surfaces. Most customers think of painted surfaces as the fenders, quarter panels and other exterior sheet metal. Many vehicles have painted brake calipers. Acidic wheel cleaners may craze, crack, or discolor the paint on the brake calipers. Damage from wheel cleaners is not covered under the vehicle new car warranty. Soap and water applied with a soft brush is usually all that is required to clean the calipers. Whenever any wheel cleaner is used, it must be THOROUGHLY rinsed off of the wheel with clean, clear water. Special care must be taken to rinse under the hub cap, balance weights, wheel nuts, lug nut caps, between the wheel cladding and off the back side of the wheel. Wheels returned to the Warranty Parts Center (WPC) that exhibit damage from wheel cleaners most often have the damage around and under the wheel weight where the cleaner was incompletely flushed away. Notice Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 4112 Do not use cleaning solutions that contain hydrofluoric, oxalic and most other acids on chrome wheels (or any wheels). If the customer is unsure of the chemical make-up of a particular wheel cleaner, it should be avoided. For wheels showing signs of milky staining from acidic cleaners, refer to Customer Assistance and Instructions below. Warranty of Stained Chrome Wheels Stained wheels are not warrantable. Most acid based cleaners will permanently stain chrome wheels. Follow-up with dealers has confirmed that such cleaners were used on wheels that were returned to the Warranty Parts Center (WPC). Any stained wheels received by the WPC will be charged back to the dealership. To assist the customer, refer to Customer Assistance and Instructions below. Pitting or Spotted Appearance of Chrome Wheels Figure 2 A second type or staining or finish disturbance may result from road chemicals, such as calcium chloride used for dust control of unpaved roads. The staining will look like small pitting (refer to Figure 2). This staining will usually be on the leading edges of each wheel spoke, but may be uniformly distributed. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Important Road chemicals, such as calcium chloride used for dust control of unpaved roads, can also stain chrome wheels. The staining will look like small pitting. This staining will usually be on the leading edges of each wheel spoke. This is explained by the vehicle traveling in the forward direction while being splashed by the road chemical. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Warranty of Pitted or Spotted Chrome Wheels Wheels returned with pitting or spotting as a result of road chemicals may be replaced one time. Damage resulting from contact with these applied road chemicals is corrosive to the wheels finish and may cause damage if the wheels are not kept clean. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean if they are operating the vehicle in an area that applies calcium chloride or other dust controlling chemicals! "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). "Stardust" Corrosion of Chrome Wheels Figure 3 A third type of finish disturbance results from prolonged exposure to brake dust and resultant penetration of brake dust through the chrome. As brakes are applied hot particles of brake material are thrown off and tend to be forced through the leading edge of the wheel spoke windows by airflow. These Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 4113 hot particles embed themselves in the chrome layer and create a small pit. If the material is allowed to sit on the wheel while it is exposed to moisture or salt, it will corrode the wheel beneath the chrome leaving a pit or small blister in the chrome. Heavy brake dust build-up should be removed from wheels by using GM Chrome Cleaner and Polish, P/N 1050173 (in Canada use 10953013). For moderate cleaning, light brake dust build-up or water spots use GM Swirl Remover Polish, P/N 12377965 (in Canada, use Meguiars Plast-X(TM) Clear Plastic Cleaner and Polish #G12310C**). After cleaning, the wheel should be waxed using GM Cleaner Wax, P/N 12377966 (in Canada, use Meguiars Cleaner Wax #M0616C**), which will help protect the wheel from brake dust and reduce adhesion of any brake dust that gets on the wheel surface. For general maintenance cleaning, PEEK Metal Polish† may be used. It will clean and shine the chrome and leave behind a wax coating that may help protect the finish. Warranty of Stardust Corroded Chrome Wheels Wheels returned with pitting or spotting as a result of neglect and brake dust build-up may be replaced one time. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean and free of prolonged exposure to brake dust build-up. "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). Customer Assistance and Instructions GM has looked for ways customers may improve the appearance of wheels damaged by acidic cleaners. The following product and procedure has been found to dramatically improve the appearance of stained wheels. For wheels that have milky stains caused by acidic cleaners try the following: Notice THE 3M CHROME AND METAL POLISH REQUIRED FOR THIS PROCEDURE IS AN EXTREMELY AGGRESSIVE POLISH/CLEANER. THE WHEELS MUST BE CLEANED BEFORE APPLICATION TO AVOID SCRATCHING THE WHEEL SURFACE. THIS PRODUCT WILL REDUCE THE THICKNESS OF THE CHROME PLATING ON THE WHEEL AND IF USED INCORRECTLY OR EXCESSIVELY MAY REMOVE THE CHROME PLATING ALL TOGETHER, EXPOSING A LESS BRIGHT AND BRASSY COLORED SUB-LAYER. FOLLOW INSTRUCTIONS EXACTLY. 1. Wash the wheels with vigorously with soap and water. This step will clean and may reduce wheel staining. Flood all areas of the wheel with water to rinse. 2. Dry the wheels completely. Notice Begin with a small section of the wheel and with light pressure buff off polish and examine results. ONLY apply and rub with sufficient force and time to remove enough staining that you are satisfied with the results. Some wheels may be stained to the extent that you may only achieve a 50% improvement while others may be able to be restored to the original lustre. IN ALL CASES, only apply until the results are satisfactory. 3. Apply 3M Chrome and Metal Polish #39527* with a clean terry cloth towel. As you apply the polish, the staining will be diminished. 4. When dry, buff off the polish with a clean portion of the towel. 5. Repeat application of the 3M Chrome and Metal Polish until satisfied with the results. If continued applications fail to improve the appearance further discontinue use. This procedure will improve the appearance of the wheels and may, with repeated applications, restore the finish dramatically. For wheels that exhibit spotting from road chemicals the above procedure may marginally improve the condition but will not restore the finish or remove the pitting. In this type of staining the wheel finish has actually been removed in spots and no manner of cleaning will restore the finish. †*We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 4114 *This product is currently available from 3M. To obtain information for your local retail location please call 3M at 1-888-364-3577. **This product is currently available from Meguiars (Canada). To obtain information for your local retail location please call Meguiars at 1-800-347-5700 or at www.meguiarscanada.com. ^ This product is currently available from Tri-Peek International. To obtain information for your local retail location please call Tri-Peek at 1-877-615-4272 or at www.tripeek.com. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels Wheels: All Technical Service Bulletins Wheels/Tires - Refinishing Aluminum Wheels INFORMATION Bulletin No.: 99-08-51-007E Date: March 17, 2011 Subject: Refinishing Aluminum Wheels Models: 2012 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add additional model years. Please discard Corporate Bulletin Number 99-08-51-007D (Section 08 - Body and Accessories). This bulletin updates General Motor's position on refinishing aluminum wheels. GM does not endorse any repairs that involve welding, bending, straightening or re-machining. Only cosmetic refinishing of the wheel's coatings, using recommended procedures, is allowed. Evaluating Damage In evaluating damage, it is the GM Dealer's responsibility to inspect the wheel for corrosion, scrapes, gouges, etc. The Dealer must insure that such damage is not deeper than what can be sanded or polished off. The wheel must be inspected for cracks. If cracks are found, discard the wheel. Any wheels with bent rim flanges must not be repaired or refinished. Wheels that have been refinished by an outside company must be returned to the same vehicle. The Dealer must record the wheel ID stamp or the cast date on the wheel in order to assure this requirement. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. Aluminum Wheel Refinishing Recommendations - Chrome-plated aluminum wheels Re-plating these wheels is not recommended. - Polished aluminum wheels These wheels have a polyester or acrylic clearcoat on them. If the clearcoat is damaged, refinishing is possible. However, the required refinishing process cannot be performed in the dealer environment. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. - Painted aluminum wheels These wheels are painted using a primer, color coat, and clearcoat procedure. If the paint is damaged, refinishing is possible. As with polished wheels, all original coatings must be removed first. Media blasting is recommended. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for the re-painting of this type of wheel. - Bright, machined aluminum wheels These wheels have a polyester or acrylic clearcoat on them. In some cases, the recessed "pocket" areas of the wheel may be painted. Surface refinishing is possible. The wheel must be totally stripped by media blasting or other suitable means. The wheel should be resurfaced by using a sanding process rather than a machining process. This allows the least amount of material to be removed. Important Do not use any re-machining process that removes aluminum. This could affect the dimensions and function of the wheel. Painting is an option to re-clearcoating polished and bright machined aluminum wheels. Paint will better mask any surface imperfections and is somewhat more durable than clearcoat alone. GM recommends using Corsican SILVER WAEQ9283 for a fine "aluminum-like" look or Sparkle SILVER WA9967 for a very bright look. As an option, the body color may also be used. When using any of the painting options, it is recommended that all four wheels be refinished in order to maintain color uniformity. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for specific procedures and product recommendations. Refinisher's Responsibility - Outside Company Important Some outside companies are offering wheel refinishing services. Such refinished wheels will be permanently marked by the refinisher and are warranted by the refinisher. Any process that re-machines or otherwise re-manufactures the wheel should not be used. A refinisher's responsibility includes inspecting for cracks using the Zyglo system or the equivalent. Any cracked wheels must not be refinished. No welding, hammering or reforming of any kind is allowed. The wheel ID must be recorded and follow the wheel throughout the process in order to assure that the same wheel is returned. A plastic media blast may be used for clean up of the wheel. Hand and/or lathe sanding of the machined surface and the wheel window is allowed. Material removal, though, must be kept to a minimum. Re-machining of the wheel is not allowed. Paint and/or clear coat must not be present on the following surfaces: the nut chamfers, the wheel mounting surfaces and the wheel pilot hole. The refinisher must permanently ID stamp the wheel and warrant the painted/clearcoated surfaces for a minimum of one year or the remainder of the new vehicle warranty, whichever is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels > Page 4119 longer. Important Whenever a wheel is refinished, the mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. When re-mounting a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions Wheels: All Technical Service Bulletins Wheels - Changing Procedures/Precautions INFORMATION Bulletin No.: 06-03-10-010A Date: June 09, 2010 Subject: Information on Proper Wheel Changing Procedures and Cautions Models: 2011 and Prior GM Passenger Cars and Trucks 2010 and Prior HUMMER Models 2005-2009 Saab 9-7X 2005-2009 Saturn Vehicles Attention: Complete wheel changing instructions for each vehicle line can be found under Tire and Wheel Removal and Installation in Service Information (SI). This bulletin is intended to quickly review and reinforce simple but vital procedures to reduce the possibility of achieving low torque during wheel installation. Always refer to SI for wheel lug nut torque specifications and complete jacking instructions for safe wheel changing. Supercede: This bulletin is being revised to include the 2011 model year and update the available special tool list. Please discard Corporate Bulletin Number 06-03-10-010 (Section 03 Suspension). Frequency of Wheel Changes - Marketplace Driven Just a few years ago, the increasing longevity of tires along with greater resistance to punctures had greatly reduced the number of times wheels were removed to basically required tire rotation intervals. Today with the booming business in accessory wheels/special application tires (such as winter tires), consumers are having tire/wheel assemblies removed - replaced - or installed more than ever. With this increased activity, it opens up more of a chance for error on the part of the technician. This bulletin will review a few of the common concerns and mistakes to make yourself aware of. Proper Servicing Starts With the Right Tools The following tools have been made available to assist in proper wheel and tire removal and installation. - J 41013 Rotor Resurfacing Kit (or equivalent) - J 42450-A Wheel Hub Resurfacing Kit (or equivalent) Corroded Surfaces One area of concern is corrosion on the mating surfaces of the wheel to the hub on the vehicle. Excessive corrosion, dirt, rust or debris built up on these surfaces can mimic a properly tightened wheel in the service stall. Once the vehicle is driven, the debris may loosen, grind up or be washed away from water splash. This action may result in clearance at the mating surface of the wheel and an under-torqued condition. Caution Before installing a wheel, remove any buildup on the wheel mounting surface and brake drum or brake disc mounting surface. Installing wheels with poor metal-to-metal contact at the mounting surfaces can cause wheel nuts to loosen. This may cause a wheel to come off when the vehicle is moving, possibly resulting in a loss of control or personal injury. Whenever you remove the tire/wheel assemblies, you must inspect the mating surfaces. If corrosion is found, you should remove the debris with a die grinder equipped with a fine sanding pad, wire brush or cleaning disc. Just remove enough material to assure a clean, smooth mating surface. The J 41013 (or equivalent) can be used to clean the following surfaces: - The hub mounting surface - The brake rotor mounting surface - The wheel mounting surface Use the J 42450-A (or equivalent) to clean around the base of the studs and the hub. Lubricants, Grease and Fluids Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 4124 Some customers may use penetrating oils, grease or other lubricants on wheel studs to aid in removal or installation. Always use a suitable cleaner/solvent to remove these lubricants prior to installing the wheel and tire assemblies. Lubricants left on the wheel studs may cause improper readings of wheel nut torque. Always install wheels to clean, dry wheel studs ONLY. Notice Lubricants left on the wheel studs or vertical mounting surfaces between the wheel and the rotor or drum may cause the wheel to work itself loose after the vehicle is driven. Always install wheels to clean, dry wheel studs and surfaces ONLY. Beginning with 2011 model year vehicles, put a light coating of grease, GM P/N 1051344 (in Canada, P/N 9930370), on the inner surface of the wheel pilot hole to prevent wheel seizure to the axle or bearing hub. Wheel Stud and Lug Nut Damage Always inspect the wheel studs and lug nuts for signs of damage from crossthreading or abuse. You should never have to force wheel nuts down the stud. Lug nuts that are damaged may not retain properly, yet give the impression of fully tightening. Always inspect and replace any component suspected of damage. Tip Always start wheel nuts by hand! Be certain that all wheel nut threads have been engaged BEFORE tightening the nut. Important If the vehicle has directional tread tires, verify the directional arrow on the outboard side of the tire is pointing in the direction of forward rotation. Wheel Nut Tightening and Torque Improper wheel nut tightening can lead to brake pulsation and rotor damage. In order to avoid additional brake repairs, evenly tighten the wheel nuts to the proper torque specification as shown for each vehicle in SI. Always observe the proper wheel nut tightening sequence as shown below in order to avoid trapping the wheel on the wheel stud threads or clamping the wheel slightly off center resulting in vibration. The Most Important Service You Provide While the above information is well known, and wheel removal so common, technicians run the risk of becoming complacent on this very important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 4125 service operation. A simple distraction or time constraint that rushes the job may result in personal injury if the greatest of care is not exercised. Make it a habit to double check your work and to always side with caution when installing wheels. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 04-03-10-012B > Feb > 08 > Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Bulletin No.: 04-03-10-012B Date: February 01, 2008 INFORMATION Subject: Pitting and Brake Dust on Chrome wheels Models: 2008 and Prior GM Passenger Cars and Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 04-03-10-012A (Section 03 - Suspension). Analysis of Returned Wheels Chrome wheels returned under the New Vehicle Limited Warranty for pitting concerns have recently been evaluated. This condition is usually most severe in the vent (or window) area of the front wheels. This "pitting" may actually be brake dust that has been allowed to accumulate on the wheel. The longer this accumulation builds up, the more difficult it is to remove. Cleaning the Wheels In all cases, the returned wheels could be cleaned to their original condition using GM Vehicle Care Cleaner Wax, P/N 12377966 (in Canada, P/N 10952905). When using this product, you should confine your treatment to the areas of the wheel that show evidence of the brake dust build-up. This product is only for use on chromed steel or chromed aluminum wheels. Parts Information Warranty Information Wheel replacement for this condition is NOT applicable under the terms of the New Vehicle Limited Warranty. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM Wheels: All Technical Service Bulletins Wheels/Tires - 20 Inch Wheels Available From GM Bulletin No.: 03-03-10-006F Date: September 27, 2006 INFORMATION Subject: 20" Wheels Available Through GM Accessories Models: 1999-2007 Chevrolet Silverado 1500 Series Only (Classic) 1999-2007 GMC Sierra 1500 Series Only (Classic) Excludes 1999-2000 Vehicles with 4.3L Engine (VIN W - RPO L35) Excludes Vehicles with Quadrasteer (RPO NYS) Excludes Parallel Hybrid Truck (RPO HP2) Excludes 2001-2004 Vehicles with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4134 Refer to the Model Application Chart shown to verify usage. Supercede: This bulletin is being revised to include 2007 model year and calibration information. Please discard Corporate Bulletin Number 03-03-10-006E (Section 03 - Suspension). Tires GM has designed 20" wheels based on the Goodyear Eagle LS and LS2 P275/55R20 tire. The Goodyear Eagle LS tire has a Tire Performance Criteria spec # 1235 and the LS2 has a Tire Performance Criteria spec # 1245. These tires have been designed to GM's specific Tire Performance Criteria. GM's Tire Performance Criteria specifications meet or exceed all Federal safety guidelines. When mounting the tires, rubber lubricant, P/N 12345884 (in Canada, P/N 5728223), MUST be used. The vehicle should not be driven aggressively (hard acceleration or braking) for at least 6-8 hours after tire mounting to allow the lube to dry. Failure to do so may cause the tire to slip on the rim. This condition will affect wheel balance which could result in a vibration. Spare Tire A P265/75R16 or P265/70R17 tire should be used as a spare. Re-use the vehicle's original spare wheel to mount the spare tire. The spare tire should be used to drive the vehicle to a tire repair/replacement facility and is not intended for extended driving conditions. Tire Changers Dealers must have the correct level of tire changing equipment to perform tire changing services. GM requirements and recommendations for servicing glamour wheels are as follows: ^ Rim Clamp design ^ Runflat capable (preferred) ^ Side mounted bead breaking to reduce stress on the wheel and tire ^ No metal contact to the wheel at the clamping jaws Protective devices to prevent damage during mounting and dismounting operations Regulated air pressure to protect user and wheel assembly. Approved lubricant (P/N 12345884 [in Canada, P/N 5728223]) to avoid wheel slip and damage to the wheel For further information regarding equipment meeting the requirements for this program, call 1-800-GM-TOOLS. Balancing MC style coated weights are recommended and will provide the best balancing of the tire-wheel assembly. If stick-on weights are used, be sure to follow the manufacturers recommended installation procedure (SI Document ID # 664222) making sure the surface is clean and dry. Using the incorrect type of weights will result in improper fit, and such weights may fall off the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4135 Balancing of the tire and wheel assembly must be performed on a computerized balancer, capable of static and dynamic wheel balance modes. Assemblies should be balanced to within 1/4 ounce on either rim flange. Proper cones and adapters should be used, free of nicks and burrs to ensure proper balancing. Center Cap Install the center cap onto the wheel after the tire has been mounted and balanced, but BEFORE the assembly is installed onto the vehicle. The preferred method for center cap installation is to push in by hand. As an alternate, use a nonmetallic object to push the center cap into place. Attempting to "hammer-on" the caps may result in damage to the cap. Wheel (Lug) Nuts ALUMINUM WHEELS REQUIRE SPECIAL WHEEL NUTS. Each wheel nut should be torqued in the appropriate torque sequence (refer to graphic) and to 190 N.m (140 lb ft). The torque should be re-checked after the first 160 km (100 mi). To help protect the wheels from theft, a wheel lock kit is also available. Incorrect wheel nuts or improperly tightened wheel nuts can cause the wheel to become loose and even come off. This could lead to an accident. Be sure to use the correct wheel nuts. Wheel Nut Caps Install the wheel nut caps after tightening the wheel nuts. Install the wheel nut caps finger tight, plus 1/2 turn. Jounce Bumper This modification is required on all 2WD vehicles EXCEPT the following: Excludes: 2006-2007 2WD Extended Cab - Short Box (model C15553) 2006-2007 2WD Crew Cab - Short Box with Enhanced Trailering (RPO NHT) (model C15543) 2006-2007 2WD Extended Cab - Standard Box with Enhanced Trailering (RPO NHT) (model C15753) It will be required to replace the existing front suspension spring/jounce bumper with Jounce Bumper kit, P/N 12499481. The following procedure should be followed: Raise and support the vehicle. Remove the nut from the spring bumper stud. Remove the spring bumper. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4136 Install a new spring bumper assembly for 2WD 1500 Series Only with 20" wheels. Reuse the nut from the original bumper. Install the nut to the spring bumper stud. Tighten Tighten the nut to 30 N.m (22 lb ft). Remove the safety stands. Lower the vehicle. Knee Bolster Deflector This modification is required for the following vehicles and ONLY applies to Extended Cab Long Box (K15953) Pickup models: 1999-2005 Chevrolet Silverado and GMC Sierra (1500 Series Only): 2005 Vehicles Built in Pontiac (VIN Code E) prior to VIN Breakpoint 5E100134 2005 Vehicles Built in Oshawa (VIN Code 1) prior to VIN Breakpoint 51113131 2005 Vehicles Built in Ft. Wayne (VIN Code Z) prior to VIN Breakpoint 5Z126605 The following procedure should be followed: Apply the parking brake to prevent the vehicle from moving. Remove the fuse panel cover. Remove the I/P cluster trim plate bezel. Remove the knee bolster. Remove the 2 mm (0.078 in) thick knee bolster deflector. Install the 1.5 mm (0.059 in) thick knee bolster deflector, P/N 12499966. A detailed instruction sheet will be provided with the service part. Re-Programming Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4137 It will be necessary to reprogram the PCM for speedometer accuracy. Contact Techline to obtain a VCI number. Then refer to the table for the appropriate calibration part number based on the model year and axle ratio. Calibration Information Documentation Make a copy of the "Accessory Wheel and Tire Information Form" included in this bulletin. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4138 Provide all information required on the form. Make a copy of the completed form for the customer to keep in the vehicle along with their Owner's Manual. File the original completed form in the Dealership's Vehicle Service History folder. Because this is not a warranty repair, dealers will incur a charge to obtain a VCI number. A VCI number will only be available for the following models: 1999-2007 Chevrolet Silverado and GMC Sierra (1500 Series Only) EXCLUDES 1999-2000 vehicles equipped with 4.3L engine (RPO L35) EXCLUDES vehicles equipped with Quadrasteer (RPO NYS) EXCLUDES Parallel Hybrid Truck (RPO HP2) EXCLUDES 2001-2004 vehicles equipped with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Refer to the Model Application Chart to in the beginning of this bulletin to verify usage. Calibrations are not available for 1999 and 2000 model year vehicles with 3.08 axle. Calibrations are not available for 1999 and 2000 model year vehicles equipped with 4.3L engine (RPO L35). If original equipment tires/wheels are reinstalled, it will be necessary to reset the programming of the PCM and the ABS module to the original specifications. Labels After installing the recommended P275/55R20 tires, place the provided label on the vehicle. The label should be located on the doorjamb, near the original tire label, and should not cover up the original tire label. Be sure that the surface is clean and dry. The surface temperature should not be less than 21°C (70°F). The label is provided as a guide for tire inflation pressures and information relevant to occupant/cargo capacities. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4139 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4140 Parts Information Warranty Information Wheels All GM Accessories sold and permanently installed on a GM vehicle PRIOR to new vehicle delivery will be covered under the provisions of the New Vehicle Limited Warranty. For the U.S., in the event GM Accessories are installed AFTER the New Vehicle Delivery, or are replaced under the New Vehicle Warranty, they will be covered (parts and labor) for the balance of the vehicle warranty, but in no event less than 12 months/12,000 miles. This coverage is only effective for GM Accessories permanently installed by a GM dealer or a GM approved ADI (Accessory Distributor/Installer). For Canada, in the event GM Accessories are installed AFTER the New Vehicle Delivery, they will be covered (parts and labor) for the balance of the vehicle warranty, or up to 12 months/Unlimited kilometers depending on month installed. For replacement after the new vehicle warranty expires, but within the 12 months/unlimited kilometers coverage, refer to claim type "B" guidelines. GM Accessories sold over-the-counter, or those not requiring installation, will continue to receive the standard GM Dealer Parts Warranty of 12 months from the date of purchase (parts only). Tires Any approved tire installed on a GM Vehicle PRIOR to delivery will be covered under the provisions of the New Vehicle Limited Warranty. Tires are covered against defects in material and workmanship. Tires are warranted for defects "without" prorated charge for tread mileage. Subsequent replacements under this warranty will continue to be covered for the remainder of the New Vehicle Limited Warranty. Any approved tire installed on a GM Vehicle PRIOR to delivery may continue to be warranted on a prorated basis by the tire manufacturer once the New Vehicle Limited Warranty expires. Any approved tire installed AFTER delivery will be covered under the provisions of the tire manufacturer warranty. USA dealers should refer to GM Warranty Administration Bulletin 00-03-10-003I and GM Parts Process / Policy Bulletin IB03-001 for more information. Canadian dealers should refer to GM Warranty Administration Bulletin 01-03-10-003B. GM Warranty Claims Processing Only GM dealerships have the ability to file warranty claims for GM Parts and Accessories. Therefore, any warranty claims filed against such parts must be handled by the servicing GM dealership. This includes those parts purchased from a GM-approved ADI (Accessory Distributor / Installer). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Technical Service Bulletins > All Other Service Bulletins for Wheels: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 4141 ACCESSORY WHEEL AND TIRE INFORMATION FORM You have just modified your vehicle by installing an "Accessory Package" which includes Wheels and Tires. This form contains important information about your accessory installation. In an effort to provide superior service to you, our customer, we ask that you please present this form to your Servicing Dealer when removing or installing wheels and tires on your vehicle. This form contains important information necessary to service your vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Description and Operation > Replacement Wheels Description Wheels: Description and Operation Replacement Wheels Description Replacement Wheels Description Replace the wheel if any of the following conditions exist: ^ The wheel exhibits excessive runout. ^ The wheel is bent. ^ The wheel is cracked. ^ The wheel is severely rusted. ^ The wheel is severely corroded. ^ Important: Air leaks caused by porosity on aluminum wheels are repairable. The wheel leaks air. Caution: If you are replacing the wheel(s), the wheel stud(s), the wheel nut(s) or the wheel bolt(s), install only new GM original equipment parts. Installation of used parts or non-GM original equipment parts may cause the wheel to loosen, loss of tire air pressure, poor vehicle handling and loss of vehicle control resulting in personal injury. Notice: The use of non-GM original equipment wheels may cause: ^ Damage to the wheel bearing, the wheel fasteners and the wheel ^ Tire damage caused by the modified clearance to the adjacent vehicle components ^ Adverse vehicle steering stability caused by the modified scrub radius ^ Damage to the vehicle caused by the modified ground clearance ^ Speedometer and odometer inaccuracy Replace the wheel, the wheel studs and the wheel/nuts, or the wheel bolts if applicable, if any of the following conditions exist: ^ The wheel has elongated bolt holes. ^ The wheel/nuts, or bolts if applicable, loosen repeatedly. Steel wheel identification is stamped into the wheel near the valve stem. Aluminum wheel identification is cast into the inboard side of the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Description and Operation > Replacement Wheels Description > Page 4144 Wheels: Description and Operation Steel Wheel Repair Description Steel Wheel Repair Description Notice: Do not heat wheels in an attempt to soften them for straightening or repair damage from striking curbs, etc. Do not weld wheels. The alloy used in these wheels is heat-treated and uncontrolled heating from welding affects the properties of the material. Notice: The use of tubes in tubeless tires is not a recommended repair due to the fact that speed ratings are greatly reduced. You can repair porosity in aluminum wheels. If leaks are found in a steel wheel, replace the wheel with a wheel of original equipment quality. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Service and Repair > Aluminum Wheel Porosity Repair Wheels: Service and Repair Aluminum Wheel Porosity Repair Aluminum Wheel Porosity Repair 1. Remove the tire and wheel. 2. Inflate the tire to the manufactures specified pressure as stated on the tire. 3. Submerge the tire/wheel into a water bath in order to locate the leak. 4. Inscribe a mark on the wheel in order to indicate the leak areas. 5. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 6. Remove the tire from the wheel. Refer to Tire Mounting and Dismounting. 7. Important: Do not damage the exterior surface of the wheel. Use number 80 grit sandpaper to scuff the inside of the rim surface at the leak area. 8. Use general purpose cleaner such as 3M(R), P/N 08984 or equivalent, to clean the leak area. 9. Apply 3 mm (0.12 inch) thick layer of adhesive/sealant, GM P/N 12378478 (Canadian P/N 88900041) or equivalent, to the leak area. 10. Allow for the adhesive/sealant to dry. 11. Align the inscribed mark on the tire with the valve stem on the wheel. 12. Install the tire to the wheel. 13. Pressurize the tire to 276 kPa (40 psi). 14. Submerge the tire/wheel into a water bath in order ensure the leak is sealed. 15. Inflate the tire to the specified pressure as stated on the tire placard. 16. Balance the tire and wheel. Refer to Tire and Wheel Assembly Balancing - Off Vehicle. 17. Install the tire and wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Service and Repair > Aluminum Wheel Porosity Repair > Page 4147 Wheels: Service and Repair Aluminum Wheel Refinishing Aluminum Wheel Refinishing Aluminum Wheel Refinishing Guidelines Caution: To avoid personal injury when exposed to plastic media blast, hand and/or lathe sanding dust, primer, color coat, and clearcoat, you must work in a properly ventilated area, wearing an approved respirator, eye protection, earplugs and protective gloves and clothing. Evaluating Damage Important: ^ Inspect the wheel for corrosion, scrapes, gouges, etc. Damage MUST NOT be deeper than what can be sanded or polished off. ^ Inspect the wheel for cracks. If cracks are found, discard the wheel. ^ ALL wheels with bent rim flanges must not be repaired or refinished. ^ The re-machining and the re-clear coating of aluminum wheels is not recommended in the dealer environment due to concerns of repair durability. ^ Do not use any re-machining process that removes aluminum. This could affect the dimensions and function of the wheel. Aluminum Wheel Refinishing General Recommendations/Options ^ Painted aluminum wheels use a primer, color coat, and clearcoat procedure. If the paint is damaged, refinishing is possible. As with polished wheels, all original coatings must be removed first. Media blasting is recommended. (See option number 1). ^ If the clearcoat is damaged, it is possible to refinish with clearcoat only, however, the required refinishing process cannot be performed in the dealer environment. Refer to Refinishers Responsibility (Repair option number 2). ^ Re-plating of chrome-plated aluminum wheels is not recommended. Repair Option Number 1 Material Required/Information Resources ^ The Paint Manufacturer's Color Book ^ Refer to the latest GM Approved Refinish Materials Booklet (GM 4901 MD-2005) for specific products for aluminum refinishing. ^ To access the booklet, go to www.gmgoodwrench.com. Click on GM Collision Parts. Click on GM Technical Repair Information, select Paint Shop. ^ A Color Compatibility chart is also at this site defining what colors are used on what models. ^ Important: Chemical strippers are not recommended. Refer to specific Paint Manufacturers for refinish procedures and process pertaining to "Aluminum Refinishing". The procedure requires the wheel surface to be plastic media blasted to remove old paint or clearcoat. General Color Selection ^ If the wheels being painted were previously clearcoated aluminum, and a painted aluminum look is desired, using Corsican Silver WAEQ9283 for a fine "aluminum-like" look, or Sparkle Silver WA9967 for a very bright look. Body color is another option to the customer that may also be used. ^ Some specific colors may be recommended on certain models. ^ If painting wheels that were previously clearcoated aluminum, it is recommended that all 4 wheels and their center caps be refinished to maintain color uniformity. General Refinishing Procedures - Removal 1. Remove the wheels from the vehicle. The tires may remain mounted on the wheels. 2. Remove the balance weights and mark their locations on the tire. 3. Remove excess grease, etc. from the wheels with wax and grease remover. 4. Have the wheels plastic media blasted to remove the clearcoat. 5. Important: MASK OFF ALL MOUNTING SURFACES, whenever a wheel is refinished. The mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. Clean and mask and paint the wheels. General Refinishing Procedures - Installation 1. Unmask the wheels. 2. Clean all wheel mounting surface of any corrosion, overspray, or dirt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Service and Repair > Aluminum Wheel Porosity Repair > Page 4148 3. Important: When re-balancing a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Install NEW coated balance weights at marked locations. 4. Important: Use a torque stick on an impact wrench, or a torque wrench to consistently and uniformly fasten the wheel to the specified torque for the vehicle. The star pattern must be followed. Install wheels on vehicle. Repair Option Number 2 - Outside Companies ^ Some outside companies are offering wheel refinishing services. One such company, Transwheel Corporation (800-892-3733), provides this service with GM guidelines. Other companies may also exist. ^ Any process that re-machines or otherwise remanufactures the wheel should not be used. ^ The wheel ID must be recorded and follow the wheel throughout the process to assure that the same wheel is returned. The refinisher must permanently ID stamp the wheel and warrant the painted/clearcoated surfaces for a minimum of one year or the remainder of the new vehicle warranty, whichever is longer. ^ Paint and/or clearcoat must not be present on the following surfaces, the nut chamfers, the wheel mounting surfaces and the wheel pilot hole. ^ A refinishers responsibility includes inspecting for cracks using the Zyglo system or the equivalent. Any cracked wheels must not be refinished. No welding, hammering or reforming of any kind is allowed. A plastic media blast may be used for clean up of the wheel. Hand and/or lathe sanding of the machined surface and the wheel window is allowed. Material removal, though, must be kept to a minimum. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheels > Component Information > Service and Repair > Page 4149 Wheels: Tools and Equipment Special Tools and Equipment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Bearing > Component Information > Testing and Inspection Wheel Bearing: Testing and Inspection Wheel Bearings Diagnosis Step 1 - Step 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Bearing > Component Information > Testing and Inspection > Page 4153 Wheel Bearing: Service and Repair Wheel Hub, Bearing, and Seal Replacement (RWD) Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Remove the tire and wheel. 3. Remove the rotor. 4. Remove the wheel speed sensor and brake hose mounting bracket bolt from the steering knuckle. 5. Remove the wheel hub and bearing (4) 15-series mounting bolts. 6. Remove the wheel hub and bearing mounting bolts (4), the 25/35 series. 7. Remove the wheel hub and bearing and splash shield from the vehicle. 8. Remove the O-ring seal from the steering knuckle bore, the 25/35 series. 9. Remove the wheel speed sensor mounting bolt (5). 10. Clean and inspect the O-ring seal, the 25/35 series. 11. Replace the seal if the following conditions exist: ^ Nicks ^ Cuts ^ Dry or brittle ^ Compression set Installation Procedure 1. Clean all corrosion or contaminates from the steering knuckle bore and the hub and bearing. 2. Lubricate the steering knuckle bore with wheel bearing grease or the equivalent. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Bearing > Component Information > Testing and Inspection > Page 4154 3. Install the O-ring (7) to the steering knuckle, 25/35 series. 4. Notice: Refer to Fastener Notice. Install the wheel speed sensor mounting bolt. Tighten the bolt to 18 Nm (13 ft. lbs.). 5. Install the wheel hub and bearing and splash shield to the vehicle, 25/35 series. 6. Install the wheel hub and bearing (4) and splash shield to the 15-series steering knuckle. 7. Install the wheel hub and the 15-series bearing mounting bolts. Install the wheel hub and bearing mounting bolts, the 25/35 series. Tighten the bolts to 180 Nm (133 ft. lbs.). 8. Install the wheel speed sensor and brake hose mounting bracket bolt to the steering knuckle. Tighten the brake hose clip bolt to 12 Nm (106 inch lbs.). 9. Install the rotor. 10. Install the tire and wheel. 11. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Hub > Axle Nut > Component Information > Specifications Axle Nut: Specifications Wheel Hub Nut (10.5/11.5 Inch Axles) ....................................................................................................................................................... 70 Nm (52 lb ft) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Hub (Locking) > Component Information > Technical Service Bulletins > Drivetrain - Gen II Vs. Gen III Wheel Hub Changes Wheel Hub (Locking): Technical Service Bulletins Drivetrain - Gen II Vs. Gen III Wheel Hub Changes INFORMATION Bulletin No.: 08-03-08-003A Date: March 02, 2009 Subject: Wheel Hub Changes - Gen III vs. Gen II Models: 2008 and Prior Cadillac Escalade Models 2008 and Prior Chevrolet Avalanche, Silverado, Silverado Classic, Suburban, Tahoe 2008 and Prior GMC Sierra, Sierra Classic, Yukon Models Supercede: This bulletin is being revised to update the parts information in the table and to add an Illustrated Hub Gallery depicting all wheel hub part numbers called out below for visual identification purposes. Please discard Corporate Bulletin Number 08-03-08-003 (Section 03 - Suspension). General Motors Vehicle Engineering has introduced a new design Gen III front wheel hub for the above listed vehicles that replaces the Gen II product. These Gen II 4x2 and 4x4 applications that were previously serviced by seven part numbers are now serviced by three Gen III part numbers. Concerns have been expressed by technicians regarding the use of the new supersessions and whether the Gen III hubs will properly fit the vehicles being serviced, especially because of visual and functional differences (splines). This bulletin has been developed to address those concerns. Please refer to the table above for information on the Gen III replacement part for each Gen II application. At the end of the bulletin you will find an illustrated "Hub Gallery" with graphic depictions of both Gen II and replacement style Gen III parts. Using these illustrations you should be able to identify both the Gen II and Gen III wheel hubs. Warning If replacing wheel studs, please refer to the GM Parts Catalog for the correct stud part number for each application. Different types of studs are used depending on the wheel hub application. When replacing an older Gen II design 4x2 hub with a new 4x2/4x4 common Gen III hub, it is acceptable to have a bearing with splines on it for a 4x2 application that previously did not. However, the older Gen II design 4x4 hubs should NOT be used on a 4x2 vehicle. The Gen II 4x4 hub relies on the tension of the wheel drive shaft joint to hold everything together. The roll form feature on the inboard side of the new 4x2/4x4 Gen III hub eliminates this concern. The only hub that is not back serviceable is P/N 15719007 (not pictured) for 1999-2000 C25 applications due to a different hub flange to bearing flange offset. Important: Only the new part numbers referenced in this bulletin are interchangeable between the 4x2 and 4x4 applications with the exception of P/N 15719007 (Not Shown). Under no circumstances should any other 4x4 hub be used in a 4x2 application. Illustrated Hub Gallery Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Hub (Locking) > Component Information > Technical Service Bulletins > Drivetrain - Gen II Vs. Gen III Wheel Hub Changes > Page 4163 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Hub (Locking) > Component Information > Technical Service Bulletins > Drivetrain - Gen II Vs. Gen III Wheel Hub Changes > Page 4164 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Hub (Locking) > Component Information > Technical Service Bulletins > Drivetrain - Gen II Vs. Gen III Wheel Hub Changes > Page 4165 The wheel hubs illustrated above are intended to provide enough visual details to identify subtle differences between the Gen II and Gen III replacement hubs. The various colors used in the graphics are not indicative of any difference or feature, but are used to increase the detail and clarity of the assembly. The associated part number is listed with each illustration. Please refer to the chart above for the specific application for each hub. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Hub (Locking) > Component Information > Technical Service Bulletins > Drivetrain - Gen II Vs. Gen III Wheel Hub Changes > Page 4166 Please note the following when referring to a specific illustration: ^ When using the illustrations for back to back comparisons of two hubs, the most obvious differences are visible on the back side of the hubs. ^ The most common area of physical difference are in the shape of the four mounting bosses and their surrounds. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > Customer Interest for Wheel Fastener: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap Wheel Fastener: Customer Interest Tires/Wheels - Rattle Noise from Wheel Or Hub Cap TECHNICAL Bulletin No.: 07-03-10-012D Date: April 12, 2011 Subject: Rattle Noise from Wheel or Hub Cap While Driving, Loose Wheel Nut Caps or Wheel Nut Caps May Not Tighten on Wheel Nuts (Inspect/Replace Wheel Nut Caps As Necessary) Models: 2007-2012 Chevrolet Express, Silverado, Suburban 1500, 2500 and 3500 Series 2007-2012 GMC Savana, Sierra, Yukon XL 1500, 2500 and 3500 Series with 8 Lug Wheel Nut Center Caps (RPOs NX7, NZ7, PY0, PY2, PY9, P03, P25, QB5, QC1, QR5, Q9A) Supercede: This bulletin is being revised to update the model year information. Please discard Corporate Bulletin Number 07-03-10-012C (Section 03 - Suspension). Condition Some customers may comment on a rattle noise from the wheel or hub cap while driving. Other customers may comment on loose wheel nut caps or caps that may not tighten on the wheel nuts. Cause Depending on the generation of the wheel caps, the issue may be overtorqued wheel nut caps or may be caused by the lack of internal threads inside the wheel nut caps. The wheel nut cap (1) is correctly threaded. The wheel nut cap (2) shows the insufficient threads. Correction Important The wheel nut caps are serviced separately from the center wheel hub cap for most hub caps. Refer to the GM electronic parts catalog (EPC) for details. Inspect each wheel nut cap and replace as necessary using the steps below. 1. Remove the wheel hub cap from the vehicle. 2. Place the front of the wheel hub cap down on a protected clean work bench being careful not to scratch or damage the hub cap surface. 3. Inspect all the wheel nut caps, marking any bad wheel nut caps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > Customer Interest for Wheel Fastener: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap > Page 4175 Tip The bad wheel nut cap can be removed by placing a drift or punch inside the center of the nut cap and using a hammer to tap the wheel nut cap out of the hub cap. 4. From inside the hub cap, apply direct pressure to one side of the wheel nut cap rim (1). The wheel nut cap will tip down and pop out of the wheel hub cap hole when enough pressure is applied. Repeat this procedure for any additional wheel nut caps that need to be replaced. 5. Flip the hub cap over on the work bench. The emblem side should be up. Tip A 22 mm (7/8 in) socket placed over the wheel nut cap may be used along with a hammer to tap the new wheel nut cap back into the hub cap hole. 6. Install the new wheel nut cap into the existing hub cap hole by applying direct pressure to the front center of the wheel nut cap. 7. Install the wheel hub cap onto the vehicle and tighten the wheel nut caps. 8. Repeat this entire procedure for each additional hub cap. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheel Fastener: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap Wheel Fastener: All Technical Service Bulletins Tires/Wheels - Rattle Noise from Wheel Or Hub Cap TECHNICAL Bulletin No.: 07-03-10-012D Date: April 12, 2011 Subject: Rattle Noise from Wheel or Hub Cap While Driving, Loose Wheel Nut Caps or Wheel Nut Caps May Not Tighten on Wheel Nuts (Inspect/Replace Wheel Nut Caps As Necessary) Models: 2007-2012 Chevrolet Express, Silverado, Suburban 1500, 2500 and 3500 Series 2007-2012 GMC Savana, Sierra, Yukon XL 1500, 2500 and 3500 Series with 8 Lug Wheel Nut Center Caps (RPOs NX7, NZ7, PY0, PY2, PY9, P03, P25, QB5, QC1, QR5, Q9A) Supercede: This bulletin is being revised to update the model year information. Please discard Corporate Bulletin Number 07-03-10-012C (Section 03 - Suspension). Condition Some customers may comment on a rattle noise from the wheel or hub cap while driving. Other customers may comment on loose wheel nut caps or caps that may not tighten on the wheel nuts. Cause Depending on the generation of the wheel caps, the issue may be overtorqued wheel nut caps or may be caused by the lack of internal threads inside the wheel nut caps. The wheel nut cap (1) is correctly threaded. The wheel nut cap (2) shows the insufficient threads. Correction Important The wheel nut caps are serviced separately from the center wheel hub cap for most hub caps. Refer to the GM electronic parts catalog (EPC) for details. Inspect each wheel nut cap and replace as necessary using the steps below. 1. Remove the wheel hub cap from the vehicle. 2. Place the front of the wheel hub cap down on a protected clean work bench being careful not to scratch or damage the hub cap surface. 3. Inspect all the wheel nut caps, marking any bad wheel nut caps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Wheel Fastener: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap > Page 4181 Tip The bad wheel nut cap can be removed by placing a drift or punch inside the center of the nut cap and using a hammer to tap the wheel nut cap out of the hub cap. 4. From inside the hub cap, apply direct pressure to one side of the wheel nut cap rim (1). The wheel nut cap will tip down and pop out of the wheel hub cap hole when enough pressure is applied. Repeat this procedure for any additional wheel nut caps that need to be replaced. 5. Flip the hub cap over on the work bench. The emblem side should be up. Tip A 22 mm (7/8 in) socket placed over the wheel nut cap may be used along with a hammer to tap the new wheel nut cap back into the hub cap hole. 6. Install the new wheel nut cap into the existing hub cap hole by applying direct pressure to the front center of the wheel nut cap. 7. Install the wheel hub cap onto the vehicle and tighten the wheel nut caps. 8. Repeat this entire procedure for each additional hub cap. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > Page 4182 Wheel Fastener: Specifications Wheel Nuts Install the wheel nuts. Tighten the nuts evenly and alternately in order to avoid excessive runout. Tighten the wheel nuts as shown to 190 Nm (140 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > Page 4183 Wheel Fastener: Service Precautions Wheel Nut or Stud Notice Notice: Stud-piloted hubs' inner and outer stud nuts used on the right side of the vehicle have right-hand threads. Inner and outer nuts are stamped with the letter L to signify left or R to signify right. Care should be exercised to prevent trying to use the wrong thread nut as damage to the stud threads could occur. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Technical Service Bulletins > Page 4184 Wheel Fastener: Description and Operation Metric Wheel Nuts and Bolts Description Metric wheel/nuts and bolts are identified in the following way: ^ The wheel/nut has the word Metric stamped on the face. ^ The letter M is stamped on the end of the wheel bolt. The thread sizes of metric wheel/nuts and the bolts are indicated by the following example: M12 x 1.5. ^ M = Metric ^ 12 = Diameter in millimeters ^ 1.5 = Millimeters gap per thread Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Service and Repair > Front Suspension Wheel Fastener: Service and Repair Front Suspension Wheel Stud Replacement Tools Required ^ J 43631 Ball Joint Remover Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Remove the tire and wheel. 3. Remove the brake rotor. Refer to Front Brake Rotor Replacement (1500 Series) Front Brake Rotor Replacement (25/3500 Series). 4. Remove the wheel stud from the hub flange using the J 43631. 5. Remove the wheel stud from the hub flange. Installation Procedure 1. Install the new stud into the hub flange hole using firm hand pressure. 2. Install 4 washers to the new wheel stud. 3. Thread a wheel nut onto the new stud with the flat side facing the front hub flange. 4. Tighten the lug nut until the stud contacts the back of the hub flange. 5. Remove the wheel nut. 6. Remove the washers. 7. Install the brake rotor. 8. Install the tire and wheel. 9. Remove the safety stands. 10. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Service and Repair > Front Suspension > Page 4187 Wheel Fastener: Service and Repair Rear Suspension Wheel Stud Replacement Tools Required ^ J 43631 Ball Joint Remover Removal Procedure 1. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Remove the tire and wheel. 3. Remove the rotor, except dual wheel vehicles. 4. Remove the wheel stud from the axle flange using the J 43631. 5. Remove the axle shaft for vehicles with 9.5 in ring gear. 6. Remove the rear hub assembly for vehicles with 10.5/11.5 in ring gear, with single wheels. 7. Remove the rear axle hub for vehicles with dual wheels. 8. Remove the wheel stud from the axle flange using the J 43631. 9. Remove the wheel stud from the hub flange using the J 43631. 10. Place the hub and rotor assembly in a press to remove the wheel stud. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Wheels and Tires > Wheel Fastener > Component Information > Service and Repair > Front Suspension > Page 4188 1. Install the stud. 2. Install the 4 washers and the lug nut to the stud. 3. Tighten the lug nut in order to draw the stud into the flange until the stud fully seats. 4. Remove the lug nut and the washers. 5. Install the axle shaft for the vehicles with 9.5 in ring gear. 6. Install the rear hub assembly for the vehicles with 10.5/11.5 in ring gear, with single wheels. 7. Install the rear axle hub for vehicles with dual wheels. 8. Install the rotor, except dual wheels. 9. Install the tire and wheel. 10. Remove the safety stands. 11. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information Towing Information: Technical Service Bulletins Vehicle - Recreational (Dinghy) Towing Information Bulletin No.: 00-00-89-008F Date: July 28, 2006 INFORMATION Subject: Recreational (Dinghy) Towing Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information > Page 4193 Models Supercede: This bulletin is being revised to add model years, models and additional information. Please discard Corporate Bulletin Number 00-00-89-008E (Section 00 - General Information). Some customers may want to tow their vehicle behind another vehicle with all FOUR tires on the ground. This is referred to as "dinghy" towing. Towing in this manner is acceptable only on the certain vehicles. The vehicle should be properly equipped and prepared as described below. The passenger cars listed above are the vehicles that CAN be dinghy towed. Passenger cars not listed above are vehicles where dinghy towing is not permitted or recommended. Certain 4WD trucks can be dinghy towed depending on the transfer case option. Rear wheel drive and AWD trucks should NOT be dinghy towed. Refer to the truck models and transfer case options below. Please refer to the applicable vehicle Owner's Manual before towing. Passenger Cars Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information > Page 4194 Note: The vehicles shown must not be towed backwards or transmission damage may occur. Towing Procedure Note: Failure to follow these instructions may result in damage to the transmission. Important: The towing speed as stated in the Owner's Manual should not exceed 104 km/h (65 mph) for 1995-2005 vehicles. In order to properly dinghy tow the vehicle, follow these steps: 1. Firmly set the parking brake. 2. Open the fuse panel and pull the fuse(s) indicated in the Owner's Manual section detailing towing your vehicle. This prevents the instrument panel (IP) and/or electronic PRNDL indicator from draining the battery. 3. Securely attach the vehicle to the tow vehicle. 4. Turn the ignition key to the OFF position, which is one position forward of LOCK. Unlocking the steering column allows for proper movement of the front wheels and tires during towing. For 1997-1999 Cutlass, 1997-2003 Malibu, 2004-2006 Chevrolet Classic and 1999-2004 Alero/Grand Am models, turn the ignition switch to the accessory (ACC) position, which is one position forward of OFF. This position unlocks the transaxle. 5. Shift the transmission to Neutral (N). Note: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information > Page 4195 Use extra care whenever towing another vehicle. Do not exceed the towing vehicle's gross combination weight (GCW) by adding the weight of the dinghy towed vehicle or vehicle damage may result. 6. When the vehicle being towed is firmly attached to the tow vehicle, release the parking brake. 7. Replace the fuse(s) in the fuse panel when finished towing. Tracker Models Note: Locking the steering column when towing your vehicle may damage the steering column. Always unlock the steering column before towing. Important: ^ Two-wheel drive Trackers cannot be dinghy towed. Two-wheel drive models MUST be towed with the rear drive wheels on a dolly. ^ The towing speed must not exceed 90 km/h (55 mph). In order to properly dinghy tow a 4WD Tracker, follow these steps: 1. Set the parking brake. 2. Shift the transmission into Park (AT) or second gear (MT). 3. With the ignition key in the ON position, move the transfer case to Neutral. Make sure the 4WD indicator on the instrument panel cluster is Off. 4. Turn the ignition key to ACC in order to unlock the steering wheel. 5. Release the parking brake. Stop towing the vehicle every 300 km (200 mi) and do the following steps: 1. Start the engine of the towed vehicle. 2. Leave the transfer case shift lever in Neutral. 3. Shift the transmission to Drive (AT). For vehicles with (MT), leave the transmission in second gear with the clutch engaged. 4. Run the engine at medium speed for one minute to circulate the oil through the transfer case. 2003-2007 Pontiac Vibe Only the front wheel drive vehicles with manual transmission are designed to be dinghy towed. Use the following procedure to properly dinghy tow these models: 1. Place the shift lever in Neutral. 2. Turn the ignition switch to the ACC position to avoid locking the steering wheel. Make sure that the audio system is turned off and that nothing is plugged into the power outlets. 3. Release the parking brake. 4. After dinghy towing the vehicle, let the engine idle for more than three minutes before driving the vehicle. Four Wheel Drive and All Wheel Drive Light Duty Trucks Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information > Page 4196 Dinghy towing is permitted on the trucks shown with the transfer case placed in the Neutral position. Refer to the end of this bulletin for identification information to determine type of transfer case. The vehicles shown should NOT be dinghy towed because the transfer cases in these vehicles either have no neutral position or do not have an internal oil pump to provide lubrication while being towed. In order to properly tow the vehicles, place the vehicle on a platform trailer with all four tires off the ground. Avoid towing the vehicle with all four tires on the ground. In rare instances when towing with all four tires on the ground is unavoidable, both the front and the rear propeller shafts must be removed in order to prevent damage to the transfer case and/or transmission. Because front and rear propeller shafts are matched to attaching components at assembly, refer to the applicable Service Manual for procedures on propeller shaft removal/installation. Towing Procedure In order to properly dinghy tow the vehicle, use the following procedure: 1. Firmly set the parking brake. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information > Page 4197 2. Place the AT in Park (P) or the MT in the lowest gear (1st). 3. Securely attach the vehicle being towed to the tow vehicle. Caution: Shifting the transfer case to Neutral can cause the vehicle to roll, even if the transmission is in park (automatic) or 1st gear (manual), and may cause personal injury. 4. If equipped, place the transfer case shift lever in Neutral (N). Note: Use extra care whenever towing another vehicle. Do not exceed the towing vehicle's gross combination weight (GCW) by adding the weight of the dinghy towed vehicle or vehicle damage may result. 5. When the vehicle being towed is firmly attached to the tow vehicle, release the parking brake. 6. The Owner's Manual specifies the appropriate ignition key position to ensure that the steering is unlocked to allow the front wheels to follow the tow vehicle. Rear Wheel Drive Light Duty Trucks Important: ^ Dust or dirt can enter the back of the transmission through the opening created by the removal of the slip yoke from the transmission if proper protection is not provided. ^ Verify that the transmission fluid is at the proper level before driving the truck. Rear wheel drive vehicles, equipped with AT or MT, should NOT be dinghy towed. These transmissions have no provisions for internal lubrication while being towed. In order to properly tow these vehicles, place the vehicle on a platform trailer with all four tires off the ground. Avoid towing the vehicle with all four tires on the ground. In rare instances when it is unavoidable that a rear wheel drive vehicle be dinghy towed, the propeller shaft to axle yoke orientation should be marked and the propeller shaft removed. Refer to the applicable Service Manual for procedures on propeller shaft removal/installation. Transfer Case Identification Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Towing Information > System Information > Technical Service Bulletins > Vehicle - Recreational (Dinghy) Towing Information > Page 4198 The identification tag on the rear half of the transfer case provides the information shown. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Vehicle Lifting > Component Information > Service Precautions Vehicle Lifting: Service Precautions Vehicle Lifting Caution Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Vehicle Lifting > Component Information > Service and Repair > General Information Vehicle Lifting: Service and Repair General Information Lifting and Jacking the Vehicle Caution: To avoid any vehicle damage, serious personal injury or death when major components are removed from the vehicle and the vehicle is supported by a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and strap the vehicle to the hoist. Caution: To avoid any vehicle damage, serious personal injury or death, always use the jackstands to support the vehicle when lifting the vehicle with a jack. Notice: Perform the following steps before beginning any vehicle lifting or jacking procedure: * Remove or secure all of the vehicle's contents in order to avoid any shifting or any movement that may occur during the vehicle lifting or jacking procedure. * The lifting equipment or the jacking equipment weight rating must meet or exceed the weight of the vehicle and any vehicle contents. * The lifting equipment or the jacking equipment must meet the operational standards of the lifting equipment or jacking equipment's manufacturer. * Perform the vehicle lifting or jacking procedure on a clean, hard, dry, level surface. * Perform the vehicle lifting or jacking procedure only at the identified lift points. DO NOT allow the lifting equipment or jacking equipment to contact any other vehicle components. Failure to perform the previous steps could result in damage to the lifting equipment or the jacking equipment, the vehicle, and/or the vehicle's contents. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Vehicle Lifting > Component Information > Service and Repair > General Information > Page 4204 Vehicle Lifting: Service and Repair Vehicle Jacking Vehicle Jacking * Park the vehicle on a clean, hard, level surface before jacking the vehicle. * Any time you lift the vehicle on one end, chock the wheels at the opposite end. * Use jack stands in order to provide support. * When supporting the vehicle using jack stands, place the jack stands under the side rails or the axle. * When lifting under the rear differential, do not allow the jack pad to contact the rear stabilizer bar or mounting hardware. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Maintenance > Vehicle Lifting > Component Information > Service and Repair > General Information > Page 4205 Vehicle Lifting: Service and Repair Vehicle Lifting Vehicle Lifting * Ensure that the lifting equipment meets weight requirements and is in good working order. Always follow the lift manufacturer's instructions. * You may lift and support the front of the vehicle at the front suspension near the wheel assemblies. Ensure that the arms of the front cradle are extended as close to the steering knuckle as possible. * Ensure that the vehicle is centered on the hoist before attempting to lift. * When using a suspension-contact hoist, ensure that the rear cradle has adequate clearance for the rear stabilizer bar. * When lifting or jacking a vehicle, be certain that the lift pads do not contact the exhaust system, brake pipes, cables, HVAC lines, wiring harnesses, fuel lines, or underbody. Such contact may result in damage or unsatisfactory vehicle performance. * When using a frame-contact hoist, only place the pads on flat surfaces. Do not place pads within 50 mm (2 in) of any radius. * Before lifting the vehicle, verify that the vehicle loads are secure and equally distributed. * When major components are removed from the vehicle when supported on a hoist, support the vehicle with jack stands at the opposite end from which the components are being removed and secure the vehicle frame to the hoist pads nearest the component to be removed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Compression Check > System Information > Specifications Compression Check: Specifications The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Compression Check > System Information > Specifications > Page 4211 Compression Check: Testing and Inspection Engine Compression Test 1. Charge the battery if the battery is not fully charged. 2. Disable the ignition system. 3. Disable the fuel injection system. 4. Remove all the spark plugs. 5. Turn the ignition to the ON position. 6. Depress the accelerator pedal to position the throttle plate wide open. 7. Start with the compression gage at zero and crank the engine through 4 compression strokes, 4 puffs. 8. Measure the compression for each cylinder. Record the readings. 9. If a cylinder has low compression, inject approximately 15 ml (1 tablespoon) of engine oil into the combustion chamber through the spark plug hole. Measure the compression again and record the reading. 10. The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). For example, if the highest pressure in any 1 cylinder is 1,035 kPa (150 psi), the lowest allowable pressure for any other cylinder would be 725 kPa (105 psi). (1 035 x 70% = 725) (150 x 70% = 105). ^ Normal - Compression builds up quickly and evenly to the specified compression for each cylinder. ^ Piston Rings Leaking - Compression is low on the first stroke. Compression builds up with the following strokes, but does not reach normal. Compression improves considerably when you add oil. ^ Valves Leaking - Compression is low on the first stroke. Compression usually does not build up on the following strokes. Compression does not improve much when you add oil. ^ If 2 adjacent cylinders have lower than normal compression, and injecting oil into the cylinders does not increase the compression, the cause may be a head gasket leaking between the cylinders. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Camshaft, Engine > Component Information > Service and Repair Camshaft: Service and Repair Camshaft Replacement Removal Procedure 1. Raise the hood to the service position, perform the following: ^ Remove the hood hinge bolts (1). ^ Raise the hood until vertical. ^ Install the hood hinge bolts until snug in the service position (2). 2. Remove the radiator support. 3. Remove the front cover. 4. Remove the valve lifters. 5. Remove the camshaft sensor bolt and sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Camshaft, Engine > Component Information > Service and Repair > Page 4216 6. Rotate the crankshaft until the timing marks on the crankshaft and camshaft sprockets are aligned. 7. Remove the camshaft sprocket bolts. 8. Notice: Do not turn the crankshaft assembly after the timing chain has been removed in order to prevent damage to the piston assemblies or the valves. Remove the camshaft sprocket and reposition the timing chain. 9. Remove the camshaft retainer bolts and retainer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Camshaft, Engine > Component Information > Service and Repair > Page 4217 10. Notice: All camshaft journals are the same diameter, so care must be used in removing or installing the camshaft to avoid damage to the camshaft bearings. Remove the camshaft. 1. Install 3 M8-1.25 x 100 mm (M8-1.25 x 4.0 inch) bolts to the bolt holes in the front of the camshaft. 2. Using the bolts as a handle, carefully rotate and pull the camshaft out of the engine block. 3. Remove the 3 bolts from the camshaft. 11. If required, clean and inspect the camshaft and bearings. Refer to Camshaft and Bearings Cleaning and Inspection. Installation Procedure Important: If camshaft replacement is required, the valve lifters must also be replaced. 1. Lubricate the camshaft journals and the bearings with clean engine oil. 2. Install 3 M8-1.25 x 100 mm (M8-1.25 x 4.0 inch) bolts to the bolt holes in the front of the camshaft. Notice: All camshaft journals are the same diameter, so care must be used in removing or installing the camshaft to avoid damage to the camshaft bearings. 3. Using the bolts as a handle, carefully install the camshaft into the engine block. 4. Remove the 3 bolts from the front of the camshaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Camshaft, Engine > Component Information > Service and Repair > Page 4218 5. Notice: Refer to Fastener Notice in Service Precautions. Important: Install the retainer plate with the sealing gasket facing the engine block. The gasket surface on the engine block should be clean and free of dirt and/or debris. Install the camshaft retainer and bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Install the camshaft sprocket and position the timing chain. 7. Install the camshaft sprocket bolts. Tighten the bolts to 35 Nm (26 ft. lbs.). 8. Inspect the camshaft sensor O-ring seal. If the O-ring seal is not cut or damaged, it may be reused. 9. Lubricate the O-ring seal with clean engine oil. 10. Install the camshaft sensor and bolt. Tighten the bolt to 25 Nm (18 ft. lbs.). 11. Install the valve lifters. 12. Install the front cover. 13. Install the radiator support. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Camshaft, Engine > Component Information > Service and Repair > Page 4219 14. Remove the hood hinge bolts from the service position (2). 15. Lower the hood to the normal position. 16. Install the hood hinge bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Lifter / Lash Adjuster: Customer Interest Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 4228 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Lifter / Lash Adjuster: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Lifter / Lash Adjuster: All Technical Service Bulletins Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Lifter / Lash Adjuster: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 4234 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Lifter / Lash Adjuster: > 08-06-01-018D > Jun > 09 > 08-06-01-018D - END OF NEED FOR INFORMATION Lifter / Lash Adjuster: All Technical Service Bulletins 08-06-01-018D - END OF NEED FOR INFORMATION ENGINEERING INFORMATION Bulletin No.: 08-06-01-018D Date: June 11, 2009 Subject: EI08245 - SES Light, DTC P0300, Engine Lifter Tick Noise, Misfire on Cylinders 1, 4, 6 or 7 (Engineering Information Closed) Models: 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon, Yukon Denali, Yukon XL with 5.3L or 6.0L Engine with Active Fuel Management (AFM) (VINs 3, M, 0, J, Y - RPOs LC9, LH6, LMG, LY5, L76) Supercede: This bulletin is being revised to end the need for information from the field. Please discard Corporate Bulletin Number 08-06-01-018C (Section 06 - Engine/Propulsion System). Additional information is no longer needed by Engineering. Refer to published diagnostics and repairs in SI to correct this concern. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > All Other Service Bulletins for Lifter / Lash Adjuster: > 08-06-01-018D > Jun > 09 > 08-06-01-018D - END OF NEED FOR INFORMATION Lifter / Lash Adjuster: All Technical Service Bulletins 08-06-01-018D - END OF NEED FOR INFORMATION ENGINEERING INFORMATION Bulletin No.: 08-06-01-018D Date: June 11, 2009 Subject: EI08245 - SES Light, DTC P0300, Engine Lifter Tick Noise, Misfire on Cylinders 1, 4, 6 or 7 (Engineering Information Closed) Models: 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon, Yukon Denali, Yukon XL with 5.3L or 6.0L Engine with Active Fuel Management (AFM) (VINs 3, M, 0, J, Y - RPOs LC9, LH6, LMG, LY5, L76) Supercede: This bulletin is being revised to end the need for information from the field. Please discard Corporate Bulletin Number 08-06-01-018C (Section 06 - Engine/Propulsion System). Additional information is no longer needed by Engineering. Refer to published diagnostics and repairs in SI to correct this concern. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > Page 4244 Lifter / Lash Adjuster: Service and Repair Valve Lifter Replacement Tools Required ^ J 3049-A Valve Lifter Remover Removal Procedure 1. Remove the cylinder head and gasket. 2. Remove the valve lifter guide bolts. 3. Remove the valve lifters and guide. 4. Important: Some valve lifters may be stuck in their bores because of gum or varnish deposits. Use J 3049-A or equivalent in order to remove the valve lifters, if required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > Page 4245 5. Remove the valve lifters from the guide. 6. Organize or mark the components so that they can be installed in the same location from which they were removed. 7. If required, clean and inspect the valve lifters. Refer to Valve Lifters and Guides Cleaning and Inspection. Installation Procedure Important: When reusing valve lifters, install the lifters to their original locations. 1. Lubricate the valve lifters and engine block valve lifter bores with clean engine oil. 2. Insert the valve lifters into the lifter guides. Align the flat area on the top of the lifter with the flat area in the lifter guide bore. Push the lifter completely into the guide bore. 3. Install the valve lifters and guide to the engine block. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Lifter / Lash Adjuster, Valve > Component Information > Technical Service Bulletins > Page 4246 4. Notice: Refer to Fastener Notice in Service Precautions. Install the valve lifter guide bolts. Tighten the bolt to 12 Nm (106 inch lbs.). 5. Install the cylinder head and gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Push Rod > Component Information > Service and Repair Push Rod: Service and Repair Valve Rocker Arm and Push Rod Replacement Removal Procedure 1. Remove the rocker arm cover. Important: Place the rocker arms, pushrods, and pivot support, in a rack so that they can be installed in the same location from which they were removed. 2. Remove the rocker arm bolts. 3. Remove the rocker arms. 4. Remove the rocker arm pivot support. 5. Remove the pushrods. 6. If required, clean and inspect the rocker arms and pushrods. Refer to Valve Rocker Arm and Push Rods Cleaning and Inspection. Installation Procedure Important: When reusing the valve train components, always install the components to the original location and position. Valve lash is net build, no valve adjustment is required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Push Rod > Component Information > Service and Repair > Page 4250 1. Lubricate the rocker arms and pushrods with clean engine oil. 2. Lubricate the flange of the rocker arm bolts with clean engine oil. Lubricate the flange or washer surface of the bolt that will contact the rocker arm. 3. Install the rocker arm pivot support. 4. Important: Make sure that the pushrods seat properly to the valve lifter sockets. Install the pushrods. 5. Important: Make sure that the pushrods seat properly to the ends of the rocker arms. DO NOT tighten the rocker arm bolts at this time. Install the rocker arms and bolts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Push Rod > Component Information > Service and Repair > Page 4251 6. Rotate the crankshaft until the number one piston is at top dead center (TDC) of the compression stroke. In this position, cylinder number one rocker arms will be off lobe lift, and the crankshaft sprocket key will be at the 1:30 position. The engine firing order is 1, 8, 7, 2, 6, 5, 4, 3.Cylinders 1, 3, 5 and 7 are the left bank. Cylinder 2, 4, 6 and 8 are the right bank. Notice: Refer to Fastener Notice in Service Precautions. 7. With the engine in the number one firing position, tighten the following rocker arm bolts: ^ Tighten cylinders 1, 2, 7 and 8 exhaust valve rocker arm bolts to 30 Nm (22 ft. lbs.). ^ Tighten cylinders 1, 3, 4 and 5 intake valve rocker arm bolts to 30 Nm (22 ft. lbs.). 8. Rotate the crankshaft 360°. 9. Tighten the following rocker arm bolts: ^ Tighten cylinders 3, 4, 5 and 6 exhaust valve rocker arm bolts to 30 Nm (22 ft. lbs.). ^ Tighten cylinders 2, 6, 7 and 8 intake valve rocker arm bolts to 30 Nm (22 ft. lbs.). 10. Install the rocker arm cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Rocker Arm Assembly > Component Information > Service and Repair Rocker Arm Assembly: Service and Repair Valve Rocker Arm and Push Rod Replacement Removal Procedure 1. Remove the rocker arm cover. Important: Place the rocker arms, pushrods, and pivot support, in a rack so that they can be installed in the same location from which they were removed. 2. Remove the rocker arm bolts. 3. Remove the rocker arms. 4. Remove the rocker arm pivot support. 5. Remove the pushrods. 6. If required, clean and inspect the rocker arms and pushrods. Refer to Valve Rocker Arm and Push Rods Cleaning and Inspection. Installation Procedure Important: When reusing the valve train components, always install the components to the original location and position. Valve lash is net build, no valve adjustment is required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Rocker Arm Assembly > Component Information > Service and Repair > Page 4255 1. Lubricate the rocker arms and pushrods with clean engine oil. 2. Lubricate the flange of the rocker arm bolts with clean engine oil. Lubricate the flange or washer surface of the bolt that will contact the rocker arm. 3. Install the rocker arm pivot support. 4. Important: Make sure that the pushrods seat properly to the valve lifter sockets. Install the pushrods. 5. Important: Make sure that the pushrods seat properly to the ends of the rocker arms. DO NOT tighten the rocker arm bolts at this time. Install the rocker arms and bolts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Camshaft, Lifters and Push Rods > Rocker Arm Assembly > Component Information > Service and Repair > Page 4256 6. Rotate the crankshaft until the number one piston is at top dead center (TDC) of the compression stroke. In this position, cylinder number one rocker arms will be off lobe lift, and the crankshaft sprocket key will be at the 1:30 position. The engine firing order is 1, 8, 7, 2, 6, 5, 4, 3.Cylinders 1, 3, 5 and 7 are the left bank. Cylinder 2, 4, 6 and 8 are the right bank. Notice: Refer to Fastener Notice in Service Precautions. 7. With the engine in the number one firing position, tighten the following rocker arm bolts: ^ Tighten cylinders 1, 2, 7 and 8 exhaust valve rocker arm bolts to 30 Nm (22 ft. lbs.). ^ Tighten cylinders 1, 3, 4 and 5 intake valve rocker arm bolts to 30 Nm (22 ft. lbs.). 8. Rotate the crankshaft 360°. 9. Tighten the following rocker arm bolts: ^ Tighten cylinders 3, 4, 5 and 6 exhaust valve rocker arm bolts to 30 Nm (22 ft. lbs.). ^ Tighten cylinders 2, 6, 7 and 8 intake valve rocker arm bolts to 30 Nm (22 ft. lbs.). 10. Install the rocker arm cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod Bearing > Component Information > Specifications > Engine Mechanical Specifications Connecting Rod Bearing: Specifications Engine Mechanical Specifications Connecting Rod Bearing Clearance - Production ....................................................................................................... 0.023-0.065 mm (0.0009-0.0025 inch) Connecting Rod Bearing Clearance - Service .............................................................................................................. 0.023-0.076 mm (0.0009-0.003 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod Bearing > Component Information > Specifications > Engine Mechanical Specifications > Page 4262 Connecting Rod Bearing: Specifications Engine Mechanical Specifications (LQ4 VIN U) Connecting Rod Bearing Clearance - Production ....................................................................................................... 0.023-0.065 mm (0.0009-0.0025 inch) Connecting Rod Bearing Clearance - Service .............................................................................................................. 0.023-0.076 mm (0.0009-0.003 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod Bearing > Component Information > Specifications > Engine Mechanical Specifications > Page 4263 Connecting Rod Bearing: Specifications Engine Mechanical Specifications (LQ9 VIN N) Connecting Rod Bearing Clearance - Production ....................................................................................................... 0.023-0.065 mm (0.0009-0.0025 inch) Connecting Rod Bearing Clearance - Service .............................................................................................................. 0.023-0.076 mm (0.0009-0.003 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod, Engine > Component Information > Technical Service Bulletins > Engine - Revised Connecting Rod Bolt Torque Connecting Rod: Technical Service Bulletins Engine - Revised Connecting Rod Bolt Torque Bulletin No.: 07-06-01-002 Date: March 05, 2007 INFORMATION Subject: Information on Revised Connecting Rod Bolt Torque for Small Block GEN III and GEN IV Vortec(TM) V8 Engines Models A new connecting rod bolt torque specification was introduced to the GEN III and GEN IV Vortec(TM) small block V8 engines. The connecting rod bolts should continue to be tightened using two passes. The second pass value has been increased from 75 degrees to 85 degrees. Install the connecting rod bolts and tighten. Refer to Piston, Connecting Rod, and Bearing Installation in SI. Tighten Tighten the connecting rod bolts a first pass to 20 N.m (15 lb ft). Tighten the connecting rod bolts a final pass to 85 degrees using the J 45059 Angle Meter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod, Engine > Component Information > Technical Service Bulletins > Engine - Revised Connecting Rod Bolt Torque > Page 4268 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod, Engine > Component Information > Specifications > Engine Mechanical Specifications Connecting Rod: Specifications Engine Mechanical Specifications Connecting Rod Bolts - First Pass ............................................................................................................................................................. 20 Nm (15 ft. lbs.) Connecting Rod Bolts - Final Pass ........................................................................ ................................................................................................. 75 degrees Connecting Rod Bore Diameter - Bearing End ......................................................................................................... 56.505-56.525 mm ( 2.224-2.225 inch) Connecting Rod Bore Out-of-Round - Bearing End - Production ............................................................................ 0.004-0.008 mm (0.00015-0.0003 inch) Connecting Rod Bore Out-of-Round - Bearing End - Service ................................................................................. 0.004-0.008 mm (0.00015-0.0003 inch) Connecting Rod Side Clearance ....................................................................................................................................... 0.11-0.51 mm (0.00433-0.02 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4271 Connecting Rod: Specifications Engine Mechanical Specifications (LQ4 VIN U) Connecting Rod Bore Diameter - Bearing End ......................................................................................................... 56.505-56.525 mm ( 2.224-2.225 inch) Connecting Rod Bore Out-of-Round - Bearing End - Production .................................................................................................... 0.006 mm (0.0002 inch) Connecting Rod Bore Out-of-Round - Bearing End - Service .......................................................................................................... 0.006 mm (0.0002 inch) Connecting Rod Side Clearance ....................................................................................................................................... 0.11-0.51 mm (0.00433-0.02 inch) Connecting Rod Bolts - First Pass ............................................................................................................................................................. 20 Nm (15 ft. lbs.) Connecting Rod Bolts - Final Pass ........................................................................ ................................................................................................. 75 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Connecting Rod, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4272 Connecting Rod: Specifications Engine Mechanical Specifications (LQ9 VIN N) Connecting Rod Bore Diameter - Bearing End ......................................................................................................... 56.505-56.525 mm ( 2.224-2.225 inch) Connecting Rod Bore Out-of-Round - Bearing End - Production .................................................................................................. 0.006 mm (0.00023 inch) Connecting Rod Bore Out-of-Round - Bearing End - Service ................................................................................. 0.004-0.008 mm (0.00015-0.0003 inch) Connecting Rod Side Clearance ....................................................................................................................................... 0.11-0.51 mm (0.00433-0.02 inch) Connecting Rod Bolts - First Pass ............................................................................................................................................................. 20 Nm (15 ft. lbs.) Connecting Rod Bolts - Final Pass ........................................................................ ................................................................................................. 75 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Crankshaft Main Bearing > Component Information > Specifications > Engine Mechanical Specifications Crankshaft Main Bearing: Specifications Engine Mechanical Specifications Crankshaft Bearing Cap M8 Bolts ............................................................................................................................................................. 25 Nm (18 ft. lbs.) Crankshaft Bearing Cap M10 Bolts - First Pass in Sequence .................................................................................................................... 20 Nm (15 ft. lbs.) Crankshaft Bearing Cap M10 Bolts - Final Pass in Sequence ............................................................................................................................... 80 degrees Crankshaft Bearing Cap M10 Studs - First Pass in Sequence .................................................................................................................... 20 Nm (15 ft. lbs.) Crankshaft Bearing Cap M10 Studs - Final Pass in Sequence ................................................................................................................................. 51 degree Crankshaft Main Bearing Clearance - Production ........................................................................................................ 0.02-0.052 mm (0.0008-0.0021 inch) Crankshaft Main Bearing Clearance - Service ............................................................................................................. 0.02-0.065 mm (0.0008-0.0025 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Crankshaft Main Bearing > Component Information > Specifications > Engine Mechanical Specifications > Page 4277 Crankshaft Main Bearing: Specifications Engine Mechanical Specifications (LQ4 VIN U) Crankshaft Main Bearing Clearance - Production ........................................................................................................ 0.02-0.052 mm (0.0008-0.0021 inch) Crankshaft Main Bearing Clearance - Service ............................................................................................................. 0.02-0.065 mm (0.0008-0.0025 inch) Crankshaft Bearing Cap M8 Bolts ............................................................................................................................................................. 25 Nm (18 ft. lbs.) Crankshaft Bearing Cap M10 Bolts - First Pass in Sequence .................................................................................................................... 20 Nm (15 ft. lbs.) Crankshaft Bearing Cap M10 Bolts - Final Pass in Sequence ............................................................................................................................... 80 degrees Crankshaft Bearing Cap M10 Studs - First Pass in Sequence .................................................................................................................... 20 Nm (15 ft. lbs.) Crankshaft Bearing Cap M10 Studs - Final Pass in Sequence ............................................................................................................................... 51 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Crankshaft Main Bearing > Component Information > Specifications > Engine Mechanical Specifications > Page 4278 Crankshaft Main Bearing: Specifications Engine Mechanical Specifications (LQ9 VIN N) Crankshaft Main Bearing Clearance - Production ........................................................................................................ 0.02-0.052 mm (0.0008-0.0021 inch) Crankshaft Main Bearing Clearance - Service ............................................................................................................. 0.02-0.065 mm (0.0008-0.0025 inch) Crankshaft Bearing Cap M8 Bolts ............................................................................................................................................................. 25 Nm (18 ft. lbs.) Crankshaft Bearing Cap M10 Bolts - First Pass in Sequence .................................................................................................................... 20 Nm (15 ft. lbs.) Crankshaft Bearing Cap M10 Bolts - Final Pass in Sequence ............................................................................................................................... 80 degrees Crankshaft Bearing Cap M10 Studs - First Pass in Sequence .................................................................................................................... 20 Nm (15 ft. lbs.) Crankshaft Bearing Cap M10 Studs - Final Pass in Sequence ............................................................................................................................... 51 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Crankshaft, Engine > Component Information > Specifications > Engine Mechanical Specifications Crankshaft: Specifications Engine Mechanical Specifications Connecting Rod Journal Diameter - Production ..................................................................................................... 53.318-53.338 mm (2.0991-2.0999 inch) Connecting Rod Journal Diameter - Service .................................................................................................................................. 53.308 mm (2.0987 inch) Connecting Rod Journal Out-of-Round - Production ....................................................................................................................... 0.005 mm ( 0.0002 inch) Connecting Rod Journal Out-of-Round - Service ............................................................................................................................... 0.01 mm (0.0004 inch) Connecting Rod Journal Taper - Maximum for 1/2 of Journal Length - Production ........................................................................ 0.005 mm (0.0002 inch) Connecting Rod Journal Taper - Maximum for 1/2 of Journal Length - Service .............................................................................. 0.02 mm (0.00078 inch) Crankshaft End Play ......................................................................................................................................................... 0.04-0.2 mm (0.0015-0.0078 inch) Crankshaft Main Journal Diameter - Production ........................................................................................................ 64.992-65.008 mm (2.558-2.559 inch) Crankshaft Main Journal Diameter - Service .................................................................................................................................... 64.992 mm (2.558 inch) Crankshaft Main Journal Out-of-Round - Production ................................................................................................................... 0.003 mm (0.000118 inch) Crankshaft Main Journal Out-of-Round - Service ............................................................................................................................ 0.008 mm (0.0003 inch) Crankshaft Main Journal Taper - Production ...................................................................................................................................... 0.01 mm (0.0004 inch) Crankshaft Main Journal Taper - Service ......................................................................................................................................... 0.02 mm (0.00078 inch) Crankshaft Rear Flange Runout ............................................................................................................................................................ 0.05 mm (0.002 inch) Crankshaft Reluctor Ring Runout - Measured 1.0 mm (0.04 inch) Below Tooth Diameter ................................................................... 0.7 mm (0.028 inch) Crankshaft Thrust Surface - Production ....................................................................................................................... 26.14-26.22 mm (1.029-1.0315 inch) Crankshaft Thrust Surface - Service ................................................................................................................................................. 26.22 mm (1.0315 inch) Crankshaft Thrust Surface Runout ...................................................................................................................................................... 0.025 mm (0.001 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Crankshaft, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4283 Crankshaft: Specifications Engine Mechanical Specifications (LQ4 VIN U) Connecting Rod Journal Diameter - Production ..................................................................................................... 53.318-53.338 mm (2.0991-2.0999 inch) Connecting Rod Journal Diameter - Service ................................................................................................................................... 53.308 mm (2.0987 inch) Connecting Rod Journal Out-of-Round - Production ....................................................................................................................... 0.005 mm ( 0.0002 inch) Connecting Rod Journal Out-of-Round - Service ............................................................................................................................... 0.01 mm (0.0004 inch) Connecting Rod Journal Taper - Maximum for 1/2 of Journal Length - Production ........................................................................ 0.005 mm (0.0002 inch) Connecting Rod Journal Taper - Maximum for 1/2 of Journal Length - Service .............................................................................. 0.02 mm (0.00078 inch) Crankshaft End Play ......................................................................................................................................................... 0.04-0.2 mm (0.0015-0.0078 inch) Crankshaft Main Journal Diameter - Production ........................................................................................................ 64.992-65.008 mm (2.558-2.559 inch) Crankshaft Main Journal Diameter - Service .................................................................................................................................... 64.992 mm (2.558 inch) Crankshaft Main Journal Out-of-Round - Production ................................................................................................................... 0.003 mm (0.000118 inch) Crankshaft Main Journal Out-of-Round - Service ............................................................................................................................ 0.008 mm (0.0003 inch) Crankshaft Main Journal Taper - Production ..................................................................................................................................... 0.01 mm (0.0004 inch) Crankshaft Main Journal Taper - Service ......................................................................................................................................... 0.02 mm (0.00078 inch) Crankshaft Rear Flange Runout ............................................................................................................................................................ 0.05 mm (0.002 inch) Crankshaft Reluctor Ring Runout - Measured 1.0 mm ((0.04 inch) Below Tooth Diameter .................................................................. 0.7 mm (0.028 inch) Crankshaft Thrust Surface - Production ....................................................................................................................... 26.14-26.22 mm (1.029-1.0315 inch) Crankshaft Thrust Surface - Service ................................................................................................................................................. 26.22 mm (1.0315 inch) Crankshaft Thrust Surface Runout ...................................................................................................................................................... 0.025 mm (0.001 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Crankshaft, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4284 Crankshaft: Specifications Engine Mechanical Specifications (LQ9 VIN N) Connecting Rod Journal Diameter - Production ..................................................................................................... 53.318-53.338 mm (2.0991-2.0999 inch) Connecting Rod Journal Diameter - Service ................................................................................................................................... 53.308 mm (2.0987 inch) Connecting Rod Journal Out-of-Round - Production ....................................................................................................................... 0.005 mm ( 0.0002 inch) Connecting Rod Journal Out-of-Round - Service ............................................................................................................................... 0.01 mm (0.0004 inch) Connecting Rod Journal Taper - Maximum for 1/2 of Journal Length - Production ........................................................................ 0.005 mm (0.0002 inch) Connecting Rod Journal Taper - Maximum for 1/2 of Journal Length - Service .............................................................................. 0.02 mm (0.00078 inch) Crankshaft End Play ......................................................................................................................................................... 0.04-0.2 mm (0.0015-0.0078 inch) Crankshaft Main Journal Diameter - Production ........................................................................................................ 64.992-65.008 mm (2.558-2.559 inch) Crankshaft Main Journal Diameter - Service .................................................................................................................................... 64.992 mm (2.558 inch) Crankshaft Main Journal Out-of-Round - Production ................................................................................................................... 0.003 mm (0.000118 inch) Crankshaft Main Journal Out-of-Round - Service ............................................................................................................................ 0.008 mm (0.0003 inch) Crankshaft Main Journal Taper - Production ...................................................................................................................................... 0.01 mm (0.0004 inch) Crankshaft Main Journal Taper - Service ......................................................................................................................................... 0.02 mm (0.00078 inch) Crankshaft Rear Flange Runout ............................................................................................................................................................ 0.05 mm (0.002 inch) Crankshaft Reluctor Ring Runout - Measured 1.0 mm ((0.04 inch) Below Tooth Diameter .................................................................. 0.7 mm (0.028 inch) Crankshaft Thrust Surface - Production ....................................................................................................................... 26.14-26.22 mm (1.029-1.0315 inch) Crankshaft Thrust Surface - Service ................................................................................................................................................. 26.22 mm (1.0315 inch) Crankshaft Thrust Surface Runout ...................................................................................................................................................... 0.025 mm (0.001 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > Customer Interest for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Engine Block Heater: Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > Customer Interest for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4293 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > Customer Interest for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4294 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > Customer Interest for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4295 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > Customer Interest for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4296 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Engine Block Heater: All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4302 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4303 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4304 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Block Heater: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 4305 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Service and Repair > Coolant Heater Replacement (4.8L, 5.3L (Except RPO L33), 6.0L) Engine Block Heater: Service and Repair Coolant Heater Replacement (4.8L, 5.3L (Except RPO L33), 6.0L) Coolant Heater Replacement (4.8L, 5.3L (except RPO L33), 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Disconnect the coolant heater electrical connector (2). 4. Important: Do not score the surface of the engine block hole when removing the coolant heater. Remove the coolant heater from the engine block. 5. Remove any burrs, sealer, paint or other rough spots. Installation Procedure 1. If re-using the old coolant heater, apply thread sealant GM P/N 12346004 (Canadian P/N 10953480), or equivalent to the threads. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the coolant heater to the engine block. Tighten the coolant heater to 50 Nm (37 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Service and Repair > Coolant Heater Replacement (4.8L, 5.3L (Except RPO L33), 6.0L) > Page 4308 3. Notice: The heater cord must not touch the engine, hot pipes, manifold, or any moving parts. Route the cord to the left front of the engine compartment securing with tie straps as necessary to prevent damage. Connect the coolant heater electrical connector (2). 4. Lower the vehicle. 5. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Service and Repair > Coolant Heater Replacement (4.8L, 5.3L (Except RPO L33), 6.0L) > Page 4309 Engine Block Heater: Service and Repair Coolant Heater Cord Replacement (4.8L, 5.3L (Except RPO L33), 6.0L) Coolant Heater Cord Replacement (4.8L, 5.3L (except RPO L33), 6.0L) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Disconnect the coolant heater electrical connector (2). 3. Remove the coolant heater cord retainer and bolts. 4. Remove the coolant heater cord. Installation Procedure Notice: The heater cord must not touch the engine, hot pipes, manifold, or any moving parts. Route the cord to the left front of the engine compartment securing with tie straps as necessary to prevent damage. 1. Install the coolant heater cord. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the coolant heater cord bolts and retainer. Tighten the bolts to 8 Nm (71 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Block Heater > Component Information > Service and Repair > Coolant Heater Replacement (4.8L, 5.3L (Except RPO L33), 6.0L) > Page 4310 3. Connect the coolant heater electrical connector (2). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Valley Cover > Component Information > Service and Repair Engine Valley Cover: Service and Repair Engine Valley Cover Replacement Removal Procedure 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. 5. Remove the engine valley cover bolts. 6. Remove the engine valley cover and gasket. 7. Discard the old gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Valley Cover > Component Information > Service and Repair > Page 4314 8. Remove the knock sensor oil seals (1) from the cover (2). 9. If required, clean and inspect the engine valley cover. Refer to Engine Valley Cover Cleaning and Inspection. Installation Procedure Important: All gasket surfaces should be free of oil or other foreign material during assembly. 1. Lubricate the NEW knock sensor seals (1) with clean engine oil. 2. Install the knock sensor oil seals (1) into the engine valley cover (2). 3. Install the engine valley cover with a NEW gasket onto the engine block. Notice: Refer to Fastener Notice in Service Precautions. 4. Install the engine valley cover bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 5. Install the knock sensors. Tighten the sensors to 20 Nm (15 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Engine Valley Cover > Component Information > Service and Repair > Page 4315 6. Connect the knock sensor electrical connectors. 7. Push down on the rubber covers. 8. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Harmonic Balancer Crankshaft Pulley > Component Information > Specifications > Engine Mechanical Specifications Harmonic Balancer - Crankshaft Pulley: Specifications Engine Mechanical Specifications Crankshaft Balancer Bolt - Final Pass ................................................................................................. ................................................................. 140 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Harmonic Balancer Crankshaft Pulley > Component Information > Specifications > Engine Mechanical Specifications > Page 4320 Harmonic Balancer - Crankshaft Pulley: Specifications Engine Mechanical Specifications (LQ4 VIN U) Crankshaft Balancer Bolt - Final Pass ................................................................................................. ................................................................. 140 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Harmonic Balancer Crankshaft Pulley > Component Information > Specifications > Engine Mechanical Specifications > Page 4321 Harmonic Balancer - Crankshaft Pulley: Specifications Engine Mechanical Specifications (LQ9 VIN N) Crankshaft Balancer Bolt - Final Pass ................................................................................................. ................................................................. 140 degrees Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Harmonic Balancer Crankshaft Pulley > Component Information > Specifications > Page 4322 Harmonic Balancer - Crankshaft Pulley: Service and Repair Crankshaft Balancer Replacement (4.8L, 5.3L, and 6.0L Engines) Tools Required ^ J 41478 Crankshaft Front Oil Seal Installer ^ J 41665 Crankshaft Balancer and Sprocket Installer ^ J 41816 Crankshaft Balancer Remover ^ J 41816-2 Crankshaft End Protector ^ J 42386-A Flywheel Holding Tool ^ J 45059 Angle Meter Removal Procedure 1. Remove the air conditioning (A/C) drive belt. 2. Remove the fan shroud - lower. 3. Remove the starter motor. Notice: Refer to Fastener Notice in Service Precautions. 4. Important: ^ Make sure that the teeth of the J 42386-A mesh with the teeth of the engine flywheel. ^ The crankshaft balancer is balanced as an individual component. It is not necessary to mark the balancer prior to removal. Install the J 42386-A and bolts. Use one M10-1.5 x 120 mm and one M10-1.5 x 45 mm bolt for proper tool operation. Tighten the J 42386-A bolts to 50 Nm (37 ft. lbs.). 5. Remove the crankshaft balancer bolt. Do not discard the crankshaft balancer bolt. The balancer bolt will be used during the balancer installation procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Harmonic Balancer Crankshaft Pulley > Component Information > Specifications > Page 4323 6. Use the J 41816 and J 41816-2 in order to remove the crankshaft balancer. 7. Remove the J 41816 and the J 41816-2 from the crankshaft balancer. 8. Clean and inspect the crankshaft balancer. Refer to Crankshaft Balancer Cleaning and Inspection. Installation Procedure Important: ^ Make sure that the teeth of J 42386-A mesh with the teeth of the engine flywheel. ^ The used crankshaft balancer bolt will be used only during the first pass of the balancer installation procedure. Install a NEW bolt and tighten as described in the second, third and forth passes of the balancer bolt tightening procedure. ^ The crankshaft balancer installation and bolt tightening involves a 4 stage tightening process. The first pass ensures that the balancer is installed completely onto the crankshaft. The second, third, and forth passes tighten the new bolt to the proper torque. Important: The balancer should be positioned onto the end of the crankshaft as straight as possible prior to tool installation. 1. Install the crankshaft balancer onto the end of the crankshaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Harmonic Balancer Crankshaft Pulley > Component Information > Specifications > Page 4324 2. Use the J 41665 and the J 41478 in order to install the crankshaft balancer. 1. Assemble the J 41478 threaded rod, nut, washer and the J 41665 installer. Insert the smaller end of the installer into the front of the balancer. 2. Use a wrench and hold the hex end of the threaded rod. 3. Use a second wrench and rotate the installation tool nut clockwise until the balancer is started onto the crankshaft. 4. Remove the tool and reverse the installation tool. Position the larger end of the installer against the front of the balancer. 5. Use a wrench and hold the hex end of the threaded rod. 6. Use a second wrench and rotate the installation tool nut clockwise until the balancer is installed onto the crankshaft. 7. Remove the balancer installation tool. 3. Install the used crankshaft balancer bolt. Tighten the USED crankshaft balancer bolt to 330 Nm (240 ft. lbs.). 4. Remove the used crankshaft balancer bolt. Important: The nose of the crankshaft should be recessed 2.4 - 4.48 mm (0.094 - 0.176 inch) into the balancer bore. 5. Measure for a correctly installed balancer. If the balancer is not installed to the proper dimensions, install the J 41665 and repeat the installation procedure. 6. Install a NEW crankshaft balancer bolt. 1. Tighten the bolt a first pass to 50 Nm (37 ft. lbs.). 2. Tighten the bolt a second pass to 140 degrees using J 45059. 7. Remove the J 42386-A and bolts. 8. Install the starter motor. 9. Install the fan shroud - lower. 10. Install the A/C drive belt. 11. Perform the crankshaft position (CKP) system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Powertrain Management/Computers and Control Systems/Crankshaft Position Sensor/Service and Repair Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston, Engine > Component Information > Specifications > Engine Mechanical Specifications Piston: Specifications Engine Mechanical Specifications Piston - Piston Diameter - Measured Over Skirt Coating ............................................................................................. 96.002-96.036 mm (3.779-3.78 inch) Piston - Piston to Bore Clearance - Production ........................................................................................... -0.036 to +0.016 mm (-0.0014 to +0.0006 inch) Piston - Piston to Bore Clearance - Service Limit with Skirt Coating Worn Off .............................................................................. 0.071 mm (0.0028 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4329 Piston: Specifications Engine Mechanical Specifications (LQ4 VIN U) Piston - Piston Diameter - Measured Over Skirt Coating ................................................................................... 101.606-101.640 mm (4.0002-4.0016 inch) Piston - Piston to Bore Clearance - Production .................................................. -0.022 to +0.03 mm - interference -0.0009 to +0.0012 inch) - interference Piston - Piston to Bore Clearance - Service Limit with Skirt Coating Worn Off ................................................................................ 0.07 mm (0.0028 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4330 Piston: Specifications Engine Mechanical Specifications (LQ9 VIN N) Piston - Piston Diameter - Measured Over Coating - at Size Point ............................................................................ 101.611-101.642 mm (4.0-4.001 inch) Piston Piston to Bore Clearance - Production ........................................................................................... -0.022 to +0.030 mm (-0.0009 to +0.0012 inch) Piston - Piston to Bore Clearance - With Skirt Coating Worn Off - Service .............................................................. 0.024-0.08 mm (0.00094-0.0031 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston Pin, Engine > Component Information > Specifications > Engine Mechanical Specifications Piston Pin: Specifications Engine Mechanical Specifications Pin - Piston Pin Clearance to Piston Pin Bore - Production ....................................................................................... 0.002-0.01 mm (0.00008-0.0004 inch) Pin Piston Pin Clearance to Piston Pin Bore - Service ........................................................................................... 0.002-0.015 mm (0.00008-0.0006 inch) Pin - Piston Pin Diameter ........................................................................................................................................... 23.952-23.955 mm (0.943-0.943 inch) Pin - Piston Pin Fit inch) Connecting Rod Bore - Production .................................................................................. 0.007-0.02 mm (0.00027-0.00078 inch) Pin Piston Pin Fit inch) Connecting Rod Bore - Service ..................................................................................... 0.007-0.022 mm (0.00027-0.00086 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston Pin, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4335 Piston Pin: Specifications Engine Mechanical Specifications (LQ4 VIN U) Pin - Piston Pin Clearance to Piston Pin Bore - Production ....................................................................................... 0.002-0.01 mm (0.00008-0.0004 inch) Pin Piston Pin Clearance to Piston Pin Bore - Service ........................................................................................... 0.002-0.015 mm (0.00008-0.0006 inch) Pin - Piston Pin Diameter ........................................................................................................................................... 23.952-23.955 mm (0.943-0.943 inch) Pin - Piston Pin Fit inch) Connecting Rod Bore - Production .................................................................................. 0.007-0.02 mm (0.00027-0.00078 inch) Pin Piston Pin Fit inch) Connecting Rod Bore - Service ..................................................................................... 0.007-0.022 mm (0.00027-0.00086 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston Pin, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4336 Piston Pin: Specifications Engine Mechanical Specifications (LQ9 VIN N) Pin - Piston Pin Clearance to Piston Pin Bore - Production ....................................................................................... 0.002-0.01 mm (0.00008-0.0004 inch) Pin Piston Pin Clearance to Piston Pin Bore - Service ........................................................................................... 0.002-0.015 mm (0.00008-0.0006 inch) Pin - Piston Pin Diameter ........................................................................................................................................... 23.952-23.955 mm (0.943-0.943 inch) Pin - Piston Pin Fit inch) Connecting Rod Bore - Production .................................................................................. 0.007-0.02 mm (0.00027-0.00078 inch) Pin Piston Pin Fit inch) Connecting Rod Bore - Service ..................................................................................... 0.007-0.022 mm (0.00027-0.00086 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston Ring, Engine > Component Information > Specifications > Engine Mechanical Specifications Piston Ring: Specifications Engine Mechanical Specifications Piston Ring End Gap - First Compression Ring - Measured inch) Cylinder Bore - Production ......................................... 0.23-0.44 mm (0.009-0.017 inch) Piston Ring End Gap - First Compression Ring - Measured inch) Cylinder Bore - Service .............................................. 0.23-0.5 mm (0.009-0.0196 inch) Piston Ring End Gap - Second Compression Ring - Measured inch) Cylinder Bore - Production ...................................... 0.44-0.7 mm (0.017-0.027 inch) Piston Ring End Gap - Second Compression Ring - Measured inch) Cylinder Bore - Service .......................................... 0.44-0.76 mm (0.0173-0.03 inch) Piston Ring End Gap - Oil Control Ring - Measured inch) Cylinder Bore - Production .................................................... 0.18-0.75 mm (0.007-0.029 inch) Piston Ring End Gap - Oil Control Ring - Measured inch) Cylinder Bore Service ......................................................... 0.18-0.81 mm (0.007-0.032 inch) Piston Ring to Groove Clearance - First Compression Ring - Production ............................................................... 0.04-0.085 mm (0.00157-0.00335 inch) Piston Ring to Groove Clearance - First Compression Ring - Service ..................................................................... 0.04-0.085 mm (0.00157-0.00335 inch) Piston Ring to Groove Clearance - Second Compression Ring - Production ............................................................. 0.04-0.078 mm (0.00157-0.0031 inch) Piston Ring to Groove Clearance - Second Compression Ring - Service ................................................................... 0.04-0.078 mm (0.00157-0.0031 inch) Piston Ring to Groove Clearance - Oil Control Ring - Production ................................................................................ 0.012-0.2 mm (0.0005-0.0078 inch) Piston Ring to Groove Clearance - Oil Control Ring - Service ...................................................................................... 0.012-0.2 mm (0.0005-0.0078 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston Ring, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4341 Piston Ring: Specifications Engine Mechanical Specifications (LQ4 VIN U) Piston Ring End Gap - First Compression Ring - Measured inch) Cylinder Bore - Production ........................................... 0.31-0.52 mm (0.012-0.02 inch) Piston Ring End Gap - First Compression Ring - Measured inch) Cylinder Bore - Service ............................................ 0.31-0.59 mm (0.0122-0.023 inch) Piston Ring End Gap - Second Compression Ring - Measured inch) Cylinder Bore - Production ........................................ 0.51-0.77 mm (0.02-0.03 inch) Piston Ring End Gap - Second Compression Ring - Measured inch) Cylinder Bore - Service ............................................ 0.51-0.84 mm (0.02-0.033 inch) Piston Ring End Gap - Oil Control Ring - Measured inch) Cylinder Bore - Production .................................................. 0.31-0.87 mm (0.0122-0.034 inch) Piston Ring End Gap - Oil Control Ring - Measured inch) Cylinder Bore Service ....................................................... 0.31-0.94 mm (0.0122-0.037 inch) Piston Ring to Groove Clearance - First Compression Ring - Production ................................................................... 0.04-0.08 mm (0.00157-0.0031 inch) Piston Ring to Groove Clearance - First Compression Ring - Service ......................................................................... 0.04-0.08 mm (0.00157-0.0031 inch) Piston Ring to Groove Clearance - Second Compression Ring - Production ............................................................. 0.039-0.079 mm (0.0015-0.0031 inch) Piston Ring to Groove Clearance - Second Compression Ring - Service ................................................................... 0.039-0.079 mm (0.0015-0.0031 inch) Piston Ring to Groove Clearance - Oil Control Ring - Production ............................................................................ 0.015-0.199 mm (0.0006-0.0078 inch) Piston Ring to Groove Clearance - Oil Control Ring - Service .................................................................................. 0.015-0.199 mm (0.0006-0.0078 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Piston Ring, Engine > Component Information > Specifications > Engine Mechanical Specifications > Page 4342 Piston Ring: Specifications Engine Mechanical Specifications (LQ9 VIN N) Piston Ring End Gap - First Compression Ring - Measured inch) Cylinder Bore - Production ........................................... 0.31-0.52 mm (0.012-0.02 inch) Piston Ring End Gap - First Compression Ring - Measured inch) Cylinder Bore - Service ............................................ 0.31-0.59 mm (0.0122-0.023 inch) Piston Ring End Gap - Second Compression Ring - Measured inch) Cylinder Bore - Production ........................................ 0.51-0.77 mm (0.02-0.03 inch) Piston Ring End Gap - Second Compression Ring - Measured inch) Cylinder Bore - Service ............................................ 0.51-0.84 mm (0.02-0.033 inch) Piston Ring End Gap - Oil Control Ring - Measured inch) Cylinder Bore - Production .................................................. 0.31-0.87 mm (0.0122-0.034 inch) Piston Ring End Gap - Oil Control Ring - Measured inch) Cylinder Bore Service ....................................................... 0.31-0.94 mm (0.0122-0.037 inch) Piston Ring to Groove Clearance - First Compression Ring - Production ................................................................... 0.035-0.08 mm (0.0014-0.0031 inch) Piston Ring to Groove Clearance - First Compression Ring - Service ......................................................................... 0.035-0.08 mm (0.0014-0.0031 inch) Piston Ring to Groove Clearance - Second Compression Ring - Production ............................................................... 0.034-0.079 mm (0.0013-0.003 inch) Piston Ring to Groove Clearance - Second Compression Ring - Service ..................................................................... 0.034-0.079 mm (0.0013-0.003 inch) Piston Ring to Groove Clearance - Oil Control Ring - Production ............................................................................ 0.012-0.2 mm (0.00047-0.00078 inch) Piston Ring to Groove Clearance - Oil Control Ring - Service .................................................................................. 0.012-0.2 mm (0.00047-0.00078 inch) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Rear Engine Plate > Component Information > Service and Repair Rear Engine Plate: Service and Repair Engine Rear Cover Replacement Tools Required ^ J 41476 Front and Rear Cover Alignment Tool Removal Procedure 1. Remove the engine flywheel. 2. Remove the oil pan-to-rear cover bolts (1). 3. Remove the rear cover bolts. 4. Remove the rear cover and gasket. 5. Discard the rear cover gasket. 6. If required, clean and inspect the rear cover. Refer to Crankshaft Rear Oil Seal Housing Cleaning and Inspection. Installation Procedure Important: ^ Do not reuse the crankshaft oil seal or rear cover gasket. ^ Do not apply any type of sealant to the rear cover gasket, unless specified. ^ The special tool in this procedure is used to properly center the crankshaft rear oil seal. ^ The crankshaft rear oil seal will be installed after the rear cover has been installed and aligned. Install the rear cover without the crankshaft oil seal. ^ All gasket surfaces should be free of oil or other foreign material during assembly. ^ The crankshaft rear oil seal MUST be centered in relation to the crankshaft. ^ An improperly aligned rear cover may cause premature rear oil seal wear and/or engine assembly oil leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Rear Engine Plate > Component Information > Service and Repair > Page 4346 1. Apply a 5 mm (0.2 inch) bead of sealant 20 mm (0.8 inch) long to the oil pan to engine block junction. Refer to Sealers, Adhesives, and Lubricants. 2. Install the rear cover gasket and cover. 3. Install the rear cover bolts until snug. Do not overtighten. 4. Install the oil pan-to-rear cover bolts (1) until snug. Do not overtighten. 5. Rotate the crankshaft until 2 opposing flywheel bolt holes are parallel to the oil pan surface. Important: The tapered legs of the alignment tool must enter the rear cover oil seal bore. 6. Install the J 41476 and bolts onto the rear of the crankshaft. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Block Assembly > Rear Engine Plate > Component Information > Service and Repair > Page 4347 7. Notice: Refer to Fastener Notice in Service Precautions. Tighten the J 41476 mounting bolts until snug. Do not overtighten. 1. Tighten the oil pan-to-rear cover bolts to 12 Nm (106 inch lbs.). 2. Tighten the engine rear cover bolts to 30 Nm (22 ft. lbs.). 8. Remove the J 41476. 9. Install a NEW crankshaft rear oil seal. 10. Install the engine flywheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4353 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4354 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4355 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4356 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Rocker Arm Assembly > Component Information > Service and Repair Rocker Arm Assembly: Service and Repair Valve Rocker Arm and Push Rod Replacement Removal Procedure 1. Remove the rocker arm cover. Important: Place the rocker arms, pushrods, and pivot support, in a rack so that they can be installed in the same location from which they were removed. 2. Remove the rocker arm bolts. 3. Remove the rocker arms. 4. Remove the rocker arm pivot support. 5. Remove the pushrods. 6. If required, clean and inspect the rocker arms and pushrods. Refer to Valve Rocker Arm and Push Rods Cleaning and Inspection. Installation Procedure Important: When reusing the valve train components, always install the components to the original location and position. Valve lash is net build, no valve adjustment is required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Rocker Arm Assembly > Component Information > Service and Repair > Page 4360 1. Lubricate the rocker arms and pushrods with clean engine oil. 2. Lubricate the flange of the rocker arm bolts with clean engine oil. Lubricate the flange or washer surface of the bolt that will contact the rocker arm. 3. Install the rocker arm pivot support. 4. Important: Make sure that the pushrods seat properly to the valve lifter sockets. Install the pushrods. 5. Important: Make sure that the pushrods seat properly to the ends of the rocker arms. DO NOT tighten the rocker arm bolts at this time. Install the rocker arms and bolts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Rocker Arm Assembly > Component Information > Service and Repair > Page 4361 6. Rotate the crankshaft until the number one piston is at top dead center (TDC) of the compression stroke. In this position, cylinder number one rocker arms will be off lobe lift, and the crankshaft sprocket key will be at the 1:30 position. The engine firing order is 1, 8, 7, 2, 6, 5, 4, 3.Cylinders 1, 3, 5 and 7 are the left bank. Cylinder 2, 4, 6 and 8 are the right bank. Notice: Refer to Fastener Notice in Service Precautions. 7. With the engine in the number one firing position, tighten the following rocker arm bolts: ^ Tighten cylinders 1, 2, 7 and 8 exhaust valve rocker arm bolts to 30 Nm (22 ft. lbs.). ^ Tighten cylinders 1, 3, 4 and 5 intake valve rocker arm bolts to 30 Nm (22 ft. lbs.). 8. Rotate the crankshaft 360°. 9. Tighten the following rocker arm bolts: ^ Tighten cylinders 3, 4, 5 and 6 exhaust valve rocker arm bolts to 30 Nm (22 ft. lbs.). ^ Tighten cylinders 2, 6, 7 and 8 intake valve rocker arm bolts to 30 Nm (22 ft. lbs.). 10. Install the rocker arm cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side Valve Cover: Service and Repair Valve Rocker Arm Cover Replacement - Left Side Valve Rocker Arm Cover Replacement - Left Side Removal Procedure 1. Remove the engine sight shield, if required. 2. Remove the connector position assurance (CPA) lock. 3. Disconnect the main electrical connector (2) to the ignition coil wire harness. 4. Remove the harness clips (1). 5. Reposition the engine harness, if necessary. 6. Remove the spark plug wires from the ignition coils. ^ Twist each plug wire 1/2 turn. ^ Pull only on the boot in order to remove the wire from the ignition coil. 7. Remove the ignition coil bracket studs. 8. Remove the ignition coil bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4366 9. Remove the positive crankcase ventilation (PCV) hose. 10. Loosen the valve rocker arm cover bolts. 11. Remove the valve rocker arm cover. 12. Remove and discard the old gasket (1). 13. If required, clean and inspect the rocker arm cover. Refer to Valve Rocker Arm Cover Cleaning and Inspection. Installation Procedure Important: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4367 ^ All gasket surfaces should be free of oil an/or other foreign material during assembly. ^ DO NOT reuse the valve rocker arm cover gasket. ^ If the PCV valve grommet has been removed from the rocker cover, install a NEW grommet during assembly. 1. Install a NEW rocker cover gasket (1). 2. Install the valve rocker arm cover. Notice: Refer to Fastener Notice in Service Precautions. 3. Tighten the rocker arm cover bolts. Tighten the bolts to 12 Nm (106 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4368 4. Install the PCV hose. 5. Apply threadlocker to the threads of the bracket bolts. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 6. Install the ignition coil bracket. 7. Install the ignition coil bracket studs. Tighten the studs to 12 Nm (106 inch lbs.). 8. Install the spark plug wires to the ignition coils. 9. Position the engine harness, if necessary. 10. Install the harness clips (1). 11. Connect the main electrical connector (2) to the ignition coil wire harness. 12. Install the CPA lock. 13. Install the engine sight shield, if required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4369 Valve Cover: Service and Repair Valve Rocker Arm Cover Replacement - Right Side Valve Rocker Arm Cover Replacement - Right Side Removal Procedure 1. Remove the engine sight shield, if required. 2. Remove the connector position assurance (CPA) lock (5). 3. Disconnect the main electrical connector (4) to the ignition coil wire harness. 4. Remove the harness clips (1). 5. Reposition the engine harness, if necessary. 6. Remove the spark plug wires from the ignition coils. ^ Twist each plug wire 1/2 turn. ^ Pull only on the boot in order to remove the wire from the ignition coil. 7. Reposition the surge tank/heater hoses from the heater hose bracket. 8. Remove the heater hose bracket nut and bracket. 9. Remove the ignition coil bracket studs. 10. Remove the ignition coil bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4370 11. Remove the positive crankcase ventilation (PCV) hose. 12. Loosen the valve rocker arm cover bolts. 13. Remove the valve rocker arm cover. 14. Remove and discard the old gasket (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4371 15. Remove the oil fill tube from the rocker cover, if required. 16. If required, clean and inspect the rocker arm cover. Refer to Valve Rocker Arm Cover Cleaning and Inspection. Installation Procedure Important: ^ All gasket surfaces should be free of oil or other foreign material during assembly. ^ DO NOT reuse the valve rocker arm cover gasket. ^ If the oil fill tube has been removed from the rocker arm cover, install a NEW fill tube during assembly. 1. Lubricate the O-ring seal of the NEW oil fill tube with clean engine oil. 2. Insert the NEW oil fill tube into the rocker arm cover. Rotate the tube clockwise until locked in the proper position. 3. Install the oil fill cap into the tube . 4. Install a NEW rocker cover gasket (1) into the valve rocker arm cover lip. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4372 5. Install the valve rocker arm cover. Notice: Refer to Fastener Notice in Service Precautions. 6. Tighten the rocker arm cover bolts. Tighten the bolts to 12 Nm (106 inch lbs.). 7. Install the PCV hose. 8. Apply threadlocker to the threads of the bracket bolts. Refer to Sealers, Adhesives, and Lubricants. 9. Install the ignition coil bracket. 10. Install the ignition coil bracket studs. Tighten the studs to 12 Nm (106 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Cover > Component Information > Service and Repair > Valve Rocker Arm Cover Replacement - Left Side > Page 4373 11. Install the heater hose bracket and nut. Tighten the nut to 9 Nm (80 inch lbs.). 12. Position the surge tank/heater hoses to the heater hose bracket. 13. Install the spark plug wires to the ignition coils. 14. Position the engine harness, if necessary. 15. Install the harness clips (1). 16. Connect the main electrical connector (4) feeding the ignition coils. 17. Install the CPA lock (5). 18. Install the engine sight shield, if required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Spring > Component Information > Service Precautions Valve Spring: Service Precautions Valve Springs Can Be Tightly Compressed Caution Caution: Valve springs can be tightly compressed. Use care when removing retainers and plugs. Personal injury could result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Spring > Component Information > Service Precautions > Page 4377 Valve Spring: Service and Repair Valve Stem Oil Seal and Valve Spring Replacement Tools Required ^ J 22794 Spark Plug Port Adapter ^ J 38606 Valve Spring Compressor Removal Procedure 1. Remove the rocker arm. 2. Disconnect the spark plug wire at the spark plug. ^ Twist each plug wire boot 1/2 turn. ^ Pull only on the boot in order to remove the wire from the spark plug. 3. Important: Remove the spark plugs from the cylinder head with the engine at room temperature. Loosen the spark plug 1 or 2 turns. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Spring > Component Information > Service Precautions > Page 4378 4. Brush or air blast away any dirt or debris from around the spark plug. 5. Remove the spark plug. 6. Install the J 22794 into the spark plug hole. 7. Attach an air hose to the J 22794. 8. Apply compressed air to the J 22794 in order to hold the valves in place. 9. Use the J 38606 in order to compress the valve spring. 10. Remove the valve stem keys (2). 11. Carefully release the valve spring tension. 12. Remove the J 38606. 13. Remove the valve spring cap (3). 14. Remove the valve spring (4). 15. Remove the valve stem oil seal and shim (1, 5). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Spring > Component Information > Service Precautions > Page 4379 1. Clean the cylinder head valve spring seat and/or shim area. 2. Lubricate the valve guide and valve stem oil seal with clean engine oil. 3. Install the valve stem oil seal and shim (1, 5). 4. Install the valve spring (4). 5. Install the valve spring cap (3). 6. Compress the valve spring using the J 38606. 7. Install the valve keys. ^ Use grease in order to hold the valve keys in place. ^ Make sure the keys seat properly in the groove of the valve stem. ^ Carefully release the valve spring pressure, making sure the valve keys stay in place. ^ Remove the J 38606. ^ Tap the end of the valve stem with a plastic faced hammer to seat the keys, if necessary. 8. Remove the J 22794 from the spark plug port. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve Spring > Component Information > Service Precautions > Page 4380 9. Notice: Refer to Fastener Notice in Service Precautions. Hand start the spark plug. Tighten the spark plug to 15 Nm (11 ft. lbs.). 10. Install the spark plug wires at the ignition coil. 11. Install the spark plug wire to the spark plug. 12. Inspect the wires for proper installation: ^ Push sideways on each boot in order to check for proper installation. ^ Reinstall any loose boot. 13. Install the rocker arm. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > Customer Interest: > 09-06-01-006 > May > 09 > Engine Controls - Misfire, Hard Start, Multiple DTCs Valve: Customer Interest Engine Controls - Misfire, Hard Start, Multiple DTCs TECHNICAL Bulletin No.: 09-06-01-006 Date: May 07, 2009 Subject: Check Engine Light On, Engine Misfire, Hard Start, Rough Idle, Hesitation, Loss of Power, Poor Performance, Noise, DTCs P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308 Set (Replace Engine) Models: 2007 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Avalanche, Silverado, Tahoe 2007 GMC Sierra, Sierra Denali, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Equipped with 6.0L or 6.2L V8 Engine RPOs L76, L92, LY6 Please Refer to GMVIS Condition Some customers may comment on any of the following engine concerns: - Check engine light on - Misfire - Hard start - Rough Idle - Hesitation - Loss of power - Poor performance - Noise Upon further investigation, technicians may find DTC P0300 (Engine Misfire Detected) set. DTCs P0301-P0308 corresponds to cylinders 1-8. If the ECM is able to determine that a specific cylinder is misfiring, the DTC for that cylinder will also set. Cause The above conditions may be caused by a broken intake valve stem at the key groove (keeper). A small number of intake valves may have been exposed to an overtemp condition during the heat treat process. Correction Remove the valve rocker arm cover from the suspect cylinder head and inspect the intake valves. If a broken intake valve stem is found, replace the engine. DO NOT repair the engine. A thorough diagnosis must be performed on the condition in order to prevent unnecessary engine replacement. Contact the Product Quality Center (PQC) to verify the proper diagnosis has been performed. Please reference this bulletin number when calling. Upon review of the diagnosis, the PQC will authorize an SPO Goodwrench replacement engine. Caution When replacing an engine due to internal damage, extreme care should be taken when transferring the intake manifold to the new Goodwrench service engine long block. Internal damage may result in the potential discharge of internal engine component debris in the intake manifold via bent, broken, or missing intake valves. After removing the intake manifold from the engine, the technician should carefully inspect all of the cylinder head intake ports to see if the valve heads are still present and not bent. Usually when the valve heads are missing or sufficiently bent, internal engine component debris will be present to varying degrees in the intake port of the cylinder head. If this debris is present in any of the cylinder head intake ports, the intake manifold should be replaced. This replacement is required due to the complex inlet runner and plenum configuration of most of the intake manifolds, making thorough and complete component cleaning difficult and nearly impossible to verify complete removal of debris. Re-installation of an intake manifold removed from an engine with deposits of internal engine component debris may result in the ingestion of any remaining debris into the new Goodwrench service engine. This may cause damage or potential failure of the new service engine. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > Customer Interest: > 09-06-01-006 > May > 09 > Engine Controls - Misfire, Hard Start, Multiple DTCs > Page 4389 Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-01-006 > May > 09 > Engine Controls - Misfire, Hard Start, Multiple DTCs Valve: All Technical Service Bulletins Engine Controls - Misfire, Hard Start, Multiple DTCs TECHNICAL Bulletin No.: 09-06-01-006 Date: May 07, 2009 Subject: Check Engine Light On, Engine Misfire, Hard Start, Rough Idle, Hesitation, Loss of Power, Poor Performance, Noise, DTCs P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308 Set (Replace Engine) Models: 2007 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Avalanche, Silverado, Tahoe 2007 GMC Sierra, Sierra Denali, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL Equipped with 6.0L or 6.2L V8 Engine RPOs L76, L92, LY6 Please Refer to GMVIS Condition Some customers may comment on any of the following engine concerns: - Check engine light on - Misfire - Hard start - Rough Idle - Hesitation - Loss of power - Poor performance - Noise Upon further investigation, technicians may find DTC P0300 (Engine Misfire Detected) set. DTCs P0301-P0308 corresponds to cylinders 1-8. If the ECM is able to determine that a specific cylinder is misfiring, the DTC for that cylinder will also set. Cause The above conditions may be caused by a broken intake valve stem at the key groove (keeper). A small number of intake valves may have been exposed to an overtemp condition during the heat treat process. Correction Remove the valve rocker arm cover from the suspect cylinder head and inspect the intake valves. If a broken intake valve stem is found, replace the engine. DO NOT repair the engine. A thorough diagnosis must be performed on the condition in order to prevent unnecessary engine replacement. Contact the Product Quality Center (PQC) to verify the proper diagnosis has been performed. Please reference this bulletin number when calling. Upon review of the diagnosis, the PQC will authorize an SPO Goodwrench replacement engine. Caution When replacing an engine due to internal damage, extreme care should be taken when transferring the intake manifold to the new Goodwrench service engine long block. Internal damage may result in the potential discharge of internal engine component debris in the intake manifold via bent, broken, or missing intake valves. After removing the intake manifold from the engine, the technician should carefully inspect all of the cylinder head intake ports to see if the valve heads are still present and not bent. Usually when the valve heads are missing or sufficiently bent, internal engine component debris will be present to varying degrees in the intake port of the cylinder head. If this debris is present in any of the cylinder head intake ports, the intake manifold should be replaced. This replacement is required due to the complex inlet runner and plenum configuration of most of the intake manifolds, making thorough and complete component cleaning difficult and nearly impossible to verify complete removal of debris. Re-installation of an intake manifold removed from an engine with deposits of internal engine component debris may result in the ingestion of any remaining debris into the new Goodwrench service engine. This may cause damage or potential failure of the new service engine. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-01-006 > May > 09 > Engine Controls - Misfire, Hard Start, Multiple DTCs > Page 4395 Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > All Other Service Bulletins for Valve: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set Parking Assist Distance Sensor: All Technical Service Bulletins Park Assist System Inoperative/Lamp ON/DTC's Set TECHNICAL Bulletin No.: 08-08-127-001B Date: June 10, 2010 Subject: Park Assist System Inoperative, Service Park Assist Message Displayed on Driver Information Center (DIC), DTC B1E3A and/or B0954, B0955, B0956, B0957, B0958, B0959, B0960, B0961 Set (Replace Appropriate Object Sensor or Repair Harness) Models: 2006-2008 Buick Lucerne 2008-2009 Buick Enclave 2006-2008 Cadillac DTS 2007-2009 Cadillac Escalade, SRX 2008-2010 Cadillac CTS 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2009 Chevrolet Traverse 2007-2009 GMC Acadia, Sierra, Yukon, Yukon XL 2007-2009 Saturn OUTLOOK Equipped with Parking Assist (RPO UD7 or UFR) Supercede: This bulletin is being revised to clarify the text in the Condition, Cause and Correction sections and update the Warranty Information. Please discard Corporate Bulletin Number 08-08-127-001A (Section 08 - Body and Accessories). Condition - Some customers may comment on a Service Park Assist message being displayed on the driver information center (DIC). - The technician may observe with a scan tool DTC B1E3A and/or B0954, B0955, B0956, B0957, B0958, B0959, B0960, B0961 set as Current or in History. Cause - This condition may be caused by a malfunctioning object sensor or a circuit fault on the 8 volt reference circuit. Note The 8 volt reference circuit serves all of the object sensors in parallel. A fault anywhere on the circuit or in any single sensor will affect all of the sensors. - When a single sensor malfunctions, the shared 8 volt reference circuit may be compromised, resulting in a DTC for each sensor. Correction Important DO NOT replace all of the object sensors and/or the object alarm module. If normal diagnosis does not reveal any concerns with the park assist system, perform the following diagnostic procedure: 1. Turn OFF the ignition. Note Depending on the model year of the vehicle the park assist system sensors are referred to as: object sensor or object alarm sensor. 2. Disconnect the harness connector at each of the object sensors. For the locations of the object sensors, refer to Master Electrical Component List in SI. 3. Turn ON the ignition, with the engine OFF. Important With all of the object sensor harness connectors disconnected, multiple sensor DTCs will set and will not clear. Ignore these DTCs for now. 4. Clear any DTCs that may be present. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > All Other Service Bulletins for Valve: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set > Page 4401 5. Verify that DTC B1E3A does not reset as Current. Important Ensure each leg of the circuit is tested since the 8 volt reference circuit feeds all the sensors in parallel. ‹› If DTC B1E3A does set, test the 8 volt reference circuit for a short to voltage, short to ground or an open/high resistance. Repair the circuit as necessary. Depending on the model year of the vehicle, refer to Body > Wiring Systems > Diagnostic Information and Procedures > Wiring Repairs OR Power and Signal Distribution > Wiring Systems and Power Management > Diagnostic Information and Procedures > Wiring Repairs in SI. ‹› If DTC B1E3A does not set proceed to Step 6. 6. Install each object sensor harness connector one at a time, checking for DTCs immediately after each sensor is connected. Verify DTC B1E3A does not set as Current. ‹› If DTC B1E3A does set, replace the object sensor that was connected immediately before the DTC set. 7. Perform the diagnostic repair verification after completing the diagnostic procedure. Refer to Diagnostic Repair Verification in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > All Other Service Bulletins for Valve: > 07-08-49-014A > Jul > 08 > Parking Assist System - 'Park Assist Off' Message on DIC Parking Assist Distance Sensor: All Technical Service Bulletins Parking Assist System - 'Park Assist Off' Message on DIC INFORMATION Bulletin No.: 07-08-49-014A Date: July 30, 2008 Subject: Diagnostic Information for Park Assist Off Message on Driver Information Center (DIC) Models: 2007-2009 Cadillac Escalade Models 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Yukon Models Supercede: This bulletin is being revised to add the 2008 and 2009 model years. Please discard Corporate Bulletin Number 07-08-49-014 (Section 08 - Body and Accessories). Some customers may comment that a "Park Assist Off" message is appearing on the Driver Information center (DIC) at times. There are several factors listed above that can cause this message to appear. A Tech 2 can be used to access the latest entry into the Park Assist Module history buffer to help determine a cause. Engineering has received multiple inhibited Rear park Assist Modules through warranty parts return with attached object stored in the latest history buffer. If a vehicle has a trailer hitch installed into the trailer hitch receiver, it is possible for the rear park assist to be disabled. Once the trailer hitch is removed, the message should go away. Other possible causes may be dirty sensors. Keep the rear bumper free of mud, dirt, snow, ice and slush. Important: Please note that any object that is installed in the receiver hitch, extending from the rear of the vehicle, or blocking the sensors can disable the Parking Assist, resulting in the message "Park Assist Off". Please remove the object or obstruction from the vehicle to re-enable the system. This is normal operation of the system. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Cylinder Head Assembly > Valve, Intake/Exhaust > Component Information > Technical Service Bulletins > All Other Service Bulletins for Valve: > 08-08-127-001B > Jun > 10 > Park Assist System - Inoperative/Lamp ON/DTC's Set > Page 4411 5. Verify that DTC B1E3A does not reset as Current. Important Ensure each leg of the circuit is tested since the 8 volt reference circuit feeds all the sensors in parallel. ‹› If DTC B1E3A does set, test the 8 volt reference circuit for a short to voltage, short to ground or an open/high resistance. Repair the circuit as necessary. Depending on the model year of the vehicle, refer to Body > Wiring Systems > Diagnostic Information and Procedures > Wiring Repairs OR Power and Signal Distribution > Wiring Systems and Power Management > Diagnostic Information and Procedures > Wiring Repairs in SI. ‹› If DTC B1E3A does not set proceed to Step 6. 6. Install each object sensor harness connector one at a time, checking for DTCs immediately after each sensor is connected. Verify DTC B1E3A does not set as Current. ‹› If DTC B1E3A does set, replace the object sensor that was connected immediately before the DTC set. 7. Perform the diagnostic repair verification after completing the diagnostic procedure. Refer to Diagnostic Repair Verification in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > Customer Interest: > 07-01-38-010A > Oct > 09 > A/C Compressor/Serpentine Belt Noise Drive Belt: Customer Interest A/C - Compressor/Serpentine Belt Noise TECHNICAL Bulletin No.: 07-01-38-010A Date: October 06, 2009 Subject: Air Conditioning (A/C) Compressor and/or Serpentine Belt Noise at Vehicle Start-up (Reprogram Powertrain Control Module (PCM)) Models: 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon Models Equipped With Air Conditioning (RPOs CJ2 or CJ3) Supercede: This bulletin is being revised to update the Condition and Correction information. Please discard Corporate Bulletin Number 07-01-38-010 (Section 01 - HVAC). Condition Some customers may comment on air conditioning (A/C) compressor slugging and/or serpentine belt or pulley rattle noise at vehicle start-up in warmer outside ambient temperature conditions. Others may describe the noise as a belt chirp or as a thumping/grinding noise coming from the A/C compressor at vehicle start-up. Cause This condition may be caused by the A/C compressor trying to move liquid refrigerant through the system. Correction - A revised PCM calibration has been released to address this condition. Reprogram the PCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. - When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. - When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. - During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information Note *Please use Failure Code 93 for any warranty claims submitted using this bulletin. For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > Customer Interest: > 07-01-38-010A > Oct > 09 > A/C Compressor/Serpentine Belt Noise > Page 4425 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 07-01-38-010A > Oct > 09 > A/C - Compressor/Serpentine Belt Noise Drive Belt: All Technical Service Bulletins A/C - Compressor/Serpentine Belt Noise TECHNICAL Bulletin No.: 07-01-38-010A Date: October 06, 2009 Subject: Air Conditioning (A/C) Compressor and/or Serpentine Belt Noise at Vehicle Start-up (Reprogram Powertrain Control Module (PCM)) Models: 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2008 GMC Sierra, Yukon Models Equipped With Air Conditioning (RPOs CJ2 or CJ3) Supercede: This bulletin is being revised to update the Condition and Correction information. Please discard Corporate Bulletin Number 07-01-38-010 (Section 01 - HVAC). Condition Some customers may comment on air conditioning (A/C) compressor slugging and/or serpentine belt or pulley rattle noise at vehicle start-up in warmer outside ambient temperature conditions. Others may describe the noise as a belt chirp or as a thumping/grinding noise coming from the A/C compressor at vehicle start-up. Cause This condition may be caused by the A/C compressor trying to move liquid refrigerant through the system. Correction - A revised PCM calibration has been released to address this condition. Reprogram the PCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. - When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. - When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. - During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information Note *Please use Failure Code 93 for any warranty claims submitted using this bulletin. For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 07-01-38-010A > Oct > 09 > A/C - Compressor/Serpentine Belt Noise > Page 4431 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics Drive Belt: All Technical Service Bulletins Engine - Drive Belt Misalignment Diagnostics INFORMATION Bulletin No.: 08-06-01-008A Date: July 27, 2009 Subject: Diagnosing Accessory Drive Belt / Serpentine Belt Noise and Availability and Use of Kent-Moore EN-49228 Laser Alignment Tool - Drive Belt Models: 2010 and Prior GM Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add a model year and update the Tool Information. Please discard Corporate Bulletin Number 08-06-01-008 (Section 06 - Engine). Background Several aftermarket companies offer laser alignment tools for accessory drive systems that can be very helpful in eliminating drive belt noise as a result of misaligned pulleys. Typically pricing ranges from $160 - $200. EN-49228 Laser Alignment Tool - Drive Belt The GM Tool program has now made available a competitive, simple to use and time-saving laser tool to assist in achieving precise alignment of the drive belt pulleys. This optional tool removes the guesswork from proper pulley alignment and may serve to reduce comebacks from: - Drive Belt Noise - Accelerated Drive Belt Wear - Drive Belt Slippage Instructions The instructions below are specific only to the truck Gen IV V-8 family of engines. These instructions are only for illustrative purposes to show how the tool may be used. Universal instructions are included in the box with the Laser Alignment Tool - Drive Belt. Caution - Do not look directly into the beam projected from the laser. - Use caution when shining the laser on highly polished or reflective surfaces. Laser safety glasses help reduce laser beam glare in many circumstances. - Always use laser safety glasses when using the laser. Laser safety glasses are not designed to protect eyes from direct laser exposure. 1. Observe and mark the serpentine belt orientation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 4436 2. Remove the serpentine belt from the accessory drive system. 3. Install the tool onto the power steering pulley. Position the legs of the tool into the outer grooves of the pulley, farthest from the front of the engine. 4. Install the retaining cord around the pulley and to the legs of the tool. 5. Put on the laser safety glasses provided with the tool. 6. Depress the switch on the rear of the tool to activate the light beam. 7. Rotate the power steering pulley as required to project the light beam onto the crankshaft balancer pulley grooves. 8. Inspect for proper power steering pulley alignment. - If the laser beam projects onto the second rib or raised area (1), the pulleys are aligned properly. - If the laser beam projects more than one-quarter rib 0.9 mm (0.035 in) mis-alignment, adjust the position of the power steering pulley as required. - Refer to SI for Power Steering Pulley Removal and Installation procedures. 9. Install the serpentine belt to the accessory drive system in the original orientation. 10. Operate the vehicle and verify that the belt noise concern is no longer present. Tool Information Please visit the GM service tool website for pricing information or to place your order for this tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 4437 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Other Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics Drive Belt: All Technical Service Bulletins Engine - Drive Belt Misalignment Diagnostics INFORMATION Bulletin No.: 08-06-01-008A Date: July 27, 2009 Subject: Diagnosing Accessory Drive Belt / Serpentine Belt Noise and Availability and Use of Kent-Moore EN-49228 Laser Alignment Tool - Drive Belt Models: 2010 and Prior GM Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add a model year and update the Tool Information. Please discard Corporate Bulletin Number 08-06-01-008 (Section 06 - Engine). Background Several aftermarket companies offer laser alignment tools for accessory drive systems that can be very helpful in eliminating drive belt noise as a result of misaligned pulleys. Typically pricing ranges from $160 - $200. EN-49228 Laser Alignment Tool - Drive Belt The GM Tool program has now made available a competitive, simple to use and time-saving laser tool to assist in achieving precise alignment of the drive belt pulleys. This optional tool removes the guesswork from proper pulley alignment and may serve to reduce comebacks from: - Drive Belt Noise - Accelerated Drive Belt Wear - Drive Belt Slippage Instructions The instructions below are specific only to the truck Gen IV V-8 family of engines. These instructions are only for illustrative purposes to show how the tool may be used. Universal instructions are included in the box with the Laser Alignment Tool - Drive Belt. Caution - Do not look directly into the beam projected from the laser. - Use caution when shining the laser on highly polished or reflective surfaces. Laser safety glasses help reduce laser beam glare in many circumstances. - Always use laser safety glasses when using the laser. Laser safety glasses are not designed to protect eyes from direct laser exposure. 1. Observe and mark the serpentine belt orientation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Other Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 4443 2. Remove the serpentine belt from the accessory drive system. 3. Install the tool onto the power steering pulley. Position the legs of the tool into the outer grooves of the pulley, farthest from the front of the engine. 4. Install the retaining cord around the pulley and to the legs of the tool. 5. Put on the laser safety glasses provided with the tool. 6. Depress the switch on the rear of the tool to activate the light beam. 7. Rotate the power steering pulley as required to project the light beam onto the crankshaft balancer pulley grooves. 8. Inspect for proper power steering pulley alignment. - If the laser beam projects onto the second rib or raised area (1), the pulleys are aligned properly. - If the laser beam projects more than one-quarter rib 0.9 mm (0.035 in) mis-alignment, adjust the position of the power steering pulley as required. - Refer to SI for Power Steering Pulley Removal and Installation procedures. 9. Install the serpentine belt to the accessory drive system in the original orientation. 10. Operate the vehicle and verify that the belt noise concern is no longer present. Tool Information Please visit the GM service tool website for pricing information or to place your order for this tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > All Other Service Bulletins for Drive Belt: > 08-06-01-008A > Jul > 09 > Engine - Drive Belt Misalignment Diagnostics > Page 4444 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > Page 4445 Drive Belt: Service Precautions Belt Dressing Notice Notice: Do not use belt dressing on the drive belt. Belt dressing causes the breakdown of the composition of the drive belt. Failure to follow this recommendation will damage the drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Technical Service Bulletins > Page 4446 Drive Belt: Description and Operation Drive Belt System Description The drive belt system consists of the following components: ^ The drive belt ^ The drive belt tensioner ^ The drive belt idler pulley ^ The crankshaft balancer pulley ^ The accessory drive component mounting brackets ^ The accessory drive components ^ The power steering pump, if belt driven ^ The generator ^ The A/C compressor, if equipped ^ The engine cooling fan, if belt driven ^ The water pump, if belt driven ^ The vacuum pump, if equipped ^ The air compressor, if equipped The drive belt system may use 1 belt or 2 belts. The drive belt is thin so that it can bend backwards and has several ribs to match the grooves in the pulleys. The drive belts are made of different types of rubbers, chloroprene or EPDM, and have different layers or plys containing either fiber cloth or cords for reinforcement. Both sides of the drive belt may be used to drive the different accessory drive components. When the back side of the drive belt is used to drive a pulley, the pulley is smooth. The drive belt is pulled by the crankshaft balancer pulley across the accessory drive component pulleys. The spring loaded drive belt tensioner keeps constant tension on the drive belt to prevent the drive belt from slipping. The drive belt tensioner arm will move when loads are applied to the drive belt by the accessory drive components and the crankshaft. The drive belt system may have an idler pulley, which is used to add wrap to the adjacent pulleys. Some systems use an idler pulley in place of an accessory drive component when the vehicle is not equipped with the accessory. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt: Testing and Inspection Drive Belt Chirping, Squeal, and Whine Diagnosis Drive Belt Chirping, Squeal, and Whine Diagnosis Diagnostic Aids ^ A chirping or squeal noise may be intermittent due to moisture on the drive belts or the pulleys. It may be necessary to spray a small amount of water on the drive belts in order to duplicate the customers concern. If spraying water on the drive belt duplicates the symptom, cleaning the belt pulleys may be the probable solution. ^ If the noise is intermittent, verify the accessory drive components by varying their loads making sure they are operated to their maximum capacity. An overcharged A/C system, power steering system with a pinched hose or wrong fluid, or a generator failing are suggested items to inspect. ^ A chirping, squeal or whine noise may be caused by a loose or improper installation of a body or suspension component. Other items of the vehicle may also cause the noise. ^ The drive belts will not cause a whine noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. The noise may not be engine related. This step is to verify that the engine is making the noise. If the engine is not making the noise do not proceed further with this table. 3. The noise may be an internal engine noise. Removing the drive belts one at a time and operating the engine for a brief period will verify the noise is related to the drive belt. When removing the drive belt the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspect all drive belt pulleys for pilling. Pilling is the small balls or pills or it can be strings in the drive belt grooves from the accumulation of rubber dust. 6. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across 2 or 3 pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure for that pulley. 10. Inspecting of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. 12. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 14. This test is to verify that the drive belt tensioner operates properly. If the drive belt tensioner is not operating properly, proper belt tension may not be achieved to keep the drive belt from slipping which could cause a squeal noise. 15. This test is to verify that the drive belt is not too long, which would prevent the drive belt tensioner from working properly. Also if an incorrect length drive belt was installed, it may not be routed properly and may be turning an accessory drive component in the wrong direction. 16. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across 2 or 3 pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure for that pulley. 17. This test is to verify that the pulleys are the correct diameter or width. Using a known good vehicle compare the pulley sizes. 19. Replacing the drive belt when it is not damaged or there is not excessive pilling will only be a temporary repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4449 Step 1 - Step 9 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4450 Step 10 - Step 20 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4451 Drive Belt: Testing and Inspection Drive Belt Falls Off and Excessive Wear Diagnosis Drive Belt Falls Off and Excessive Wear Diagnosis Diagnostic Aids If the drive belt repeatedly falls off the drive belt pulleys, this is because of pulley misalignment. An extra load that is quickly applied on released by an accessory drive component may cause the drive belt to fall off the pulleys. Verify the accessory drive components operate properly. If the drive belt is the incorrect length, the drive belt tensioner may not keep the proper tension on the drive belt. Excessive wear on a drive belt is usually caused by an incorrect installation or the wrong drive belt for the application. Minor misalignment of the drive belt pulleys will not cause excessive wear, but will probably cause the drive belt to make a noise or to fall off. Excessive misalignment of the drive belt pulleys will cause excessive wear but may also make the drive belt fall off. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This inspection is to verify the condition of the drive belt. Damage may of occurred to the drive belt when the drive belt fell off. The drive belt may of been damaged, which caused the drive belt to fall off. Inspect the belt for cuts, tears, sections of ribs missing, or damaged belt plys. 4. Misalignment of the pulleys may be caused from improper mounting of the accessory drive component, incorrect installation of the accessory drive component pulley, or the pulley bent inward or outward from a previous repair. Test for a misaligned pulley using a straight edge in the pulley grooves across two or three pulleys. If a misaligned pulley is found refer to that accessory drive component for the proper installation procedure of that pulley. 5. Inspecting the pulleys for being bent should include inspecting for a dent or other damage to the pulleys that would prevent the drive belt from not seating properly in all of the pulley grooves or on the smooth surface of a pulley when the back side of the belt is used to drive the pulley. 6. Accessory drive component brackets that are bent or cracked will let the drive belt fall off. 7. Inspection of the fasteners can eliminate the possibility that a wrong bolt, nut, spacer, or washer was installed. Missing, loose, or the wrong fasteners may cause pulley misalignment from the bracket moving under load. Over tightening of the fasteners may cause misalignment of the accessory component bracket. 13. The inspection is to verify the drive belt is correctly installed on all of the drive belt pulleys. Wear on the drive belt may be caused by mis-positioning the drive belt by one groove on a pulley. 14. The installation of a drive belt that is too wide or too narrow will cause wear on the drive belt. The drive belt ribs should match all of the grooves on all of the pulleys. 15. This inspection is to verify the drive belt is not contacting any parts of the engine or body while the engine is operating. There should be sufficient clearance when the drive belt accessory drive components load varies. The drive belt should not come in contact with an engine or a body component when snapping the throttle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4452 Step 1 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4453 Step 14 - Step 17 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4454 Drive Belt: Testing and Inspection Drive Belt Rumbling and Vibration Diagnosis Drive Belt Rumbling and Vibration Diagnosis Diagnostic Aids The accessory drive components can have an affect on engine vibration. Vibration from the engine operating may cause a body component or another part of the vehicle to make rumbling noise. Vibration can be caused by, but not limited to the air conditioning (A/C) system over charged, the power steering system restricted or the incorrect fluid, or an extra load on the generator. To help identify an intermittent or an improper condition, vary the loads on the accessory drive components. The drive belt may have a rumbling condition that can not be seen or felt. Sometimes replacing the drive belt may be the only repair for the symptom. If replacing the drive belt, completing the diagnostic table, and the noise is only heard when the drive belts are installed, there might be an accessory drive component with a failure. Varying the load on the different accessory drive components may aid in identifying which component is causing the rumbling noise. Test Description The numbers below refer to the step numbers on the diagnostic table. 2. This test is to verify that the symptom is present during diagnosing. Other vehicle components may cause a similar symptom. 3. This test is to verify that one of the drive belts is causing the rumbling noise or vibration. Rumbling noise may be confused with an internal engine noise due to the similarity in the description. Remove only one drive belt at a time if the vehicle has multiple drive belts. When removing the drive belts the water pump may not be operating and the engine may overheat. Also DTCs may set when the engine is operating with the drive belts removed. 4. Inspecting the drive belts is to ensure that they are not causing the noise. Small cracks across the ribs of the drive belt will not cause the noise. Belt separation is identified by the plys of the belt separating and may be seen at the edge of the belt our felt as a lump in the belt. 5. Small amounts of pilling is normal condition and acceptable. When the pilling is severe the drive belt does not have a smooth surface for proper operation. 9. Inspecting of the fasteners can eliminate the possibility that the wrong bolt, nut, spacer, or washer was installed. 11. This step should only be performed if the water pump is driven by the drive belt. Inspect the water pump shaft for being bent. Also inspect the water pump bearings for smooth operation and excessive play. Compare the water pump with a known good water pump. 12. Accessory drive component brackets that are bent, cracked, or loose may put extra strain on that accessory component causing it to vibrate. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4455 Step 1 - Step 8 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Testing and Inspection > Drive Belt Chirping, Squeal, and Whine Diagnosis > Page 4456 Step 9 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory Drive Belt: Service and Repair Drive Belt Replacement - Accessory Drive Belt Replacement - Accessory (4.8L, 5.3L, and 6.0L Engines) Removal Procedure 1. Loosen the air cleaner outlet duct clamps at the following locations: ^ The throttle body ^ The mass airflow (MAF)/intake air temperature (IAT) sensor 2. Disconnect the radiator inlet hose clip from the outlet duct. 3. Remove the air cleaner outlet duct. 4. Install a breaker bar with hex-head socket to the drive belt tensioner bolt. 5. Rotate the drive belt tensioner clockwise in order to relieve tension on the belt (1). 6. Remove the belt (1) from the pulleys and the drive belt tensioner. 7. Slowly release the tension on the drive belt tensioner. 8. Remove the breaker bar and socket and from the drive belt tensioner bolt. 9. Clean and inspect the belt surfaces of all the pulleys. Installation Procedure 1. Route the drive belt (1) around all the pulleys except the idler pulley. 2. Install the breaker bar with hex-head socket to the belt tensioner bolt. 3. Rotate the belt tensioner clockwise in order to relieve the tension on the tensioner. 4. Install the drive belt (1) under the idler pulley. 5. Slowly release the tension on the belt tensioner. 6. Remove the breaker bar and socket from the belt tensioner bolt. 7. Inspect the drive belt (1) for proper installation and alignment. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 4459 8. Align the arrow (2) at the throttle body end of the duct with the throttle body attaching stud (1). 9. Install the air cleaner outlet duct. 10. Connect the radiator inlet hose clip to the outlet duct. Notice: Refer to Fastener Notice in Service Precautions. 11. Tighten the air cleaner outlet duct clamps at the following locations: ^ The throttle body ^ The MAF/IAT sensor Tighten the clamps to 4 Nm (35 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 4460 Drive Belt: Service and Repair Drive Belt Replacement - Air Conditioning Drive Belt Replacement - Air Conditioning Removal Procedure 1. Remove the accessory drive belt. 2. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 3. Remove the engine shield bolts. 4. Remove the engine shield. 5. Install a ratchet into the air conditioning (A/C) belt tensioner adapter opening. 6. Rotate the A/C belt tensioner clockwise in order to relieve tension on the belt. 7. Remove the A/C belt from the pulleys. 8. Slowly release the tension on the A/C belt tensioner. 9. Remove the ratchet from the A/C belt tensioner. 10. Clean and inspect the belt surfaces of all the pulleys. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 4461 Installation Procedure 1. Install the A/C belt around the crankshaft balancer. 2. Install a ratchet into the A/C drive belt tensioner adapter opening. 3. Rotate the A/C belt tensioner clockwise in order to relieve tension on the tensioner. 4. Install the A/C belt over the idler pulley. 5. Install the A/C belt around the A/C compressor pulley. 6. Slowly release the tension on the A/C belt tensioner. 7. Remove the ratchet from the A/C belt tensioner. 8. Inspect the A/C belt for proper installation and alignment. 9. Install the engine shield. Notice: Refer to Fastener Notice in Service Precautions. 10. Install the engine shield bolts. Tighten the bolts to 20 Nm (15 ft. lbs.). 11. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt > Component Information > Service and Repair > Drive Belt Replacement - Accessory > Page 4462 12. Install the accessory drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt Tensioner > Component Information > Testing and Inspection Drive Belt Tensioner: Testing and Inspection Drive Belt Tensioner Diagnosis Inspection Procedure 1. Notice: Allowing the drive belt tensioner to snap into the free position may result in damage to the tensioner. Important: When the engine is operating the drive belt tensioner arm will move. Do not replace the drive belt tensioner because of movement in the drive belt tensioner arm. Remove the drive belt. 2. Move the drive belt tensioner through its full travel. ^ The movement should feel smooth. ^ There should be no binding. ^ The tensioner should return freely. 3. If any binding is observed, replace the drive belt tensioner. 4. Install the drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt Tensioner > Component Information > Service and Repair > Drive Belt Tensioner Replacement - Accessory Drive Belt Tensioner: Service and Repair Drive Belt Tensioner Replacement - Accessory Drive Belt Tensioner Replacement - Accessory Removal Procedure 1. Remove the accessory drive belt. 2. Remove the drive belt tensioner bolts. 3. Remove the drive belt tensioner. Installation Procedure 1. Install the drive belt tensioner. 2. Install the drive belt tensioner bolts. Notice: Refer to Fastener Notice in Service Precautions. 3. Tighten the drive belt tensioner bolts. Tighten the bolts to 50 Nm (37 ft. lbs.). 4. Install the accessory drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Drive Belt Tensioner > Component Information > Service and Repair > Drive Belt Tensioner Replacement - Accessory > Page 4468 Drive Belt Tensioner: Service and Repair Drive Belt Tensioner Replacement - Air Conditioning Drive Belt Tensioner Replacement - Air Conditioning Removal Procedure 1. Remove the air conditioning (A/C) drive belt. 2. Remove the A/C belt tensioner bolts. 3. Remove the A/C belt tensioner. Installation Procedure 1. Install the A/C belt tensioner. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the A/C belt tensioner bolts. Tighten the bolts to 50 Nm (37 ft. lbs.). 3. Install the A/C drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Testing and Inspection Engine Mount: Testing and Inspection Engine Mount Inspection Notice: Broken or deteriorated mounts can cause misalignment and destruction of certain drive train components. When a single mount breaks, the remaining mounts are subjected to abnormally high stresses. Notice: When raising or supporting the engine for any reason, do not use a jack under the oil pan, any sheet metal, or the crankshaft pulley. Due to the small clearance between the oil pan and the oil pump screen, jacking against the oil pan may cause the pan to be bent against the pump screen. This will result in a damaged oil pickup unit. 1. Measure the engine movement at the engine mount in order to check for damage to the rubber portions of the mount. 1. Apply the park brake. 2. Start the engine. 3. Firmly apply and hold the primary brakes. 4. Have an assistant stand to the side of the vehicle in order to observe for engine movement. 5. Slightly load the engine shifting from drive to reverse a few times. 6. If the engine moves more than 24 mm (0.945 inch) from the at rest position, in either direction, check for loose engine mount bolts. 2. If the engine mount bolt torque is within specifications, check the condition of the engine mount. 3. Replace the engine mount if any of the following conditions exist: ^ Heat check cracks cover the rubber cushion surface. ^ The rubber cushion is separated from the metal plate of the mount. ^ There is a split through the rubber cushion. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Service and Repair > Engine Mount Bracket Replacement - Left Engine Mount: Service and Repair Engine Mount Bracket Replacement - Left Engine Mount Bracket Replacement - Left Side Removal Procedure 1. Remove the engine mount. 2. Remove the engine mount bracket bolts. 3. Remove the engine mount bracket. Installation Procedure 1. Install the engine mount bracket. 2. Perform the following procedure prior to installing the engine mount bracket bolts. ^ Remove all traces of the original adhesive patch. ^ Clean the threads of the bolt with denatured alcohol or equivalent and allow to dry. ^ Apply threadlocker to the bolts. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 3. Install the engine mount bracket bolts. Tighten the engine mount bracket bolts to 75 Nm (55 ft. lbs.). 4. Install the engine mount. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Service and Repair > Engine Mount Bracket Replacement - Left > Page 4474 Engine Mount: Service and Repair Engine Mount Bracket Replacement - Right Engine Mount Bracket Replacement - Right Side Removal Procedure 1. Remove the engine mount. 2. Remove the engine mount bracket bolts. 3. Remove the engine mount bracket. Installation Procedure 1. Install the engine mount bracket. 2. Perform the following procedure prior to installing the engine mount bracket bolts. ^ Remove all traces of the original adhesive patch. ^ Clean the threads of the bolt with denatured alcohol or equivalent and allow to dry. ^ Apply threadlocker to the bolts. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 3. Install the engine mount bracket bolts. Tighten the engine mount bracket bolts to 75 Nm (55 ft. lbs.). 4. Install the engine mount. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Service and Repair > Engine Mount Bracket Replacement - Left > Page 4475 Engine Mount: Service and Repair Engine Mount Replacement - Left Engine Mount Replacement - Left Side Removal Procedure Notice: When raising or supporting the engine for any reason, do not use a jack under the oil pan, any sheet metal, or the crankshaft pulley. Due to the small clearance between the oil pan and the oil pump screen, jacking against the oil pan may cause the pan to be bent against the pump screen. This will result in a damaged oil pickup unit. 1. Raise the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the tire and wheel. 3. Remove the wheelhouse panel from the vehicle. 4. For vehicles with 4WD, remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 5. Important: DO NOT raise and/or support the engine by the crankshaft balancer, or oil pan. Raise and suitably support the engine using adjustable (screw type) jack stands. 6. Remove the engine mount-to-engine mount bracket bolts. (Right side shown, left side similar). 7. Remove the engine mount bolts. 8. Remove the left engine mount. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Service and Repair > Engine Mount Bracket Replacement - Left > Page 4476 1. Install the left engine mount to the engine. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the engine mount bolts to the engine. Tighten the engine mount bolts to 50 Nm (37 ft. lbs.). 3. Lower the engine. 4. Remove the adjustable jack stands. 5. For vehicles with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 6. Install the engine mount-to-engine mount bracket bolts. (Right side shown, left side similar). Tighten the engine mount-to-engine mount bracket bolts to 65 Nm (48 ft. lbs.). 7. Install the wheelhouse panel to the vehicle. 8. Install the tire and wheel. 9. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Service and Repair > Engine Mount Bracket Replacement - Left > Page 4477 Engine Mount: Service and Repair Engine Mount Replacement - Right Engine Mount Replacement - Right Side Removal Procedure 1. Remove the exhaust manifold. 2. Remove the engine mount-to-engine mount bracket bolts. 3. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Remove the tire and wheel. 5. Remove the inner wheelhouse panel. 6. Remove the engine protection shield, if equipped. 7. Important: DO NOT raise and/or support the engine by the crankshaft balancer, or oil pan. Raise and suitably support the engine using adjustable (screw type) jack stands. 8. Remove the engine mount to engine bolts. 9. Remove the right engine mount. Installation Procedure 1. Position the right engine mount to the engine. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Engine Mount > Component Information > Service and Repair > Engine Mount Bracket Replacement - Left > Page 4478 Notice: Refer to Fastener Notice in Service Precautions. 2. Install the engine mount bolts. Tighten the engine mount bolts to 50 Nm (37 ft. lbs.). 3. Lower the engine. 4. Remove the adjustable jack stands. 5. Install the engine mount-to-engine mount bracket bolts. Tighten the engine mount-to-engine mount bracket bolts to 65 Nm (48 ft. lbs.). 6. Install the exhaust manifold. 7. Install the inner wheelhouse panel. 8. Install the tire and wheel. 9. Install the engine protection shield, if equipped. 10. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Drive Belts, Mounts, Brackets and Accessories > Idler Pulley > Component Information > Service and Repair Idler Pulley: Service and Repair Drive Belt Idler Pulley Replacement (4.8L, 5.3L, and 6.0L Engines) Removal Procedure 1. Loosen the drive belt idler pulley bolt. 2. Remove the accessory drive belt. 3. Remove the drive belt idler pulley and bolt. Installation Procedure 1. Install the drive belt idler pulley and bolt to the generator bracket. Snug the bolt finger tight. 2. Install the drive belt. Notice: Refer to Fastener Notice in Service Precautions. 3. Tighten the drive belt idler pulley bolt. Tighten the bolt to 50 Nm (37 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil Pressure > Component Information > Specifications > Engine Mechanical Specifications (LQ4 VIN U) Engine Oil Pressure: Specifications Engine Mechanical Specifications (LQ4 VIN U) Oil Pressure - Minimum - Hot 41 kPa at 1,000 engine RPM .............................................................................................................................................. 124 kPa at 2,000 engine RPM 165 kPa at 4,000 engine RPM ................................................................................................................................................ 6 psig at 1,000 engine RPM 18 psig at 2,000 engine RPM ................................................................................................................................................ 24 psig at 4,000 engine RPM Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil Pressure > Component Information > Specifications > Engine Mechanical Specifications (LQ4 VIN U) > Page 4487 Engine Oil Pressure: Specifications Engine Mechanical Specifications (LQ9 VIN N) Oil Pressure - Minimum - Hot 41 kPa at 1,000 engine RPM .............................................................................................................................................. 124 kPa at 2,000 engine RPM 165 kPa at 4,000 engine RPM ................................................................................................................................................ 6 psig at 1,000 engine RPM 18 psig at 2,000 engine RPM ................................................................................................................................................ 24 psig at 4,000 engine RPM Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil Pressure > Component Information > Specifications > Page 4488 Engine Oil Pressure: Testing and Inspection Oil Pressure Diagnosis and Testing Tools Required ^ EN-47971 Oil Pressure Gage Adapter ^ J 21867 Pressure Gage 1. With the vehicle on a level surface, run the vehicle for a few minutes. Allow adequate drain down time, 2-3 minutes, and measure the oil level. 2. If required, add the recommended grade engine oil and fill the crankcase until the oil level measures full on the oil level indicator. 3. Run the engine briefly, 10-15 seconds, and verify low or no oil pressure on the vehicle gage or light. 4. Listen for a noisy valve train or a knocking noise. 5. Inspect for the following conditions: ^ Oil diluted by water or glycol antifreeze ^ Foamy oil 6. Remove the oil filter and install the EN-47971 (1). 7. Install the J 21867 (2), or equivalent to the EN-47971 (1). 8. Run the engine and measure the engine oil pressure. 9. Compare the readings to Engine Mechanical Specifications (LR4 VIN V) Engine Mechanical Specifications (LM7 VIN T) Engine Mechanical Specifications (L33 VIN B) Engine Mechanical Specifications (L59 VIN Z) Engine Mechanical Specifications (LQ4 VIN U) Engine Mechanical Specifications (LQ9 VIN N). 10. If the engine oil pressure is below specifications, inspect the engine for 1 or more of the following conditions: ^ Oil pump worn or dirty Refer to Oil Pump Cleaning and Inspection. ^ Oil pump-to-engine block bolts loose Refer to Oil Pump, Screen and Crankshaft Oil Deflector Installation. ^ Oil pump screen loose, plugged, or damaged ^ Oil pump screen O-ring seal missing or damaged ^ Malfunctioning oil pump pressure relief valve ^ Excessive bearing clearance ^ Cracked, porous, or restricted oil galleries ^ Oil gallery plugs missing or incorrectly installed Refer to Engine Block Plug Installation. ^ Broken valve lifters Repair as necessary. 11. If the oil pressure reading on the J 21867, or equivalent, is within specifications, inspect for the following conditions: ^ Plugged or incorrect oil filter and/or malfunctioning oil bypass valve The valve is now internal to the filter. ^ Malfunctioning oil pressure gage or sensor Repair, as necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil Dip Stick - Dip Stick Tube > Component Information > Service and Repair Engine Oil Dip Stick - Dip Stick Tube: Service and Repair Oil Level Indicator and Tube Replacement Removal Procedure 1. Remove the oil level indicator. 2. Remove the oil level indicator tube bolt. 3. Remove the oil level indicator tube from the engine block. 4. Important: The O-ring seal may be reused if not cut or damaged. Inspect the O-ring seal for cuts or damage. 5. Remove the O-ring seal from the tube, if required. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil Dip Stick - Dip Stick Tube > Component Information > Service and Repair > Page 4492 1. Lubricate the O-ring seal with clean engine oil. 2. Install a NEW O-ring seal onto the oil level indicator tube, if required. 3. Install the oil level indicator tube between the exhaust manifold and engine block. 4. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 5. Install the oil level indicator tube into the block. The tube must be installed with the collar flush to the block. 6. Lower the vehicle. Notice: Refer to Fastener Notice in Service Precautions. 7. Install the oil level indicator tube bolt. Tighten the bolt to 25 Nm (18 ft. lbs.). 8. Install the oil level indicator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Engine Oil: Customer Interest Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 4501 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Oil: > 11-00-90-001 > Mar > 11 > Engine - GM dexos 1 and dexos 2(R) Oil Specifications Engine Oil: All Technical Service Bulletins Engine - GM dexos 1 and dexos 2(R) Oil Specifications INFORMATION Bulletin No.: 11-00-90-001 Date: March 14, 2011 Subject: Global Information for GM dexos1(TM) and GM dexos2(TM) Engine Oil Specifications for Spark Ignited and Diesel Engines, Available Licensed Brands, and Service Fill for Adding or Complete Oil Change Models: 2012 and Prior GM Passenger Cars and Trucks Excluding All Vehicles Equipped with Duramax(TM) Diesel Engines GM dexos 1(TM) Information Center Website Refer to the following General Motors website for dexos 1(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 1(TM) Engine Oil Trademark and Icons The dexos(TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos‹›(TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos‹›(TM) specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 1(TM) engine oil. GM dexos 1(TM) Engine Oil Specification Important General Motors dexos 1(TM) engine oil specification replaces the previous General Motors specifications GM6094M, GM4718M and GM-LL-A-025 for most GM gasoline engines. The oil specified for use in GM passenger cars and trucks, PRIOR to the 2011 model year remains acceptable for those previous vehicles. However, dexos 1(TM) is backward compatible and can be used in those older vehicles. In North America, starting with the 2011 model year, GM introduced dexos 1(TM) certified engine oil as a factory fill and service fill for gasoline engines. The reasons for the new engine oil specification are as follows: - To meet environmental goals such as increasing fuel efficiency and reducing engine emissions. - To promote long engine life. - To minimize the number of engine oil changes in order to help meet the goal of lessening the industry's overall dependence on crude oil. dexos 1(TM) is a GM-developed engine oil specification that has been designed to provide the following benefits: - Further improve fuel economy, to meet future corporate average fuel economy (CAFE) requirements and fuel economy retention by allowing the oil to maintain its fuel economy benefits throughout the life of the oil. - More robust formulations for added engine protection and aeration performance. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Oil: > 11-00-90-001 > Mar > 11 > Engine - GM dexos 1 and dexos 2(R) Oil Specifications > Page 4507 - Support the GM Oil Life System, thereby minimizing the replacement of engine oil, before its life has been depleted. - Reduce the duplication of requirements for a large number of internal GM engine oil specifications. International Lubricants Standardization and Approval Committee (ILSAC) GF-5 Standard In addition to GM dexos 1(TM), a new International Lubricants Standardization and Approval Committee (ILSAC) standard called GF-5, was introduced in October 2010. - There will be a corresponding API category, called: SN Resource Conserving. The current GF-4 standard was put in place in 2004 and will become obsolete in October 2011. Similar to dexos 1(TM), the GF-5 standard will use a new fuel economy test, Sequence VID, which demands a statistically significant increase in fuel economy versus the Sequence VIB test that was used for GF-4. - It is expected that all dexos 1(TM) approved oils will be capable of meeting the GF-5 standard. However, not all GF-5 engine oils will be capable of meeting the dexos 1(TM) specification. - Like dexos(TM), the new ILSAC GF-5 standard will call for more sophisticated additives. The API will begin licensing marketers during October 2010, to produce and distribute GF-5 certified products, which are expected to include SAE 0W-20, 0W-30, 5W-20, 5W-30 and 10W-30 oils. Corporate Average Fuel Economy (CAFE) Requirements Effect on Fuel Economy Since CAFE standards were first introduced in 1974, the fuel economy of cars has more than doubled, while the fuel economy of light trucks has increased by more than 50 percent. Proposed CAFE standards call for a continuation of increased fuel economy in new cars and trucks. To meet these future requirements, all aspects of vehicle operation are being looked at more critically than ever before. New technology being introduced in GM vehicles designed to increase vehicle efficiency and fuel economy include direct injection, cam phasing, turbocharging and active fuel management (AFM). The demands of these new technologies on engine oil also are taken into consideration when determining new oil specifications. AFM for example can help to achieve improved fuel economy. However alternately deactivating and activating the cylinders by not allowing the intake and exhaust valves to open contributes to additional stress on the engine oil. Another industry trend for meeting tough fuel economy mandates has been a shift toward lower viscosity oils. dexos 1(TM) will eventually be offered in several viscosity grades in accordance with engine needs: SAE 0W-20, 5W-20, 0W-30 and 5W-30. Using the right viscosity grade oil is critical for proper engine performance. Always refer to the Maintenance section of a vehicle Owner Manual for the proper viscosity grade for the engine being serviced. GM Oil Life System in Conjunction With dexos (TM) Supports Extended Oil Change Intervals To help conserve oil while maintaining engine protection, many GM vehicles are equipped with the GM Oil Life System. This system can provide oil change intervals that exceed the traditional 3,000 mile (4,830 km) recommendation. The dexos (TM) specification, with its requirements for improved oil robustness, compliments the GM Oil Life System by supporting extended oil change intervals over the lifetime of a vehicle. If all GM customers with GM Oil Life System equipped vehicles would use the system as intended, GM estimates that more than 100 million gallons of oil could be saved annually. GM dexos 2(TM) Information Center Website Refer to the following General Motors website for dexos 2(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 2(TM) Engine Oil Trademark and Icons Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Oil: > 11-00-90-001 > Mar > 11 > Engine - GM dexos 1 and dexos 2(R) Oil Specifications > Page 4508 The dexos (TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos (TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos (TM)specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 2(TM) engine oil. GM dexos 2(TM) Engine Oil Specification - dexos 2(TM) is approved and recommended by GM for use in Europe starting in model year 2010 vehicles, regardless of where the vehicle was manufactured. - dexos 2(TM) is the recommended service fill oil for European gasoline engines. Important The Duramax(TM) diesel engine is the exception and requires lubricants meeting specification CJ-4. - dexos 2(TM) is the recommended service fill oil for European light-duty diesel engines and replaces GM-LL-B-025 and GM-LL-A-025. - dexos 2(TM) protects diesel engines from harmful soot deposits and is designed with limits on certain chemical components to prolong catalyst life and protect expensive emission reduction systems. It is a robust oil, resisting degradation between oil changes and maintaining optimum performance longer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Oil: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Engine Oil: All Technical Service Bulletins Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Engine Oil: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 4513 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 11-00-90-001 > Mar > 11 > Engine GM dexos 1 and dexos 2(R) Oil Specifications Engine Oil: All Technical Service Bulletins Engine - GM dexos 1 and dexos 2(R) Oil Specifications INFORMATION Bulletin No.: 11-00-90-001 Date: March 14, 2011 Subject: Global Information for GM dexos1(TM) and GM dexos2(TM) Engine Oil Specifications for Spark Ignited and Diesel Engines, Available Licensed Brands, and Service Fill for Adding or Complete Oil Change Models: 2012 and Prior GM Passenger Cars and Trucks Excluding All Vehicles Equipped with Duramax(TM) Diesel Engines GM dexos 1(TM) Information Center Website Refer to the following General Motors website for dexos 1(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 1(TM) Engine Oil Trademark and Icons The dexos(TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos‹›(TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos‹›(TM) specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 1(TM) engine oil. GM dexos 1(TM) Engine Oil Specification Important General Motors dexos 1(TM) engine oil specification replaces the previous General Motors specifications GM6094M, GM4718M and GM-LL-A-025 for most GM gasoline engines. The oil specified for use in GM passenger cars and trucks, PRIOR to the 2011 model year remains acceptable for those previous vehicles. However, dexos 1(TM) is backward compatible and can be used in those older vehicles. In North America, starting with the 2011 model year, GM introduced dexos 1(TM) certified engine oil as a factory fill and service fill for gasoline engines. The reasons for the new engine oil specification are as follows: - To meet environmental goals such as increasing fuel efficiency and reducing engine emissions. - To promote long engine life. - To minimize the number of engine oil changes in order to help meet the goal of lessening the industry's overall dependence on crude oil. dexos 1(TM) is a GM-developed engine oil specification that has been designed to provide the following benefits: - Further improve fuel economy, to meet future corporate average fuel economy (CAFE) requirements and fuel economy retention by allowing the oil to maintain its fuel economy benefits throughout the life of the oil. - More robust formulations for added engine protection and aeration performance. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 11-00-90-001 > Mar > 11 > Engine GM dexos 1 and dexos 2(R) Oil Specifications > Page 4519 - Support the GM Oil Life System, thereby minimizing the replacement of engine oil, before its life has been depleted. - Reduce the duplication of requirements for a large number of internal GM engine oil specifications. International Lubricants Standardization and Approval Committee (ILSAC) GF-5 Standard In addition to GM dexos 1(TM), a new International Lubricants Standardization and Approval Committee (ILSAC) standard called GF-5, was introduced in October 2010. - There will be a corresponding API category, called: SN Resource Conserving. The current GF-4 standard was put in place in 2004 and will become obsolete in October 2011. Similar to dexos 1(TM), the GF-5 standard will use a new fuel economy test, Sequence VID, which demands a statistically significant increase in fuel economy versus the Sequence VIB test that was used for GF-4. - It is expected that all dexos 1(TM) approved oils will be capable of meeting the GF-5 standard. However, not all GF-5 engine oils will be capable of meeting the dexos 1(TM) specification. - Like dexos(TM), the new ILSAC GF-5 standard will call for more sophisticated additives. The API will begin licensing marketers during October 2010, to produce and distribute GF-5 certified products, which are expected to include SAE 0W-20, 0W-30, 5W-20, 5W-30 and 10W-30 oils. Corporate Average Fuel Economy (CAFE) Requirements Effect on Fuel Economy Since CAFE standards were first introduced in 1974, the fuel economy of cars has more than doubled, while the fuel economy of light trucks has increased by more than 50 percent. Proposed CAFE standards call for a continuation of increased fuel economy in new cars and trucks. To meet these future requirements, all aspects of vehicle operation are being looked at more critically than ever before. New technology being introduced in GM vehicles designed to increase vehicle efficiency and fuel economy include direct injection, cam phasing, turbocharging and active fuel management (AFM). The demands of these new technologies on engine oil also are taken into consideration when determining new oil specifications. AFM for example can help to achieve improved fuel economy. However alternately deactivating and activating the cylinders by not allowing the intake and exhaust valves to open contributes to additional stress on the engine oil. Another industry trend for meeting tough fuel economy mandates has been a shift toward lower viscosity oils. dexos 1(TM) will eventually be offered in several viscosity grades in accordance with engine needs: SAE 0W-20, 5W-20, 0W-30 and 5W-30. Using the right viscosity grade oil is critical for proper engine performance. Always refer to the Maintenance section of a vehicle Owner Manual for the proper viscosity grade for the engine being serviced. GM Oil Life System in Conjunction With dexos (TM) Supports Extended Oil Change Intervals To help conserve oil while maintaining engine protection, many GM vehicles are equipped with the GM Oil Life System. This system can provide oil change intervals that exceed the traditional 3,000 mile (4,830 km) recommendation. The dexos (TM) specification, with its requirements for improved oil robustness, compliments the GM Oil Life System by supporting extended oil change intervals over the lifetime of a vehicle. If all GM customers with GM Oil Life System equipped vehicles would use the system as intended, GM estimates that more than 100 million gallons of oil could be saved annually. GM dexos 2(TM) Information Center Website Refer to the following General Motors website for dexos 2(TM) information about the different licensed brands that are currently available: http://www.gmdexos.com GM dexos 2(TM) Engine Oil Trademark and Icons Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Oil: > 11-00-90-001 > Mar > 11 > Engine GM dexos 1 and dexos 2(R) Oil Specifications > Page 4520 The dexos (TM) specification and trademarks are exclusive to General Motors, LLC. Only those oils displaying the dexos (TM) trademark and icon on the front label meet the demanding performance requirements and stringent quality standards set forth in the dexos (TM)specification. Look on the front label for any of the logos shown above to identify an authorized, licensed dexos 2(TM) engine oil. GM dexos 2(TM) Engine Oil Specification - dexos 2(TM) is approved and recommended by GM for use in Europe starting in model year 2010 vehicles, regardless of where the vehicle was manufactured. - dexos 2(TM) is the recommended service fill oil for European gasoline engines. Important The Duramax(TM) diesel engine is the exception and requires lubricants meeting specification CJ-4. - dexos 2(TM) is the recommended service fill oil for European light-duty diesel engines and replaces GM-LL-B-025 and GM-LL-A-025. - dexos 2(TM) protects diesel engines from harmful soot deposits and is designed with limits on certain chemical components to prolong catalyst life and protect expensive emission reduction systems. It is a robust oil, resisting degradation between oil changes and maintaining optimum performance longer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Specifications > Capacity Specifications Engine Oil: Capacity Specifications Engine Oil with Filter ............................................................................................................................ ............................................... 6.0 quarts (5.7 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Specifications > Capacity Specifications > Page 4523 Engine Oil: Fluid Type Specifications ENGINE OIL TYPE LOOK FOR TWO THINGS: 1.Your vehicle's engine requires oil meeting GM Standard GM6094M. 2.SAE 5W-30 is best for your vehicle. These numbers on an oil container show its viscosity, or thickness. Do not use other viscosity oils such as SAE 20W-50. Oils meeting these requirements should also have the starburst symbol on the container. This symbol indicates that the oil has been certified by the American Petroleum Institute (API). You should look for this information on the oil container, and use only those oils that are identified as meeting GM Standard GM6094M and have the starburst symbol on the front of the oil container. NOTICE: Use only engine oil identified as meeting GM Standard GM6094M and showing the American Petroleum Institute Certified For Gasoline Engines starburst symbol. Failure to use the recommended oil can result in engine damage not covered by your warranty. GM Goodwrench oil meets all the requirements for your vehicle. If you are in an area of extreme cold, where the temperature falls below -20°F (-29°C), it is recommended that you use either an SAE 5W-30 synthetic oil or an SAE 0W-30 oil. Both will provide easier cold starting and better protection for your engine at extremely low temperatures. ENGINE OIL ADDITIVES Do not add anything to your oil. The recommended oils with the starburst symbol that meet GM Standard GM6094M are all you will need for good performance and engine protection. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Specifications > Page 4524 Engine Oil: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure Important: In order to completely drain the oil from the oil pan internal baffling, the bottom of the oil pan must be level during the oil drain procedure. 1. Open the hood. 2. Remove the oil fill cap. 3. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Place a oil drain pan under the oil pan drain plug. 5. Remove the oil pan drain plug. 6. Drain the engine oil. 7. Wipe the excess oil from the drain plug hole and plug. 8. Remove the oil filter from the engine block. Important: Check the old oil filter to ensure that the filter seal is not left on the engine block. 9. Wipe the excess oil from the oil filter mounting. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Engine Oil > Component Information > Specifications > Page 4525 1. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the oil filter to the engine block. Tighten the oil filter to 30 Nm (22 ft. lbs.). 3. Install the oil drain plug to the engine block. Tighten the oil pan drain plug to 25 Nm (18 ft. lbs.). 4. Lower the vehicle. 5. Fill the crankcase with the proper quantity and grade of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 6. Remove the oil level indicator. 7. Wipe the indicator with a clean cloth. 8. Install the oil level indicator. 9. Remove the oil level indicator in order to check the level. 10. Add oil if necessary. 11. Close the hood. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > Customer Interest for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly Oil Cooler: Customer Interest Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly TECHNICAL Bulletin No.: 08-06-02-003A Date: October 27, 2010 Subject: Engine Oil Leak at Engine Oil Cooler Hose/Pipe Adapter to Engine Connection (Diagnose and Repair as Outlined) Models: 2007-2011 Chevrolet Silverado, Suburban, Tahoe 2008-2011 Chevrolet Express 2007-2011 GMC Sierra, Yukon, Yukon XL 2008-2011 GMC Savana Equipped with 4.8L, 5.3L, 6.0L or 6.2L V8 Engine (VIN Code C, M, L, J, 4, 0, 3, 5, K, Y, 8 or 2 - RPO LY2, LH6, LY5, LMF, LMG, LC9, LFA, LY6, L76, L92 or L9H) and Engine Oil Cooling System RPO KC4 Supercede: This bulletin is being revised to clarify the Subject text, add model years, Cause, Correction, graphics and part number information. Please discard Corporate Bulletin Number 08-06-02-003 (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine oil leak. Upon further investigation, the technician may find engine oil leaking from the engine oil cooler hose/pipe adapter at the point where it connects to the engine. Cause This condition may be caused by any of the following: - A damaged engine oil cooler hose/pipe adapter gasket, due to a temporary steel sealing device not being removed when the engine oil cooler hose/pipe adapter was first connected to the engine. - Previous oil leak servicing of the engine oil cooler hose/pipe adapter gasket that involved failing to remove the temporary steel sealing device. - Casting porosity at the engine oil cooler hose/pipe adapter bolt holes of the engine. - The engine oil cooler hose/pipe adapter bolts are not torqued to the proper specification. Correction 1. Perform the oil leak diagnosis procedure. Refer to Oil Leak Diagnosis in SI. 2. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 3. The temporary steel sealing device (1) is shown separately from the adapter gasket (2). The temporary steel sealing device SHOULD NOT be installed on the engine or the engine oil cooler hose/pipe adapter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > Customer Interest for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 4534 Inspect closely for the temporary steel sealing device (1) being positioned tightly to the gasket (2) as shown. Only a small corner (1) of the temporary steel sealing device may be observable, depending on orientation. Perform a visual inspection in order to verify that the oil leak is coming from the engine oil cooler hose/pipe adapter area or the gasket where it connects to the engine. ‹› If the leak is coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, proceed to Step 4. ‹› If the leak is not coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, refer to Oil Leak Diagnosis in SI. 4. To gain clearance, loosen or remove the engine oil cooler hose/pipe retaining bracket bolt (1). 5. Remove the engine oil cooler hose/pipe adapter bolts (2). 6. Remove and DISCARD both the temporary steel sealing device if present and the gasket. 7. Clean the mating surfaces of the engine oil cooler hose/pipe adapter and the engine. 8. Clean both bolt holes with brake cleaner and dry using regulated compressed air. 9. Clean both bolt threads and apply Pipe Sealant P/N 12346004 (Canada P/N 10953480) or equivalent (Loctite(R) 565) to the bolt threads. Verify that the sealant is applied 360 degrees around the bolt and extends from the tip of the bolt and covers at least 15 mm (0.59 in) of threads. 10. Install the engine oil cooler hose/pipe adapter with a NEW gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > Customer Interest for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 4535 11. Install the engine oil cooler hose/pipe adapter bolts (2) and: Tighten Tighten the bolts to 12 Nm (106 lb in). 12. Install the engine oil cooler hose/pipe retaining bracket bolt (1) and: Tighten Tighten the bolt to 25 Nm (18 lb ft). 13. Verify the correct engine oil level. 14. Verify the repair. Refer to Oil Leak Diagnosis in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > Customer Interest for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 4536 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly Oil Cooler: All Technical Service Bulletins Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly TECHNICAL Bulletin No.: 08-06-02-003A Date: October 27, 2010 Subject: Engine Oil Leak at Engine Oil Cooler Hose/Pipe Adapter to Engine Connection (Diagnose and Repair as Outlined) Models: 2007-2011 Chevrolet Silverado, Suburban, Tahoe 2008-2011 Chevrolet Express 2007-2011 GMC Sierra, Yukon, Yukon XL 2008-2011 GMC Savana Equipped with 4.8L, 5.3L, 6.0L or 6.2L V8 Engine (VIN Code C, M, L, J, 4, 0, 3, 5, K, Y, 8 or 2 - RPO LY2, LH6, LY5, LMF, LMG, LC9, LFA, LY6, L76, L92 or L9H) and Engine Oil Cooling System RPO KC4 Supercede: This bulletin is being revised to clarify the Subject text, add model years, Cause, Correction, graphics and part number information. Please discard Corporate Bulletin Number 08-06-02-003 (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine oil leak. Upon further investigation, the technician may find engine oil leaking from the engine oil cooler hose/pipe adapter at the point where it connects to the engine. Cause This condition may be caused by any of the following: - A damaged engine oil cooler hose/pipe adapter gasket, due to a temporary steel sealing device not being removed when the engine oil cooler hose/pipe adapter was first connected to the engine. - Previous oil leak servicing of the engine oil cooler hose/pipe adapter gasket that involved failing to remove the temporary steel sealing device. - Casting porosity at the engine oil cooler hose/pipe adapter bolt holes of the engine. - The engine oil cooler hose/pipe adapter bolts are not torqued to the proper specification. Correction 1. Perform the oil leak diagnosis procedure. Refer to Oil Leak Diagnosis in SI. 2. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 3. The temporary steel sealing device (1) is shown separately from the adapter gasket (2). The temporary steel sealing device SHOULD NOT be installed on the engine or the engine oil cooler hose/pipe adapter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 4542 Inspect closely for the temporary steel sealing device (1) being positioned tightly to the gasket (2) as shown. Only a small corner (1) of the temporary steel sealing device may be observable, depending on orientation. Perform a visual inspection in order to verify that the oil leak is coming from the engine oil cooler hose/pipe adapter area or the gasket where it connects to the engine. ‹› If the leak is coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, proceed to Step 4. ‹› If the leak is not coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, refer to Oil Leak Diagnosis in SI. 4. To gain clearance, loosen or remove the engine oil cooler hose/pipe retaining bracket bolt (1). 5. Remove the engine oil cooler hose/pipe adapter bolts (2). 6. Remove and DISCARD both the temporary steel sealing device if present and the gasket. 7. Clean the mating surfaces of the engine oil cooler hose/pipe adapter and the engine. 8. Clean both bolt holes with brake cleaner and dry using regulated compressed air. 9. Clean both bolt threads and apply Pipe Sealant P/N 12346004 (Canada P/N 10953480) or equivalent (Loctite(R) 565) to the bolt threads. Verify that the sealant is applied 360 degrees around the bolt and extends from the tip of the bolt and covers at least 15 mm (0.59 in) of threads. 10. Install the engine oil cooler hose/pipe adapter with a NEW gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 4543 11. Install the engine oil cooler hose/pipe adapter bolts (2) and: Tighten Tighten the bolts to 12 Nm (106 lb in). 12. Install the engine oil cooler hose/pipe retaining bracket bolt (1) and: Tighten Tighten the bolt to 25 Nm (18 lb ft). 13. Verify the correct engine oil level. 14. Verify the repair. Refer to Oil Leak Diagnosis in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Cooler, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Cooler: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 4544 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Oil Filter: Customer Interest Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 4553 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Filter: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up Oil Filter: All Technical Service Bulletins Engine - Valve Lifter Tick Noise At Start Up TECHNICAL Bulletin No.: 10-06-01-007C Date: February 09, 2011 Subject: Active Fuel Management (AFM) Engine, Valve Lifter Tick Noise at Start Up When Engine Has Been Off for 2 Hours or More (Evaluate Noise and/or Replace Valve Lifters) Models: 2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2007 Cadillac Escalade Built Prior to April 1, 2006 with 6.2L Engine RPO L92 (These engines were built with AFM Hardware but the AFM system was disabled) 2010-2011 Cadillac Escalade, Escalade ESV, Escalade EXT 2007 Chevrolet Monte Carlo 2007-2009 Chevrolet Impala 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, TrailBlazer, TrailBlazer EXT 2010-2011 Chevrolet Camaro SS 2007-2011 GMC Envoy, Envoy XL, Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali 2007-2008 Pontiac Grand Prix 2008-2009 Pontiac G8 2007-2009 Saab 9-7X Equipped with AFM (Active Fuel Management) and V8 Engine RPO L76, L94, L99, LC9, LFA, LH6, LMG, LS4, LY5 or LZ1 Attention: This bulletin only applies to the AFM V8 engines listed above. It DOES NOT apply to Non-AFM Engines. If you are dealing with a Non-AFM engine that is experiencing a similar noise, please refer to Engine Mechanical > Diagnostic Information and Procedures > Symptoms in SI. Supercede: This bulletin is being revised to add models. Please discard Corporate Bulletin Number 10-06-01-007B (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine valve lifter tick noise that occurs after the engine has been shut off for at least two hours. The tick noise may last from two seconds to ten minutes. Cause This condition may be caused by any of the following: - Aerated oil in the valve lifter body, resulting in the valve lifter being unable to purge the air quickly. - A low engine oil level or incorrect oil viscosity. - Dirty or contaminated oil. - A low internal valve lifter oil reservoir level. - Debris in the valve lifter. - A high valve lifter leak down rate. Correction If the SI diagnostics do not isolate the cause of this valve lifter tick noise and normal oil pressure is noted during the concern, perform the following steps: 1. Inspect the engine oil condition and level. Refer to Owner Manual > Service and Appearance Care > Checking Things Under the Hood > Description and Operation > Engine Oil in SI. ‹› If the engine oil is more than one quart low, an incorrect oil viscosity is being used or if poor quality/contamination is observed, change the oil and filter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Filter: > 10-06-01-007C > Feb > 11 > Engine - Valve Lifter Tick Noise At Start Up > Page 4559 Allow at least a two hour soak time between engine OFF and start up when evaluating the tick noise. 2. Start the engine and evaluate the valve lifter tick noise. ‹› If the valve lifter tick noise is still present, replace all 16 valve lifters. Refer to Valve Lifter Replacement in SI. Parts Information Note A V8 AFM engine requires 8 AFM lifters and 8 non-AFM lifters for a total of 16 lifters. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Filter: > 07-06-01-016B > Jul > 09 > Engine - Noise/Damage Oil Filter Application Importance Oil Filter: All Technical Service Bulletins Engine - Noise/Damage Oil Filter Application Importance INFORMATION Bulletin No.: 07-06-01-016B Date: July 27, 2009 Subject: Information on Internal Engine Noise or Damage After Oil Filter Replacement Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being updated to add model years. Please discard Corporate Bulletin Number 07-06-01-016A (Section 06 - Engine/Propulsion System). Important Engine damage that is the result of an incorrect or improperly installed engine oil filter is not a warrantable claim. The best way to avoid oil filter quality concerns is to purchase ACDelco(R) oil filters directly from GMSPO. Oil filter misapplication may cause abnormal engine noise or internal damage. Always utilize the most recent parts information to ensure the correct part number filter is installed when replacing oil filters. Do not rely on physical dimensions alone. Counterfeit copies of name brand parts have been discovered in some aftermarket parts systems. Always ensure the parts you install are from a trusted source. Improper oil filter installation may result in catastrophic engine damage. Refer to the appropriate Service Information (SI) installation instructions when replacing any oil filter and pay particular attention to procedures for proper cartridge filter element alignment. If the diagnostics in SI (Engine Mechanical) lead to the oil filter as the cause of the internal engine noise or damage, dealers should submit a field product report. Refer to Corporate Bulletin Number 02-00-89-002I (Information for Dealers on How to Submit a Field Product Report). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Filter: > 07-06-01-016B > Jul > 09 > Engine - Noise/Damage Oil Filter Application Importance Oil Filter: All Technical Service Bulletins Engine - Noise/Damage Oil Filter Application Importance INFORMATION Bulletin No.: 07-06-01-016B Date: July 27, 2009 Subject: Information on Internal Engine Noise or Damage After Oil Filter Replacement Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being updated to add model years. Please discard Corporate Bulletin Number 07-06-01-016A (Section 06 - Engine/Propulsion System). Important Engine damage that is the result of an incorrect or improperly installed engine oil filter is not a warrantable claim. The best way to avoid oil filter quality concerns is to purchase ACDelco(R) oil filters directly from GMSPO. Oil filter misapplication may cause abnormal engine noise or internal damage. Always utilize the most recent parts information to ensure the correct part number filter is installed when replacing oil filters. Do not rely on physical dimensions alone. Counterfeit copies of name brand parts have been discovered in some aftermarket parts systems. Always ensure the parts you install are from a trusted source. Improper oil filter installation may result in catastrophic engine damage. Refer to the appropriate Service Information (SI) installation instructions when replacing any oil filter and pay particular attention to procedures for proper cartridge filter element alignment. If the diagnostics in SI (Engine Mechanical) lead to the oil filter as the cause of the internal engine noise or damage, dealers should submit a field product report. Refer to Corporate Bulletin Number 02-00-89-002I (Information for Dealers on How to Submit a Field Product Report). Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > Page 4569 Oil Filter: Service and Repair Engine Oil and Oil Filter Replacement Removal Procedure Important: In order to completely drain the oil from the oil pan internal baffling, the bottom of the oil pan must be level during the oil drain procedure. 1. Open the hood. 2. Remove the oil fill cap. 3. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. Place a oil drain pan under the oil pan drain plug. 5. Remove the oil pan drain plug. 6. Drain the engine oil. 7. Wipe the excess oil from the drain plug hole and plug. 8. Remove the oil filter from the engine block. Important: Check the old oil filter to ensure that the filter seal is not left on the engine block. 9. Wipe the excess oil from the oil filter mounting. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter, Engine > Component Information > Technical Service Bulletins > Page 4570 1. Lubricate the oil filter seal with clean engine oil. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the oil filter to the engine block. Tighten the oil filter to 30 Nm (22 ft. lbs.). 3. Install the oil drain plug to the engine block. Tighten the oil pan drain plug to 25 Nm (18 ft. lbs.). 4. Lower the vehicle. 5. Fill the crankcase with the proper quantity and grade of engine oil. Refer to Approximate Fluid Capacities and Fluid and Lubricant Recommendations. 6. Remove the oil level indicator. 7. Wipe the indicator with a clean cloth. 8. Install the oil level indicator. 9. Remove the oil level indicator in order to check the level. 10. Add oil if necessary. 11. Close the hood. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter Adapter > Component Information > Service and Repair Oil Filter Adapter: Service and Repair Oil Filter Adapter Replacement Removal Procedure 1. Drain the engine oil. 2. Remove the oil filter. 3. Remove the oil filter adapter (4). Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install the oil filter adapter (4). Tighten the adapter to 55 Nm (40 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Filter Adapter > Component Information > Service and Repair > Page 4574 2. Install the oil filter. 3. Refill the engine oil. Refer to Approximate Fluid Capacities and/or Fluid and Lubricant Recommendations. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Level Sensor > Component Information > Service and Repair Oil Level Sensor: Service and Repair Engine Oil Level Sensor and/or Switch Replacement Removal Procedure 1. Drain the engine oil. Refer to Engine Oil and Oil Filter Replacement. 2. Disconnect the oil level sensor electrical connector (3). 3. Remove the oil level sensor from the oil pan. Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install the oil level sensor to the oil pan. Tighten the sensor to 13 Nm (115 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Level Sensor > Component Information > Service and Repair > Page 4578 2. Connect the oil level sensor electrical connector (3). 3. Fill the engine oil. Refer to Engine Oil and Oil Filter Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting Oil Line: Service and Repair Engine Oil Cooler Pipe/Hose Quick Connect Fitting Engine Oil Cooler Pipe/Hose Quick Connect Fitting Removal Procedure 1. Disengage the plastic caps from the quick connect fittings. Pull the caps back along the pipe. 2. Using a bent-tip screwdriver or equivalent, pull on one of the open ends of the retaining ring in order to rotate the retaining ring. 3. Rotate the retaining ring around the quick connector until the retaining ring is out of position and can be completely removed. Discard the retaining rings. 4. Remove the engine oil cooler line from the quick connector fitting at the radiator. Pull the lines straight out from the connectors. 5. Clean all of the components in a suitable solvent, and dry them with compressed air. 6. Inspect the fittings, the connectors, the cooler lines, and the cooler for damage, distortion, or restriction. Replace parts as necessary. Installation Procedure 1. Important: When performing the following procedure, do not reuse the old retaining rings. Replace the old retaining rings with new ones. Do not install the new retaining ring onto the fitting by pushing the retaining ring down over the fitting. Install a new retaining ring into each quick connector fitting. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4586 2. Hook one of the open ends of the retaining ring in one of the slots in the quick connector. 3. Rotate the retaining ring around the connector until the retaining ring is positioned with all 3 ears through the 3 slots. 4. Ensure the 3 retaining ring ears can be seen from the inside of the connector and the retaining ring can move freely in the slots. 5. Install the engine oil cooler line into the quick connector fitting until a click is heard or felt. Pull back on the engine oil cooler lines to ensure a proper connection. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4587 6. Important: Do not manually depress the retaining clip when installing the plastic cap. Snap the plastic cap onto the quick connect fitting. 7. Ensure that the plastic cap is fully seated against the fitting. 8. Ensure that no gap is present between the cap and the fitting. 9. Inspect and fill the engine oil to the proper level. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4588 Oil Line: Service and Repair Engine Oil Cooler Hose/Pipe Replacement Engine Oil Cooler Hose/Pipe Replacement (2WD) Removal Procedure The optional oil cooler is either an integral part of the radiator or a separate unit placed in front of the radiator. The cooler lines and hoses are serviceable. 1. Disconnect the engine oil cooler quick connect fittings. 2. If equipped with a 5.3L or 6.0L engine, perform the following: 1. Open the oil cooler hose clip located on the lower fan shroud. 2. Remove the oil cooler hoses from the clip. 3. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 4. If equipped with a 8.1L engine, perform the following: 5. Remove the oil cooler hoses from the clip. 6. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4589 7. If equipped, remove the engine shield bolts. 8. Remove the engine shield. 9. If equipped with a 5.3L or 6.0L engine, perform the following: 1. Remove the oil cooler hose bracket bolt (1). 2. Remove the oil cooler hose adapter bolts (2). 3. Remove the oil cooler hose assembly and gasket. Discard the gasket. 4. Inspect the fittings, connectors and cooler hoses for damage or distortion. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4590 10. If equipped with a 8.1L engine, perform the following: 1. Remove the oil cooler hose bracket bolt. 2. Disconnect the quick connect fittings (1) at the engine. 3. Remove the oil cooler hose assembly. Discard the gasket. 4. Inspect the fittings, connectors and cooler hoses for damage or distortion. Installation Procedure 1. Important: A distinct snap should be heard when assembling the tube ends of the hose assembly to the quick connectors. To ensure the tube is fully inserted into the connector, check by giving the tube a forceful pull. If equipped with a 8.1L engine, perform the following: 1. Install the oil cooler hose assembly and a NEW gasket. 2. Connect the quick connect fittings (1) at the engine. 3. Notice: Refer to Fastener Notice in Service Precautions. Install the oil cooler hose bracket bolt. Tighten the bolt to 50 Nm (37 ft. lbs.). 2. If equipped with a 5.3L or 6.0L engine, perform the following: 1. Install the oil cooler hose assembly and a NEW gasket. 2. Install the oil cooler hose adapter bolts (2). Tighten the bolts to 12 Nm (106 inch lbs.). 3. Install the oil cooler hose bracket bolt (1). Tighten the bolt to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4591 3. If equipped, install the engine shield. 4. Install the engine shield bolts. Tighten the bolts to 20 Nm (15 ft. lbs.). 5. Lower the vehicle. 6. If equipped with a 5.3L or 6.0L engine, perform the following: 1. Install the oil cooler hoses to the hose clip on the fan shroud. 2. Snap the oil cooler hose clip shut. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Line, Engine > Component Information > Service and Repair > Engine Oil Cooler Pipe/Hose Quick Connect Fitting > Page 4592 7. Important: ^ Ensure the oil cooler line being installed has a plastic cap on the end that connects to the quick connect fitting. If no plastic cap exists, or the plastic cap is damaged, obtain a new cap. Install the cap onto the cooler line prior cooler line installation. ^ Do not use the plastic cap in order to install the cooler line into the fitting. If equipped with a 8.1L engine perform the following: 8. Install the oil cooler hoses to the clip. 9. Connect the engine oil cooler quick connect fittings. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Specifications Oil Pan: Specifications Oil Pan M6 Bolts - Oil Pan-to-Rear Housing ....................................................................................................................................... 12 Nm (106 inch lbs.) Oil Pan M8 Bolts - Oil Pan-to-Engine Block and Oil Pan-to-Front Cover ................................................................................................ 25 Nm (18 ft. lbs.) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement Oil Pan: Service and Repair Oil Pan Cover Replacement Oil Pan Cover Replacement Removal Procedure 1. Drain the engine oil. 2. Remove the oil pan cover bolts (1), cover (2), and gasket (3). 3. Discard the gasket. Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install a new oil pan cover gasket (3), the cover (2) and bolts (1). Tighten the bolts to 12 Nm (106 inch lbs.). 2. Refill the engine oil. Refer to Approximate Fluid Capacities and/or Fluid and Lubricant Recommendations. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4598 Oil Pan: Service and Repair Oil Pan Replacement Oil Pan Replacement Removal Procedure 1. If equipped with 4-wheel drive (4WD), remove the inner axle housing nuts and washers from the bracket. 2. Support the front drive axle with a suitable jack. 3. If equipped with 4WD, remove the differential carrier lower mounting bolt and nut. 4. If equipped with 4WD, remove the differential carrier upper mounting bolt and nut. 5. Lower the front drive axle. 6. Remove the transmission cover bolt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4599 7. If equipped, remove the oil pan skid plate bolts. 8. Remove the oil pan skid plate. 9. Remove the crossbar bolts. 10. Remove the crossbar. 11. Remove the transmission cover bolt and cover. 12. Drain the engine oil and remove the engine oil filter. 13. Re-install the drain plug and oil filter until snug. 14. If equipped with the 4L60-E automatic transmission, remove the transmission bolt and stud on the right side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4600 15. Remove the bottom bolt on the left side. 16. If equipped with the 4L80-E automatic transmission, remove the transmission converter cover bolts. 17. Disconnect the oil level sensor electrical connector (3). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4601 18. Remove the battery cable channel bolt. 19. Slide the channel pin out of the oil pan tab. 20. Remove the following from the positive battery cable clip: ^ Engine wiring harness clip ^ Positive battery cable clip 21. Remove the engine oil cooler lines from the positive battery cable clip. 22. Remove the positive battery cable clip bolt and clip. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4602 23. Remove the oil pan bolts. 24. Remove the oil pan. 25. Important: DO NOT allow foreign material to enter the oil passages of the oil pan, cap or cover the openings as required. Drill (3) out the oil pan gasket retaining rivets (2), if required. 26. Remove the gasket (1) from the pan. 27. Discard the gasket and rivets. 28. If required, clean and inspect the engine oil pan. Refer to Oil Pan Cleaning and Inspection. Installation Procedure Important: ^ The alignment of the structural oil pan is critical. The rear bolt hole locations of the oil pan provide mounting points for the transmission bellhousing. To ensure the rigidity of the powertrain and correct transmission alignment, it is important that the rear of the block and the rear of the oil pan must NEVER protrude beyond the engine block and transmission bellhousing plane. ^ Do not reuse the oil pan gasket. ^ It is not necessary to rivet the NEW gasket to the oil pan. 1. Apply a 5 mm (0.2 inch) bead of sealant 20 mm (0.8 inch) long to the engine block. Apply the sealant directly onto the tabs of the front cover gasket that protrudes into the oil pan surface. Refer to Sealers, Adhesives, and Lubricants. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4603 2. Apply a 5 mm (0.2 inch) bead of sealant 20 mm (0.8 inch) long to the engine block. Apply the sealant directly onto the tabs of the rear cover gasket that protrudes into the oil pan surface. Refer to Sealers, Adhesives, and Lubricants. 3. Important: Be sure to align the oil gallery passages in the oil pan and engine block properly with the oil pan gasket. Pre-assemble the oil pan gasket to the pan. ^ Install the gasket onto the pan. ^ Install the oil pan bolts to the pan and through the gasket. 4. Install the oil pan, gasket and bolts to the engine block. 5. Tighten the oil pan bolts until snug. Do not overtighten. 6. Install the transmission converter cover bolts until snug, if equipped with the 4L80-E automatic transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4604 7. Install the transmission bolt and stud on the right side until snug, if equipped with the 4L60-E automatic transmission. 8. Notice: Refer to Fastener Notice in Service Precautions. Install the bottom bolt on the left side until snug. 1. Tighten the oil pan and oil pan-to-oil pan front cover bolts to 25 Nm (18 ft. lbs.). 2. Tighten the oil pan-to-rear cover bolts to 12 Nm (106 inch lbs.). 3. Tighten the bellhousing, converter cover, and transmission bolts/stud to 50 Nm (37 ft. lbs.). 9. Install the positive battery cable clip and bolt to the oil pan. Tighten the bolt to 9 Nm (80 inch lbs.). 10. Install the engine oil cooler lines to the positive battery cable clip. 11. Install the following to the positive battery cable clip: ^ Engine wiring harness clip ^ Positive battery cable clip Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4605 12. Slide the channel pin in to the oil pan tab. 13. Install the battery cable channel bolt. Tighten the bolt to 12 Nm (106 inch lbs.). 14. Connect the oil level sensor electrical connector (3). 15. Install the transmission cover and bolt. Tighten the bolt to 12 Nm (106 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4606 16. Install the crossbar. 17. Install the crossbar bolts. Tighten the bolts to 100 Nm (74 ft. lbs.). 18. If equipped, install the oil pan skid plate. 19. Install the oil pan skid plate bolts. Tighten the bolts to 20 Nm (15 ft. lbs.). 20. Install the transmission cover bolts. Tighten the bolt to 12 Nm (106 inch lbs.). 21. Raise the front drive axle into position. 22. If equipped with 4WD, install the differential carrier upper mounting bolt and nut until snug. Do not tighten at this time. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pan, Engine > Component Information > Service and Repair > Oil Pan Cover Replacement > Page 4607 23. If equipped with 4WD, install the differential carrier lower mounting bolt and nut. Tighten the bolts to 100 Nm (75 ft. lbs.). 24. If equipped with 4WD, install the inner axle housing washers and nuts to the bracket. Tighten the nuts to 100 Nm (75 ft. lbs.). 25. Remove the jack from the front drive axle. 26. Install new engine oil and a new oil filter. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sender > Component Information > Diagrams Oil Pressure Sender: Diagrams Displays and Gages Connector End Views Engine Oil Pressure (EOP) Sensor - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 4619 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 4625 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 4626 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 4627 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pick Up/Strainer > Component Information > Service and Repair Oil Pick Up/Strainer: Service and Repair Oil Pump, Screen, and Crankshaft Oil Deflector Replacement Removal Procedure 1. Remove the oil pan. 2. Remove the engine front cover. 3. Remove the oil pump screen bolt and nuts. 4. Remove the oil pump screen with O-ring seal. 5. Remove the O-ring seal from the pump screen. 6. Discard the O-ring seal. 7. Remove the remaining crankshaft oil deflector nuts. 8. Remove the crankshaft oil deflector. 9. Remove the oil pump bolts. Important: Do not allow dirt or debris to enter the oil pump assembly, cap end as necessary. 10. Remove the oil pump. 11. If required, clean and inspect the oil pump. Refer to Oil Pump Cleaning and Inspection. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pick Up/Strainer > Component Information > Service and Repair > Page 4631 1. Align the splined surfaces of the crankshaft sprocket and the oil pump drive gear and install the oil pump. 2. Install the oil pump onto the crankshaft sprocket until the pump housing contacts the face of the engine block. Notice: Refer to Fastener Notice in Service Precautions. 3. Install the oil pump bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 4. Install the crankshaft oil deflector and nuts until snug. 5. Lubricate a NEW oil pump screen O-ring seal with clean engine oil. 6. Install the NEW O-ring seal onto the oil pump screen. Important: Push the oil pump screen tube completely into the oil pump prior to tightening the bolt. Do not allow the bolt to pull the tube into the pump. Align the oil pump screen mounting brackets with the correct crankshaft bearing cap studs. 7. Install the oil pump screen. 8. Install the oil pump screen bolt and nuts. 1. Tighten the bolt to 12 Nm (106 inch lbs.). 2. Tighten the nuts to 25 Nm (18 ft. lbs.). 9. Install the engine front cover. 10. Install the oil pan. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pump, Engine > Engine Oil Pressure > Component Information > Specifications > Engine Mechanical Specifications (LQ4 VIN U) Engine Oil Pressure: Specifications Engine Mechanical Specifications (LQ4 VIN U) Oil Pressure - Minimum - Hot 41 kPa at 1,000 engine RPM .............................................................................................................................................. 124 kPa at 2,000 engine RPM 165 kPa at 4,000 engine RPM ................................................................................................................................................ 6 psig at 1,000 engine RPM 18 psig at 2,000 engine RPM ................................................................................................................................................ 24 psig at 4,000 engine RPM Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pump, Engine > Engine Oil Pressure > Component Information > Specifications > Engine Mechanical Specifications (LQ4 VIN U) > Page 4637 Engine Oil Pressure: Specifications Engine Mechanical Specifications (LQ9 VIN N) Oil Pressure - Minimum - Hot 41 kPa at 1,000 engine RPM .............................................................................................................................................. 124 kPa at 2,000 engine RPM 165 kPa at 4,000 engine RPM ................................................................................................................................................ 6 psig at 1,000 engine RPM 18 psig at 2,000 engine RPM ................................................................................................................................................ 24 psig at 4,000 engine RPM Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Engine Lubrication > Oil Pump, Engine > Engine Oil Pressure > Component Information > Specifications > Page 4638 Engine Oil Pressure: Testing and Inspection Oil Pressure Diagnosis and Testing Tools Required ^ EN-47971 Oil Pressure Gage Adapter ^ J 21867 Pressure Gage 1. With the vehicle on a level surface, run the vehicle for a few minutes. Allow adequate drain down time, 2-3 minutes, and measure the oil level. 2. If required, add the recommended grade engine oil and fill the crankcase until the oil level measures full on the oil level indicator. 3. Run the engine briefly, 10-15 seconds, and verify low or no oil pressure on the vehicle gage or light. 4. Listen for a noisy valve train or a knocking noise. 5. Inspect for the following conditions: ^ Oil diluted by water or glycol antifreeze ^ Foamy oil 6. Remove the oil filter and install the EN-47971 (1). 7. Install the J 21867 (2), or equivalent to the EN-47971 (1). 8. Run the engine and measure the engine oil pressure. 9. Compare the readings to Engine Mechanical Specifications (LR4 VIN V) Engine Mechanical Specifications (LM7 VIN T) Engine Mechanical Specifications (L33 VIN B) Engine Mechanical Specifications (L59 VIN Z) Engine Mechanical Specifications (LQ4 VIN U) Engine Mechanical Specifications (LQ9 VIN N). 10. If the engine oil pressure is below specifications, inspect the engine for 1 or more of the following conditions: ^ Oil pump worn or dirty Refer to Oil Pump Cleaning and Inspection. ^ Oil pump-to-engine block bolts loose Refer to Oil Pump, Screen and Crankshaft Oil Deflector Installation. ^ Oil pump screen loose, plugged, or damaged ^ Oil pump screen O-ring seal missing or damaged ^ Malfunctioning oil pump pressure relief valve ^ Excessive bearing clearance ^ Cracked, porous, or restricted oil galleries ^ Oil gallery plugs missing or incorrectly installed Refer to Engine Block Plug Installation. ^ Broken valve lifters Repair as necessary. 11. If the oil pressure reading on the J 21867, or equivalent, is within specifications, inspect for the following conditions: ^ Plugged or incorrect oil filter and/or malfunctioning oil bypass valve The valve is now internal to the filter. ^ Malfunctioning oil pressure gage or sensor Repair, as necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Technical Service Bulletins > Engine - Intake Manifold Inspection/Replacement Intake Manifold: Technical Service Bulletins Engine - Intake Manifold Inspection/Replacement INFORMATION Bulletin No.: 00-06-01-026C Date: February 03, 2010 Subject: Intake Manifold Inspection/Replacement After Severe Internal Engine Damage Models: 2010 and Prior Passenger Cars and Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to include additional model years. Please discard Corporate Bulletin Number 00-06-01-026B (Section 06 - Engine). When replacing an engine due to internal damage, extreme care should be taken when transferring the intake manifold to the new Goodwrench service engine long block. Internal damage may result in the potential discharge of internal engine component debris in the intake manifold via broken pistons and/or bent, broken, or missing intake valves. After removing the intake manifold from the engine, the technician should carefully inspect all of the cylinder head intake ports to see if the valve heads are still present and not bent. Usually when the valve heads are missing or sufficiently bent, internal engine component debris will be present to varying degrees in the intake port of the cylinder head. If this debris is present in any of the cylinder head intake ports, the intake manifold should be replaced. This replacement is required due to the complex inlet runner and plenum configuration of most of the intake manifolds, making thorough and complete component cleaning difficult and nearly impossible to verify complete removal of debris. Re-installation of an intake manifold removed from an engine with deposits of internal engine component debris may result in the ingestion of any remaining debris into the new Goodwrench service engine. This may cause damage or potential failure of the new service engine. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Technical Service Bulletins > Page 4643 Intake Manifold: Specifications Throttle Body Nuts ............................................................................................................................... .................................................. 10 Nm (89 inch lbs.) Throttle Body Studs ......................................... ........................................................................................................................................ 6 Nm (53 inch lbs.) Intake Manifold Bolts - First Pass in Sequence ........................................................................................................................................ 5 Nm (44 inch lbs.) Intake Manifold Bolts - Final Pass in Sequence ..................................................................................................................................... 10 Nm (89 inch lbs.) Intake Manifold Sight Shield Bolt .......................................................................................................................................................... 10 Nm (89 inch lbs.) Intake Manifold Sight Shield Retainer Bolt ............................................................................................................................................. 5 Nm (44 inch lbs.) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement Intake Manifold: Service and Repair Intake Manifold Replacement Intake Manifold Replacement Removal Procedure 1. Important: The intake manifold, throttle body, fuel rail, and injectors may be removed as an assembly. If not servicing the individual components, remove the manifold as a complete assembly. Remove the throttle body. 2. Remove the fuel injectors. 3. Disconnect the following electrical connectors: ^ Manifold absolute pressure (MAP) sensor (1) ^ Knock sensor (2) 4. Remove the knock sensor harness electrical connector from the intake manifold. 5. Set the electrical harness aside. 6. If equipped with vacuum assisted brakes, remove the vacuum brake booster hose from the rear of the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4646 7. Remove the positive crankcase ventilation (PCV) hose. 8. Remove the MAP sensor (1) from the intake manifold. 9. Remove the evaporative emission (EVAP) purge solenoid vent tube by performing the following: 1. Remove the EVAP tube end from the solenoid (1). 2. Remove the EVAP tube end from the vapor pipe (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4647 10. Remove the EVAP purge solenoid bolt (2), solenoid (3), and isolator (1) from the intake manifold. 11. Loosen the intake manifold bolts. 12. Remove the intake manifold. 13. Remove the intake manifold gaskets (1) from the intake manifold. 14. Discard the old intake manifold gaskets. 15. If required, clean and inspect the intake manifold. Refer to Intake Manifold Cleaning and Inspection. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4648 1. Install NEW intake manifold gaskets (1) to the intake manifold. 2. Install the intake manifold. 3. Apply a 5 mm (0.2 inch) band of threadlocker to the threads of the intake manifold bolts. Refer to Sealers, Adhesives, and Lubricants for the correct part number. 4. Notice: Refer to Fastener Notice in Service Precautions. Tighten the intake manifold bolts. ^ Tighten the bolts a first pass in sequence to 5 Nm (44 inch lbs.). ^ Tighten the bolts a final pass in sequence to 10 Nm (89 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4649 5. Install the EVAP purge solenoid (3), isolator (1), and bolt (2) to the intake manifold. Tighten the bolt to 10 Nm (89 inch lbs.). 6. Install the EVAP purge solenoid vent tube to the solenoid (1) and vapor pipe (2). 7. Important: Lightly coat the MAP sensor seal with clean engine oil before installing. Install the MAP sensor (1) to the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4650 8. Install the PCV hose. 9. If equipped with vacuum assisted brakes, install the vacuum brake booster hose to the rear of the intake manifold. 10. Route the electrical harness into position over the engine. 11. Connect the knock sensor harness electrical connector to the intake manifold. 12. Connect the following electrical connectors. ^ MAP sensor (1) ^ Knock sensor (2) 13. Install the fuel injectors. 14. Install the throttle body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4651 Intake Manifold: Service and Repair Upper Intake Manifold Replacement Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Removal Procedure 1. Loosen the intake manifold sight shield bolt. 2. Remove the sight shield from the sight shield retainer. 3. Remove the sight shield retainer bolts and the retainer, if required. Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install the sight shield retainer and the bolts, if required. Tighten the bolts to 5 Nm (44 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4652 2. Notice: Use care when installing the engine sight shield to avoid contacting the manifold absolute pressure (MAP) sensor wire harness connector. Loss of engine performance or engine damage may result. Install the intake manifold sight shield to the retainer. Tighten the bolt to 10 Nm (89 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4653 Intake Manifold: Service and Repair Upper Intake Manifold Sight Shield Replacement Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)) Removal Procedure 1. Loosen the intake manifold sight shield bolt. 2. Remove the sight shield from the sight shield retainer. 3. Loosen the left fuel rail cover bolts. 4. Remove the left fuel rail cover. 5. Remove the surge tank/heater hoses from the clip on the right fuel rail cover. 6. Loosen the right fuel rail cover bolts. 7. Remove the right fuel rail cover. 8. Remove the sight shield retainer bolts and retainer, if required. Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install the sight shield retainer and bolts, if required. Tighten the bolts to 5 Nm (44 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Intake Manifold > Component Information > Service and Repair > Intake Manifold Replacement > Page 4654 2. Install the right fuel rail cover. 3. Tighten the right fuel rail cover bolts. Tighten the bolts to 9 Nm (80 inch lbs.). 4. Install the surge tank/heater hoses to the clip on the right fuel rail cover. 5. Install the left fuel rail cover. 6. Tighten the left fuel rail cover bolts. Tighten the bolts to 9 Nm (80 inch lbs.). 7. Notice: Use care when installing the engine sight shield to avoid contacting the manifold absolute pressure (MAP) sensor wire harness connector. Loss of engine performance or engine damage may result. Install the sight shield to the sight shield retainer. 8. Tighten the intake manifold sight shield bolt. Tighten the bolt to 10 Nm (89 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Crankshaft Main Bearing Seal > Component Information > Service and Repair Crankshaft Main Bearing Seal: Service and Repair Crankshaft Rear Oil Seal Replacement (4.8L, 5.3L, and 6.0L Engines) Tools Required ^ J 41479 Crankshaft Rear Oil Seal Installer Removal Procedure 1. Remove the engine flywheel. 2. Remove the crankshaft rear oil seal (141) from the rear housing. Installation Procedure Important: ^ The flywheel spacer (if applicable) must be removed prior to oil seal installation. ^ Do not lubricate the oil seal inside diameter (ID) or the crankshaft surface. ^ Do not reuse the crankshaft rear oil seal. Install a NEW oil seal. 1. Important: Note the installation direction of the oil seal. The new design oil seal is a reverse lip type seal. For proper orientation, THIS SIDE OUT has been marked on the seal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Crankshaft Main Bearing Seal > Component Information > Service and Repair > Page 4659 Lubricate the outside diameter (OD) of the oil seal with clean engine oil. 2. Inspect the seal and identify the THIS SIDE OUT markings for proper orientation. 3. Lubricate the rear housing oil seal bore with clean engine oil. 4. Install the J 41479 tapered cone (2) and bolts onto the rear of the crankshaft. 5. Tighten the bolts until snug. Do not overtighten. 6. Install the rear oil seal onto the tapered cone (2) and push the seal to the rear cover bore. Install the oil seal with the markings THIS SIDE OUT facing away from the engine. 7. Thread the J 41479 threaded rod into the tapered cone until the tool (1) contacts the oil seal. 8. Align the oil seal into the tool (1). 9. Rotate the handle of the tool (1) clockwise until the seal enters the rear cover and bottoms into the cover bore. 10. Remove the J 41479. 11. Install the engine flywheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Front Crankshaft Seal > Component Information > Service and Repair Front Crankshaft Seal: Service and Repair Crankshaft Front Oil Seal Replacement Tools Required ^ J 41478 Crankshaft Front Oil Seal Installer Removal Procedure 1. Remove the crankshaft balancer. 2. Remove the crankshaft oil seal (1) from the front cover. Installation Procedure Important: ^ Do not lubricate the oil seal sealing surface. ^ Do not reuse the crankshaft oil seal. 1. Lubricate the outer edge of the oil seal (1) with clean engine oil. 2. Lubricate the front cover oil seal bore with clean engine oil. 3. Install the crankshaft front oil seal onto the J 41478 guide. 4. Install the J 41478 threaded rod (with nut, washer, guide, and oil seal) into the end of the crankshaft. 5. Use the J 41478 in order to install the oil seal into the cover bore. 1. Use a wrench and hold the hex on the installer bolt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Front Crankshaft Seal > Component Information > Service and Repair > Page 4663 2. Use a second wrench and rotate the installer nut clockwise until the seal bottoms in the cover bore. 3. Remove the J 41478. 4. Inspect the oil seal for proper installation. The oil seal should be installed evenly and completely into the front cover bore. 6. Install the crankshaft balancer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Valve Guide Seal > Component Information > Service and Repair Valve Guide Seal: Service and Repair Valve Stem Oil Seal and Valve Spring Replacement Tools Required ^ J 22794 Spark Plug Port Adapter ^ J 38606 Valve Spring Compressor Removal Procedure 1. Remove the rocker arm. 2. Disconnect the spark plug wire at the spark plug. ^ Twist each plug wire boot 1/2 turn. ^ Pull only on the boot in order to remove the wire from the spark plug. 3. Important: Remove the spark plugs from the cylinder head with the engine at room temperature. Loosen the spark plug 1 or 2 turns. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Valve Guide Seal > Component Information > Service and Repair > Page 4667 4. Brush or air blast away any dirt or debris from around the spark plug. 5. Remove the spark plug. 6. Install the J 22794 into the spark plug hole. 7. Attach an air hose to the J 22794. 8. Apply compressed air to the J 22794 in order to hold the valves in place. 9. Use the J 38606 in order to compress the valve spring. 10. Remove the valve stem keys (2). 11. Carefully release the valve spring tension. 12. Remove the J 38606. 13. Remove the valve spring cap (3). 14. Remove the valve spring (4). 15. Remove the valve stem oil seal and shim (1, 5). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Valve Guide Seal > Component Information > Service and Repair > Page 4668 1. Clean the cylinder head valve spring seat and/or shim area. 2. Lubricate the valve guide and valve stem oil seal with clean engine oil. 3. Install the valve stem oil seal and shim (1, 5). 4. Install the valve spring (4). 5. Install the valve spring cap (3). 6. Compress the valve spring using the J 38606. 7. Install the valve keys. ^ Use grease in order to hold the valve keys in place. ^ Make sure the keys seat properly in the groove of the valve stem. ^ Carefully release the valve spring pressure, making sure the valve keys stay in place. ^ Remove the J 38606. ^ Tap the end of the valve stem with a plastic faced hammer to seat the keys, if necessary. 8. Remove the J 22794 from the spark plug port. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Seals and Gaskets, Engine > Valve Guide Seal > Component Information > Service and Repair > Page 4669 9. Notice: Refer to Fastener Notice in Service Precautions. Hand start the spark plug. Tighten the spark plug to 15 Nm (11 ft. lbs.). 10. Install the spark plug wires at the ignition coil. 11. Install the spark plug wire to the spark plug. 12. Inspect the wires for proper installation: ^ Push sideways on each boot in order to check for proper installation. ^ Reinstall any loose boot. 13. Install the rocker arm. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Level Sensor > Component Information > Service and Repair Oil Level Sensor: Service and Repair Engine Oil Level Sensor and/or Switch Replacement Removal Procedure 1. Drain the engine oil. Refer to Engine Oil and Oil Filter Replacement. 2. Disconnect the oil level sensor electrical connector (3). 3. Remove the oil level sensor from the oil pan. Installation Procedure 1. Notice: Refer to Fastener Notice in Service Precautions. Install the oil level sensor to the oil pan. Tighten the sensor to 13 Nm (115 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Level Sensor > Component Information > Service and Repair > Page 4674 2. Connect the oil level sensor electrical connector (3). 3. Fill the engine oil. Refer to Engine Oil and Oil Filter Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sender > Component Information > Diagrams Oil Pressure Sender: Diagrams Displays and Gages Connector End Views Engine Oil Pressure (EOP) Sensor - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 4689 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 4695 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 06-08-44-033B > Aug > 08 > Audio System - Poor AM and FM Band Reception Antenna Cable: All Technical Service Bulletins Audio System - Poor AM and FM Band Reception TECHNICAL Bulletin No.: 06-08-44-033B Date: August 25, 2008 Subject: Radio - Poor AM and FM Reception (Inspect and Fully Seat Connector) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models Supercede: This bulletin is being revised to clarify the location of connector C213 for the Yukon Denali. Please discard Corporate Bulletin Number 06-08-44-033A (Section 08 - Body & Accessories). Condition Some customers may comment that the radio has poor AM and FM reception. Cause The radio antenna coax cable may not be fully seated at connector C213. Correction 1. Remove the driver and passenger windshield pillar garnish molding (A-pillar trim) and disconnect the wiring harness. 2. Remove the instrument panel upper trim panel and disconnect the electrical connections. 3. Remove the foam tape surrounding the radio coax cable electrical connector C213. Connector C213 is located under the top left side of the instrument panel upper trim panel on all vehicles except the Cadillac Escalade EXT and the Chevrolet Avalanche. Connector C213 is located under the top right side of the instrument panel upper trim panel on the Cadillac Escalade EXT, Chevrolet Avalanche and GMC Yukon Denali. 4. Inspect connector C213 and manipulate coax as needed to ensure that the connector is fully seated (The above graphic shows the connector properly seated). 5. Install foam tape around connector C213. 6. If re-securing the connector does not correct the condition, refer to SI for further diagnosis and repair. 7. Install the instrument panel upper trim panel and electrical connections. 8. Install the driver's and passenger's windshield pillar garnish moldings (A pillar trim) and electrical connectors. Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 06-08-44-033B > Aug > 08 > Audio System - Poor AM and FM Band Reception > Page 4701 For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 06-08-44-033B > Aug > 08 > Audio System - Poor AM and FM Band Reception > Page 4707 For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 4708 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Sensors and Switches - Engine > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 4709 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Chain > Component Information > Service and Repair Timing Chain: Service and Repair Timing Chain and Sprockets Replacement Tools Required ^ J 8433 Two Jaw Puller ^ J 41558 Crankshaft Sprocket Remover ^ J 41665 Crankshaft Balancer and Sprocket Installer ^ J 41816-2 Crankshaft End Protector Removal Procedure 1. Remove the oil pump. 2. Rotate the crankshaft until the timing marks on the crankshaft and the camshaft sprockets are aligned. Notice: Do not turn the crankshaft assembly after the timing chain has been removed in order to prevent damage to the piston assemblies or the valves. 3. Remove the camshaft sprocket bolts. 4. Remove the camshaft sprocket and timing chain. 5. Use the J 8433, the J 41816-2 and the J 41558 in order to remove the crankshaft sprocket. 6. Remove the crankshaft sprocket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Chain > Component Information > Service and Repair > Page 4714 7. Remove the crankshaft sprocket key, if required. 8. If required, clean and inspect the timing chain and sprockets. Refer to Timing Chain and Sprockets Cleaning and Inspection. Installation Procedure 1. Install the key into the crankshaft keyway, if previously removed. 2. Tap the key (1) into the keyway until both ends of the key bottom onto the crankshaft. 3. Install the crankshaft sprocket onto the front of the crankshaft. Align the crankshaft key with the crankshaft sprocket keyway. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Chain > Component Information > Service and Repair > Page 4715 4. Use the J 41665 in order to install the crankshaft sprocket. Install the sprocket onto the crankshaft until fully seated against the crankshaft flange. 5. Rotate the crankshaft sprocket until the alignment mark is in the 12 o'clock position. 6. Important: ^ Properly locate the camshaft sprocket locating pin with the camshaft sprocket alignment hole. ^ The sprocket teeth and timing chain must mesh. ^ The camshaft and the crankshaft sprocket alignment marks MUST be aligned properly. Locate the camshaft sprocket alignment mark in the 6 o'clock position. Install the camshaft sprocket and timing chain. 7. If necessary, rotate the camshaft or crankshaft sprockets in order to align the timing marks. Notice: Refer to Fastener Notice in Service Precautions. 8. Install the camshaft sprocket bolts. Tighten the bolts to 35 Nm (26 ft. lbs.). 9. Install the oil pump. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Component Alignment Marks > Component Information > Locations Timing Component Alignment Marks: Locations If necessary, rotate the camshaft or crankshaft sprockets in order to align the timing marks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Cover > Component Information > Specifications Timing Cover: Specifications Front Cover Bolts ................................................................................................................................. ..................................................... 25 Nm (18 ft. lbs.) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Cover > Component Information > Specifications > Page 4722 Timing Cover: Service and Repair Engine Front Cover Replacement Tools Required ^ J 41476 Front and Rear Cover Alignment Tool Removal Procedure 1. Remove the water pump. 2. Remove the crankshaft balancer. 3. Remove the oil pan-to-front cover bolts (1). 4. Remove the front cover bolts. 5. Remove the front cover and gasket. 6. Discard the front cover gasket. 7. If required, clean and inspect the engine front cover. Refer to Engine Front Cover Cleaning and Inspection. Installation Procedure Important: ^ Do not reuse the crankshaft oil seal or front cover gasket. ^ Do not apply any type of sealant to the front cover gasket, unless specified. ^ The special tool in this procedure is used to properly center the front crankshaft front oil seal. ^ All gasket surfaces should be free of oil or other foreign material during assembly. ^ The crankshaft front oil seal MUST be centered in relation to the crankshaft. ^ An improperly aligned front cover may cause premature front oil seal wear and/or engine oil leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Timing Components > Timing Cover > Component Information > Specifications > Page 4723 1. Apply a 5 mm (0.20 inch) bead of sealant 20 mm (0.80 inch) long to the oil pan to engine block junction. Refer to Sealers, Adhesives, and Lubricants. 2. Install the front cover gasket and cover. 3. Install the front cover bolts until snug. Do not overtighten. 4. Install the oil pan-to-front cover bolts (1) until snug. Do not over tighten. 5. Install J 41476 to the front cover. 6. Align the tapered legs of the J 41476 with the machined alignment surfaces on the front cover. 7. Notice: Refer to Fastener Notice in Service Precautions. Install the crankshaft balancer bolt until snug. Do not overtighten. 1. Tighten the oil pan to front cover bolts to 25 Nm (18 ft. lbs.). 2. Tighten the engine front cover bolts to 25 Nm (18 ft. lbs.). 8. Remove the J 41476. 9. Install a NEW crankshaft front oil seal. 10. Install the water pump. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................384-425 kPa (55-62 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Technician Safety Information > Page 4730 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 4731 Fuel Pressure: Testing and Inspection FUEL SYSTEM DIAGNOSIS SYSTEM DESCRIPTION The control module enables the fuel pump relay when the ignition switch is turned ON. The control module will disable the fuel pump relay within two seconds unless the control module detects ignition reference pulses. The control module continues to enable the fuel pump relay as long as ignition reference pulses are detected. The control module disables the fuel pump relay within two seconds if ignition reference pulses cease to be detected and the ignition remains ON. The Fuel System is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. The fuel tank stores the fuel supply. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pump also supplies fuel to a venturi pump located on the bottom of the fuel sender assembly. The function of the venturi pump is to fill the fuel sender assembly reservoir. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 4732 Step 1 - Step 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 4733 Step 6 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Idle Speed > System Information > Specifications Idle Speed: Specifications Information not supplied by the manufacturer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Cleaner Fresh Air Duct/Hose > Component Information > Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair AIR CLEANER RESONATOR OUTLET DUCT REPLACEMENT REMOVAL PROCEDURE 1. Loosen the clamp and separate the air cleaner outlet duct at the mass air flow (MAF)/intake air temperature (IAT) sensor. 2. Loosen the clamp and separate the air cleaner outlet duct from the throttle body. 3. Remove the radiator inlet hose clamp from the outlet duct. 4. Remove the air cleaner outlet duct. INSTALLATION PROCEDURE 1. Install the air cleaner outlet duct. 2. Install the air cleaner outlet duct to the throttle body. 3. Install the air cleaner outlet duct to MAF/IAT sensor. 4. Install the radiator inlet hose clamp to the outlet duct. NOTE: Refer to Fastener Notice. 5. Tighten the air cleaner outlet duct clamps. Tighten the clamps to 4 N.m (35 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 4749 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 4755 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 4756 Air Filter Element: Service and Repair AIR CLEANER ELEMENT REPLACEMENT REMOVAL PROCEDURE 1. Remove the air cleaner outlet duct. 2. Disconnect the mass air flow/intake air temperature (MAF/IAT) sensor electrical connector (4). 3. Loosen the air cleaner housing top screws. 4. Remove the air cleaner housing cover. 5. Remove the air filter element. INSTALLATION PROCEDURE 1. Install a NEW air filter element. 2. Install the air cleaner housing cover. 3. Tighten the air cleaner housing top screws until snug. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 4757 4. Connect the MAF/IAT sensor electrical connector (4). 5. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4763 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: - The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4764 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4765 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 4766 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications Ignition Cable: Specifications Spark Plug Wire Resistance................................................................................................................. ...........................................................397-1337 Ohms Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 4770 Ignition Cable: Testing and Inspection SPARK PLUG WIRE INSPECTION Spark plug wire integrity is vital for proper engine operation. A thorough inspection is necessary to accurately identify conditions that may affect engine operation. Inspect for the following conditions: 1. Correct routing of the spark plug wires-Incorrect routing may cause cross-firing. 2. Any signs of cracks or splits in the wires. 3. Inspect each boot for the following conditions: - Tearing - Piercing - Arcing - Carbon tracking - Corroded terminal If corrosion, carbon tracking or arcing are indicated on a spark plug wire boot or terminal, replace the wire and the component connected to the wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 4771 Ignition Cable: Service and Repair SPARK PLUG WIRE REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire from the spark plug. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the spark plug. 2. Remove the spark plug wire from the ignition coil. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the ignition coil. 3. IMPORTANT: The Melco(R) spark plug wires MUST be used only with the Melco(R) coils and bracket, like wise the Delphi(R) spark plug wires MUST be used only with Delphi(R) coils and bracket. The components are NOT interchangeable. There are 2 different manufacturers for the spark plug wire, ignition coils and coil brackets. They are as follows: 4. The Melco(R) spark plug wire (1) will have a blue foil mark on it, and the wire is 145 mm (5.70 in) in length from cable seal to cable seal. 5. The Delphi(R) spark plug wire (2) will have a white foil mark on it, and the wire is 110 mm (4.30 in) in length cable seal to cable seal. 6. The Melco(r) (1) ignition coil is a square design. 7. The Delphi(r) (2) ignition coil is a round design. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 4772 8. The Melco(r) ignition coil bracket (1) is a square design. 9. The Delphi(r) ignition coil bracket (2) is a round design. INSTALLATION PROCEDURE 1. Install the spark plug wire to the ignition coil. 2. Install the spark plug wire to the spark plug. 3. Inspect the spark plug wire for proper installation: 1. Push sideways on each boot in order to inspect the seating. 2. Reinstall any loose boot. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications Spark Plug: Specifications Spark Plug Gap.................................................................................................................................... .......................................................1.52 mm - 0.060 in Spark Plug Torque.......................................... ................................................................................................................................................15 N.m 11 lb ft Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 4776 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ............................................25171803 [AC plug type] Spark Plug Type.............................................. ..............................................................................................................................12567759 [NGK plug type] Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 4777 Spark Plug: Testing and Inspection SPARK PLUG INSPECTION - Verify that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. - Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: Spark plug fouling - Colder plug - Pre-ignition causing spark plug and/or engine damage - Hotter plug - Inspect the terminal post (1) for damage. Inspect for a bent or broken terminal post (1). - Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should not move. - Inspect the insulator (2) for flashover or carbon tracking, or soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: Inspect the spark plug boot for damage. - Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated will cause arcing to ground. - Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). - Inspect for evidence of improper arcing. Measure the gap between the center electrode (4) and the side electrode (3). - Inspect for the correct spark plug torque. Insufficient torque can prevent correct spark plug operation. An over torqued spark plug, causes the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 4778 insulator (2) to crack. - Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). - Inspect for a broken or worn side electrode (3). - Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. - Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. - Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. - Inspect for excessive fouling. - Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Visual Inspection Normal operation - Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. - Carbon fouled - Dry, fluffy black carbon, or soot caused by the following conditions: Rich fuel mixtures Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion - Reduced ignition system voltage output Weak ignition coils - Worn ignition wires - Incorrect spark plug gap - Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. - Deposit fouling - Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark plug intensity. Most powdery deposits will not affect spark plug intensity unless they form into a glazing over the electrode. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 4779 Spark Plug: Service and Repair SPARK PLUG REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire. 2. Loosen the spark plug 1 or 2 turns. 3. Brush or using compressed air, blow away any dirt from around the spark plug. 4. Remove the spark plug.If removing more than one plug, place each plug in a tray marked with the corresponding cylinder number. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 4780 1. Correctly position the spark plug washer. 2. Inspect the spark plug gap. Adjust the gap as needed. Spark plug gap: 1.016 mm (0.040 in) 3. Hand start the spark plug in the corresponding cylinder. NOTE: Refer to Fastener Notice. 4. Tighten the spark plug. - Tighten the plug to 15 N.m (11 lb ft) for used heads. - Tighten the plug to 20 N.m (15 lb ft) for NEW heads. 5. Install the spark plug wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Compression Check > System Information > Specifications Compression Check: Specifications The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Tune-up and Engine Performance Checks > Compression Check > System Information > Specifications > Page 4784 Compression Check: Testing and Inspection Engine Compression Test 1. Charge the battery if the battery is not fully charged. 2. Disable the ignition system. 3. Disable the fuel injection system. 4. Remove all the spark plugs. 5. Turn the ignition to the ON position. 6. Depress the accelerator pedal to position the throttle plate wide open. 7. Start with the compression gage at zero and crank the engine through 4 compression strokes, 4 puffs. 8. Measure the compression for each cylinder. Record the readings. 9. If a cylinder has low compression, inject approximately 15 ml (1 tablespoon) of engine oil into the combustion chamber through the spark plug hole. Measure the compression again and record the reading. 10. The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). For example, if the highest pressure in any 1 cylinder is 1,035 kPa (150 psi), the lowest allowable pressure for any other cylinder would be 725 kPa (105 psi). (1 035 x 70% = 725) (150 x 70% = 105). ^ Normal - Compression builds up quickly and evenly to the specified compression for each cylinder. ^ Piston Rings Leaking - Compression is low on the first stroke. Compression builds up with the following strokes, but does not reach normal. Compression improves considerably when you add oil. ^ Valves Leaking - Compression is low on the first stroke. Compression usually does not build up on the following strokes. Compression does not improve much when you add oil. ^ If 2 adjacent cylinders have lower than normal compression, and injecting oil into the cylinders does not increase the compression, the cause may be a head gasket leaking between the cylinders. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Specifications Water Pump: Specifications Water Pump Bolts - First Pass ............................................................................................................ ....................................................... 15 Nm (11 ft. lbs.) Water Pump Bolts - Final Pass ...................... ............................................................................................................................................ 30 Nm (22 ft. lbs.) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Specifications > Page 4788 Water Pump: Locations Cooling System Component Views Auxiliary Water Pump - HP2 1 - Auxiliary Water Pump Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Specifications > Page 4789 Water Pump: Diagrams Auxiliary Water Pump (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement Water Pump: Service and Repair Auxiliary Water Pump Replacement Auxiliary Water Pump Replacement Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Reposition the front heater inlet hose clamp (4) from the auxiliary water pump (1). 3. Remove the front heater inlet hose (6) from the auxiliary water pump (1). 4. Reposition the rear heater inlet hose clamp (2) from the auxiliary water pump (1). 5. Remove the rear heater inlet hose (3) from the auxiliary water pump (1). 6. Remove the heater outlet hose from the clip. 7. Disconnect the electrical connector (1) from the auxiliary water pump (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4792 8. Remove the nuts (4) from the auxiliary water pump bracket (1). 9. Remove the auxiliary water pump (1) from the vehicle. 10. Remove the clips (2) from the auxiliary water pump bracket (1). 11. Remove the auxiliary water pump (3) from the auxiliary water pump bracket (1). Installation Procedure 1. Install the auxiliary water pump (3) to the auxiliary water pump bracket (1). 2. Install the clips (2) to the auxiliary water pump bracket (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4793 3. Install the auxiliary water pump (1) to the vehicle. 4. Notice: Refer to Fastener Notice in Service Precautions. Install the nuts (4) to the auxiliary water pump bracket (1). Tighten the nuts to 9 Nm (80 inch lbs.). 5. Connect the electrical connector (1) to the auxiliary water pump (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4794 6. Install the heater outlet hose to the clip. 7. Install the rear heater inlet hose (3) to the auxiliary water pump (1). 8. Position the rear heater inlet hose clamp (2) to the auxiliary water pump (1). 9. Install the front heater inlet hose (6) to the auxiliary water pump (1). 10. Position the front heater inlet hose clamp (4) to the auxiliary water pump (1). 11. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4795 Water Pump: Service and Repair Water Pump Replacement Water Pump Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Loosen the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ Mass airflow/intake air temperature (MAF/IAT) sensor 3. Remove the radiator inlet hose clip from the outlet duct. 4. Remove the air cleaner outlet duct. 5. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 6. Remove the radiator vent inlet hose from the radiator hose clips. 7. Reposition the inlet hose clamp at the water pump. 8. Remove the inlet hose from the water pump. 9. If necessary, remove the fan blade. Refer to Fan Replacement (Diesel) Fan Replacement (Mechanical). 10. Remove the accessory drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4796 11. Reposition the outlet hose clamp at the water pump. 12. Remove the outlet hose from the water pump. 13. Reposition the surge tank outlet hose clamp at the water pump. 14. Remove the surge tank outlet hose from the water pump. 15. Reposition the heater inlet hose clamp at the water pump. 16. Remove the heater inlet hose from the water pump. 17. Remove the water pump bolts. 18. Remove the water pump and gaskets. 19. Discard the water pump gaskets. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4797 Important: All gaskets surfaces are to be free of oil or other foreign material during assembly. 1. Install the water pump and NEW gaskets. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the water pump bolts. 1. Tighten the bolts a first pass to 15 Nm (11 ft. lbs.). 2. Tighten the bolts a final pass to 30 Nm (22 ft. lbs.). 3. Install the heater inlet hose to the water pump. 4. Position the heater inlet hose clamp at the water pump. 5. Install the surge tank outlet hose to the water pump. 6. Position the surge tank outlet hose clamp at the water pump. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4798 7. Install the outlet hose to the water pump. 8. Position the outlet hose clamp at the water pump. 9. Install the accessory drive belt. 10. If necessary, install the fan blade. 11. Install the inlet hose to the water pump. 12. Position the inlet hose clamp at the water pump. 13. Install the engine vent inlet hose to the radiator hose clips. 14. If necessary, install the engine sight shield. 15. Important: Align the arrow at the throttle body end of the duct with the throttle body attaching stud. Install the air cleaner outlet duct. 16. Install the radiator inlet hose clip to the outlet duct. 17. Tighten the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ MAF/IAT sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Engine > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 4799 Tighten the clamps to 4 Nm (35 inch lbs.). 18. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Cooling System Air Bleeder Pipe / Hose > Component Information > Service and Repair > Coolant Air Bleed Hose Replacement Cooling System Air Bleeder Pipe / Hose: Service and Repair Coolant Air Bleed Hose Replacement Coolant Air Bleed Hose Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Reposition the coolant air bleed hose clamp at the throttle body. 2. Remove the coolant air bleed hose from the throttle body. 3. Reposition the coolant air bleed hose clamp at the pipe. 4. Remove the coolant air bleed hose (1) from the pipe (2). Installation Procedure 1. Install the coolant air bleed hose (1) to the pipe (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Cooling System Air Bleeder Pipe / Hose > Component Information > Service and Repair > Coolant Air Bleed Hose Replacement > Page 4805 2. Position the coolant air bleed hose clamp at the pipe. 3. Install the coolant air bleed hose to the throttle body. 4. Position the coolant air bleed hose clamp at the throttle body. 5. Add engine coolant, if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Cooling System Air Bleeder Pipe / Hose > Component Information > Service and Repair > Coolant Air Bleed Hose Replacement > Page 4806 Cooling System Air Bleeder Pipe / Hose: Service and Repair Coolant Air Bleed Pipe Assembly Replacement Coolant Air Bleed Pipe Assembly Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the coolant air bleed pipe bolts/studs (1). 3. Remove the coolant air bleed pipe (2) with gaskets (3). 4. Remove the coolant air bleed pipe cover bolts (1) and covers (2). 5. Remove the gaskets from the coolant air bleed pipe and covers. 6. Discard the gaskets. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Cooling System Air Bleeder Pipe / Hose > Component Information > Service and Repair > Coolant Air Bleed Hose Replacement > Page 4807 7. Remove the coolant air bleed hose (1) from the pipe (2). Installation Procedure 1. Install the coolant air bleed hose (1) onto the pipe (2). 2. Important: Install the gaskets properly onto the pipe and covers. Position the O-ring seal onto the nipple portion of the pipe. Install the gaskets onto the coolant air bleed pipe and covers. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Cooling System Air Bleeder Pipe / Hose > Component Information > Service and Repair > Coolant Air Bleed Hose Replacement > Page 4808 3. Install the coolant air bleed pipe (2) and gaskets (3) onto the cylinder heads. Notice: Refer to Fastener Notice in Service Precautions. 4. Install the coolant air bleed pipe bolts/studs (1). Tighten the bolts/studs to 12 Nm (106 inch lbs.). 5. Install the coolant air bleed pipe covers (2) and bolts (1). Tighten the bolts to 12 Nm (106 inch lbs.). 6. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Coolant: Technical Service Bulletins Cooling System - DEX-COOL(R) Coolant Leak Detection Dye Bulletin No.: 05-06-02-002B Date: January 18, 2008 INFORMATION Subject: DEX-COOL(R) Coolant - New Leak Detection Dye J 46366 - Replaces J 29545-6 Models: 1996-2008 GM Passenger Cars and Light/Medium Duty Trucks* (including Saturn) 1997-2008 Isuzu T-Series Medium Duty Tilt Cab Models Built in Janesville and Flint 1999-2008 Isuzu N-Series Medium Duty Commercial Models with 5.7L or 6.0L Gas Engine 2003-2008 HUMMER H2 2006-2008 HUMMER H3 2005-2008 Saab 9-7X *EXCLUDING 2006 and Prior Chevrolet Aveo, Epica, Optra, Vivant and Pontiac Matiz, Wave Supercede: This bulletin is being revised to include additional model years. Please discard Corporate Bulletin Number 05-06-02-002A (Section 06 - Engine/Propulsion System). Leak detection dye P/N 12378563 (J 29545-6) (in Canada P/N 88900915) may cause DEX-COOL(R) coolant to appear green in a black vessel making it appear to be conventional (green) coolant. This may cause a technician to add conventional coolant to a low DEX-COOL(R) system thus contaminating it. The green DEX-COOL(R) appearance is caused by the color of the leak detection dye which alters the color of the DEX-COOL(R) coolant. A new leak detection dye P/N 89022219 (J 46366) (in Canada P/N 89022220) has been released that does not alter the appearance of the DEX-COOL(R) coolant. When adding the new leak detection dye the color of the DEX-COOL(R) coolant will not change. For detecting leaks on any system that uses DEX-COOL(R) leak detection dye P/N 89022219 (in Canada P/N 89022220) should be used. The new leak detection dye can be used with both conventional and DEX-COOL(R) coolant. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 4813 Coolant: Technical Service Bulletins Cooling System - Coolant Recycling Information Bulletin No.: 00-06-02-006D Date: August 15, 2006 INFORMATION Subject: Engine Coolant Recycling and Warranty Information Models: 2007 and Prior GM Passenger Cars and Trucks (Including Saturn) 2007 and Prior HUMMER Vehicles 2005-2007 Saab 9-7X Attention: Please address this bulletin to the Warranty Claims Administrator and the Service Manager. Supercede: This bulletin is being revised to adjust the title and Include Warranty Information. Please discard Corporate Bulletin Number 00-06-02-006C (Section 06 - Engine/Propulsion System). Coolant Reimbursement Policy General Motors supports the use of recycled engine coolant for warranty repairs/service, providing a GM approved engine coolant recycling system is used. Recycled coolant will be reimbursed at the GMSPO dealer price for new coolant plus the appropriate mark-up. When coolant replacement is required during a warranty repair, it is crucial that only the relative amount of engine coolant concentrate be charged, not the total diluted volume. In other words: if you are using two gallons of pre-diluted (50:50) recycled engine coolant to service a vehicle, you may request reimbursement for one gallon of GM Goodwrench engine coolant concentrate at the dealer price plus the appropriate warranty parts handling allowance. Licensed Approved DEX-COOL(R) Providers Important: USE OF NON-APPROVED VIRGIN OR RECYCLED DEX-COOL(R) OR DEVIATIONS IN THE FORM OF ALTERNATE CHEMICALS OR ALTERATION OF EQUIPMENT, WILL VOID THE GM ENDORSEMENT, MAY DEGRADE COOLANT SYSTEM INTEGRITY AND PLACE THE COOLING SYSTEM WARRANTY UNDER JEOPARDY. Shown in Table 1 are the only current licensed and approved providers of DEX-COOL(R). Products that are advertised as "COMPATIBLE" or "RECOMMENDED" for use with DEX-COOL(R) have not been tested or approved by General Motors. Non-approved coolants may degrade the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 4814 coolant system integrity and will no longer be considered a 5 yr/150,000 mile (240,000 km) coolant. Coolant Removal Services/Recycling The tables include all coolant recycling processes currently approved by GM. Also included is a primary phone number and demographic information. Used DEX-COOL(R) can be combined with used conventional coolant (green) for recycling. Depending on the recycling service and/or equipment, it is then designated as a conventional 2 yr/30,000 mile (50,000 km) coolant or DEX-COOL(R) 5 yr/150,000 mile (240,000 km) coolant. Recycled coolants as designated in this bulletin may be used during the vehicle(s) warranty period. DEX-COOL(R) Recycling The DEX-COOL(R) recycling service listed in Table 2 has been approved for recycling waste engine coolants (DEX-COOL) or conventional) to DEX-COOL(R) with 5 yr/150,000 mile (240,000 km) usability. Recycling Fluid Technologies is the only licensed provider of Recycled DEX-COOL(R) meeting GM6277M specifications and utilizes GM approved inhibitor packages. This is currently a limited program being monitored by GM Service Operations which will be expanded as demand increases. Conventional (Green) Recycling Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 4815 Processes shown in the Table 3 are capable of recycling waste engine coolants (DEX-COOL(R) or conventional) to a conventional (green) coolant. Recycling conventional coolant can be accomplished at your facility by a technician using approved EQUIPMENT (listed by model number in Table 3), or by an approved coolant recycling SERVICE which may recycle the coolant at your facility or at an offsite operation. Refer to the table for GM approved coolant recyclers in either of these two categories. Should you decide to recycle the coolant yourself, strict adherence to the operating procedures is imperative. Use ONLY the inhibitor chemicals supplied by the respective (GM approved) recycling equipment manufacturer. Sealing Tablets Cooling System Sealing Tablets (Seal Tabs) should not be used as a regular maintenance item after servicing an engine cooling system. Discoloration of coolant can occur if too many seal tabs have been inserted into the cooling system. This can occur if seal tabs are repeatedly used over the service life of a vehicle. Where appropriate, seal tabs may be used if diagnostics fail to repair a small leak in the cooling system. When a condition appears in which seal tabs may be recommended, a specific bulletin will be released describing their proper usage. Water Quality The integrity of the coolant is dependent upon the quality of DEX-COOL(R) and water. DEX-COOL(R) is a product that has enhanced protection capability as well as an extended service interval. These enhanced properties may be jeopardized by combining DEX-COOL(R) with poor quality water. If you suspect the water in your area of being poor quality, it is recommended you use distilled or de-ionized water with DEX-COOL(R). "Pink" DEX-COOL(R) DEX-COOL(R) is orange in color to distinguish it from other coolants. Due to inconsistencies in the mixing of the dyes used with DEX-COOL(R), some batches may appear pink after time. The color shift from orange to pink does not affect the integrity of the coolant, and still maintains the 5 yr/150,000 mile (240,000 km) service interval. Back Service Only use DEX-COOL(R) if the vehicle was originally equipped with DEX-COOL(R). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Technical Service Bulletins > Cooling System - DEX-COOL(R) Coolant Leak Detection Dye > Page 4816 Contamination Mixing conventional green coolant with DEX-COOL(R) will degrade the service interval from 5 yrs./150,000 miles (240,000 km) to 2 yrs./30,000 miles (50,000 km) if left in the contaminated condition. If contamination occurs, the cooling system must be flushed twice immediately and re-filled with a 50/50 mixture of DEX-COOL(R) and clean water in order to preserve the enhanced properties and extended service interval of DEX-COOL(R). After 5 years/150,000 miles (240,000 km) After 5 yrs/150,000 miles (240,000 km), the coolant should be changed, preferably using a coolant exchanger. If the vehicle was originally equipped with DEX-COOL(R) and has not had problems with contamination from non-DEX-COOL(R) coolants, then the service interval remains the same, and the coolant does not need to be changed for another 5 yrs/150,000 miles (240,000 km) Equipment (Coolant Exchangers) The preferred method of performing coolant replacement is to use a coolant exchanger. A coolant exchanger can replace virtually all of the old coolant with new coolant. Coolant exchangers can be used to perform coolant replacement without spillage, and facilitate easy waste collection. They can also be used to lower the coolant level in a vehicle to allow for less messy servicing of cooling system components. It is recommended that you use a coolant exchanger with a vacuum feature facilitates removing trapped air from the cooling system. This is a substantial time savings over repeatedly thermo cycling the vehicle and topping-off the radiator. The vacuum feature also allows venting of a hot system to relieve system pressure. Approved coolant exchangers are available through the GMDE (General Motors Dealer Equipment) program. For refilling a cooling system that has been partially or fully drained for repairs other than coolant replacement, the Vac-N-Fill Coolant Refill Tool (GE-47716) is recommended to facilitate removal of trapped air from the cooling system during refill. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Specifications > Capacity Specifications Coolant: Capacity Specifications COOLING SYSTEM CAPACITY AUTOMATIC TRANSMISSION With Engine Fan Driven cooling system ..................................................................................................................................... 16.2 quarts (15.3 liters) With Electric Cooling Fan system .............................................................................................................................................. 16.7 quarts (15.8 liters) MANUAL TRANSMISSION With Engine Fan Driven cooling system ..................................................................................................................................... 16.7 quarts (15.8 liters) NOTE: All capacities are approximate. When adding, be sure to fill to the approximate level. Recheck fluid level after filling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant > Component Information > Specifications > Capacity Specifications > Page 4819 Coolant: Fluid Type Specifications ENGINE COOLANT The cooling system in your vehicle is filled with DEX-COOL engine coolant. This coolant is designed to remain in your vehicle for 5 years or 150,000 miles (240 000 km), whichever occurs first, if you add only DEX-COOL extended life coolant. A 50/50 mixture of clean, drinkable water and DEX-COOL coolant will: - Give freezing protection down to -34°F (-37°C). - Give boiling protection up to 265°F (129°C). - Protect against rust and corrosion. - Help keep the proper engine temperature. - Let the warning lights and gages work as they should. NOTICE: Using coolant other than DEX-COOL may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50 000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX-COOL (silicate-free) coolant in your vehicle. WHAT TO USE Use a mixture of one-half clean, drinkable water and one-half DEX-COOL coolant which won't damage aluminum parts. If you use this coolant mixture, you don't need to add anything else. CAUTION: Adding only plain water to your cooling system can be dangerous. Plain water, or some other liquid such as alcohol, can boil before the proper coolant mixture will. Your vehicle's coolant warning system is set for the proper coolant mixture. With plain water or the wrong mixture, your engine could get too hot but you would not get the overheat warning. Your engine could catch fire and you or others could be burned. Use a 50/50 mixture of clean, drinkable water and DEX-COOL coolant. NOTICE: If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. If you have to add coolant more than four times a year, check your cooling system. NOTICE: If you use the proper coolant, you do not have to add extra inhibitors or additives which claim to improve the system. These can be harmful. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Level Sensor > Component Information > Locations Coolant Level Sensor: Locations Cooling System Component Views 1 - Auxiliary Battery Relay (TP2) 2 - A/C Accumulator 3 - A/C Low Pressure Switch 4 - Inner Wheel Well 5 - Coolant Level Switch Connector Diesel and 8.1L 6 - Mass Air Flow (MAF) Sensor 7 - Air Cleaner Assembly 8 - Engine Coolant Recovery Reservoir 9 - Auxiliary Battery Relay Electrical Connector (TP2) 10 - Battery Right (TP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement Coolant Reservoir: Service and Repair Radiator Surge Tank Inlet Hose/Pipe Replacement Radiator Surge Tank Inlet Hose/Pipe Replacement Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Reposition the surge tank inlet hose clamp from the radiator. 3. Remove the surge tank inlet hose from the radiator. 4. Reposition the surge tank inlet hose clamp from the surge tank. 5. Remove the surge tank inlet hose (1) from the surge tank. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4827 1. Install the surge tank inlet hose (1) to the surge tank. 2. Position the surge tank inlet hose clamp to the surge tank. 3. Install the surge tank inlet hose to the radiator. 4. Position the surge tank inlet hose clamp to the radiator. 5. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4828 Coolant Reservoir: Service and Repair Radiator Vent Inlet Hose Replacement Radiator Vent Inlet Hose Replacement Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Reposition the vent inlet hose clamp from the radiator. 3. Remove the vent inlet hose from the radiator. 4. Reposition the vent inlet hose clamp from the surge tank. 5. Remove the vent inlet hose from the surge tank. Installation Procedure 1. Install the vent inlet hose to the surge tank. 2. Reposition the vent inlet hose clamp to the surge tank. 3. Install the vent inlet hose to the radiator. 4. Reposition the vent inlet hose clamp to the radiator. 5. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4829 Coolant Reservoir: Service and Repair Surge Tank Replacement Surge Tank Replacement Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air cleaner assembly. 3. Remove the surge tank overflow hose from the surge tank. 4. Disconnect the coolant level sensor electrical connector (3). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4830 5. Reposition the surge tank inlet and outlet hose clamps. 6. If equipped with a 4.3 L, 4.8 L, 5.3 L, 6.0 L, or 8.1 L engine, remove the surge tank inlet (1) and outlet (2) hoses from the surge tank. 7. Reposition the surge tank inlet hose clamp from the surge tank. 8. Remove the surge tank inlet hose (1) from the surge tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4831 9. Reposition the surge tank outlet hose clamp from the surge tank. 10. Remove the surge tank outlet hose (2) from the surge tank. 11. Remove the bolt from the surge tank. 12. Remove the nut from the surge tank. 13. Remove the surge tank. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4832 1. Install the surge tank. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the bolt to the surge tank. Tighten the bolt to 9 Nm (80 inch lbs.). 3. Install the nut to the surge tank. Tighten the nut to 9 Nm (80 inch lbs.). 4. Install the surge tank outlet hose (2) to the surge tank. 5. Position the surge tank outlet hose clamp to the surge tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Coolant Reservoir > Component Information > Service and Repair > Radiator Surge Tank Inlet Hose/Pipe Replacement > Page 4833 6. Install the surge tank inlet hose (1) to the surge tank. 7. Position the surge tank inlet hose clamp to the surge tank. 8. Connect the coolant level sensor electrical connector (3). 9. Install the surge tank overflow hose. 10. Install the air cleaner assembly. 11. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4839 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4840 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4841 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4842 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4843 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4844 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4845 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4846 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4847 Radiator Cooling Fan Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4848 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4849 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4850 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4851 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4852 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4853 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4854 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4855 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4856 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4857 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4858 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4859 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4860 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4861 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4862 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4863 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4864 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4865 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4866 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4867 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4868 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4869 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4870 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4871 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4872 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4873 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4874 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4875 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4876 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4877 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4878 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4879 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4880 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4881 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4882 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4883 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4884 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4885 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4886 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4887 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4888 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4889 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4890 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4891 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4892 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4893 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4894 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4895 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4896 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4897 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4898 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4899 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4900 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4901 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4902 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4903 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4904 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4905 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4906 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4907 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4908 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4909 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4910 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4911 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4912 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4913 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4914 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4915 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4916 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4917 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4918 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4919 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4920 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4921 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4922 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4923 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4924 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4925 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4926 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4927 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4928 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4929 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 4930 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Locations Radiator Cooling Fan Motor: Locations Cooling System Component Views 1 - Cooling Fan - Right 2 - Radiator Core Support 3 - Starter/Generator Control Module Coolant Pump Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Locations > Page 4934 Engine Cooling Fans (10 Series) 1 - Cooling Fan - Left 2 - Cooling Fan - Right 3 - Forward Lamp Harness Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Motor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4937 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4938 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4939 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4940 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4941 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4942 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4943 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4944 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4945 Radiator Cooling Fan Motor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4946 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4947 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4948 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4949 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4950 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4951 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4952 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4953 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4954 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4955 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4956 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4957 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4958 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4959 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4960 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4961 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4962 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4963 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4964 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4965 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4966 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4967 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4968 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4969 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4970 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4971 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4972 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4973 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4974 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4975 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4976 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4977 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4978 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4979 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4980 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4981 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4982 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4983 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4984 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4985 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4986 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4987 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4988 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4989 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4990 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4991 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4992 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4993 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4994 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4995 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4996 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4997 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4998 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 4999 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5000 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5001 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5002 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5003 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5004 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5005 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5006 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5007 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5008 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5009 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5010 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5011 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5012 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5013 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5014 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5015 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5016 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5017 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5018 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5019 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5020 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5021 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5022 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5023 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5024 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5025 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5026 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5027 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5028 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5029 Radiator Cooling Fan Motor: Connector Views Cooling Fan - Left (10 Series) Cooling Fan - Left (10 Series) Cooling Fan - Left (10 Series) Cooling Fan - Right (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Diagram Information and Instructions > Page 5030 Cooling Fan - Right (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor > Component Information > Diagrams > Page 5031 Radiator Cooling Fan Motor: Service and Repair Engine Coolant Fan Motor Replacement Removal Procedure 1. Remove the cooling blade(s). 2. Remove the cooling fan motor bolts. 3. Remove the cooling fan motor(s). Installation Procedure 1. Install the cooling fan motor(s). Notice: Refer to Fastener Notice in Service Precautions. 2. Install the cooling fan motor bolts. Tighten the bolts to 10 Nm (89 inch lbs.). 3. Install the cooling fan blade(s). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Locations Radiator Cooling Fan Motor Relay: Locations Fuse Block - Underhood - Cooling Fan (10 Series) Fuse Block - Underhood - Cooling Fan (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Motor Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5037 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5038 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5039 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5040 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5041 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5042 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5043 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5044 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5045 Radiator Cooling Fan Motor Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5046 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5047 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5048 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5049 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5050 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5051 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5052 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5053 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5054 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5055 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5056 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5057 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5058 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5059 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5060 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5061 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5062 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5063 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5064 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5065 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5066 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5067 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5068 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5069 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5070 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5071 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5072 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5073 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5074 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5075 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5076 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5077 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5078 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5079 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5080 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5081 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5082 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5083 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5084 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5085 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5086 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5087 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5088 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5089 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5090 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5091 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5092 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5093 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5094 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5095 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5096 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5097 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5098 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5099 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5100 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5101 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5102 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5103 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5104 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5105 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5106 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5107 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5108 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5109 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5110 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5111 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5112 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5113 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5114 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5115 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5116 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5117 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5118 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5119 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5120 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5121 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5122 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5123 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5124 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5125 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5126 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5127 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5128 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) Fan Blade: Service and Repair Fan Replacement (Mechanical) Fan Replacement (Mechanical) Tools Required ^ J 46406 Fan Clutch Remover and Installer Removal Procedure 1. Remove the upper fan shroud. 2. Install the J 46406 to the fan clutch. 3. Remove the fan hub nut from the water pump in a counterclockwise rotation. 4. Remove the fan clutch bolts from the rear of the fan blade. 5. Separate the fan clutch from the fan blade. Installation Procedure Caution: Do not use or attempt to repair a damaged cooling fan assembly. Replace damaged fans with new assemblies. An unbalanced cooling fan could fly apart causing personal injury and property damage. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) > Page 5133 1. Install the fan clutch onto the fan blade. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the fan clutch bolts Tighten the bolts to 23 Nm (17 ft. lbs.). 3. Install the fan assembly. 4. Install the J 46406 to the fan clutch. Tighten the nut clockwise to 56 Nm (41 ft. lbs.). 5. Install the upper fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) > Page 5134 Fan Blade: Service and Repair Engine Cooling Fan Replacement Engine Cooling Fan Replacement Removal Procedure 1. Remove the cooling fan and shroud. 2. Remove the cooling fan blade retainers. 3. Remove the cooling fan blades. Installation Procedure Important: The electric cooling fan assembly uses a 5-blade fan and a 7-blade fan, it does not matter which side the fan blades are installed on. DO NOT install two 5-blade assemblies or two 7-blade assemblies, as this would cause a noise issue. 1. Install the cooling fan blades. 2. Install the cooling fan blade retainers. 3. Install the cooling fan and shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) > Page 5135 Fan Blade: Service and Repair Cooling Fan and Shroud Replacement Cooling Fan and Shroud Replacement Removal Procedure 1. Disengage the radiator inlet hose clip (2) at the fan shroud. 2. Reposition the surge tank inlet hose clamp at the radiator. 3. Remove the surge tank inlet hose from the radiator. 4. Disconnect the electrical connectors from the cooling fans. 5. Remove the clip attaching the wiring harness to the shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) > Page 5136 6. If necessary, open the engine oil cooler line clip and remove the cooler lines from the clip. 7. Remove the cooling fan shroud bolts. 8. Remove the cooling fan and shroud. Installation Procedure 1. Important: Insert the three lower tabs into the radiator support flange. Keeping the shroud parallel to the radiator will ensure the correct installation of the lower tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) > Page 5137 Install the cooling fan and shroud. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the cooling fan shroud bolts. Tighten the bolts to 9 Nm (80 inch lbs.). 3. If equipped, install the cooler lines to the clip and close the clip. 4. Connect the electrical connectors to the cooling fans. 5. Install the clip attaching the wiring harness to the shroud. 6. Install the surge tank inlet hose to the radiator. 7. Reposition the surge tank inlet hose clamp at the radiator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Blade > Component Information > Service and Repair > Fan Replacement (Mechanical) > Page 5138 8. Engage the radiator inlet hose clip (2) at the fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Clutch > Component Information > Testing and Inspection Fan Clutch: Testing and Inspection Step 1 - Step 10 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Clutch > Component Information > Testing and Inspection > Page 5142 Step 11 - Step 16 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Clutch > Component Information > Testing and Inspection > Page 5143 Fan Clutch: Service and Repair Fan Clutch Replacement (Gasoline) Tools Required ^ J 46406 Fan Clutch Remover and Installer Removal Procedure 1. Remove the upper fan shroud. 2. Install the J 46406 to the fan clutch. 3. Remove the fan hub nut from the water pump in a counterclockwise rotation. 4. Remove the fan clutch bolts from the rear of the fan blade. 5. Separate the fan clutch from the fan blade. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cooling Fan > Fan Clutch > Component Information > Testing and Inspection > Page 5144 1. Install the fan clutch bolts from the rear of the fan blade. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the fan clutch bolts. Tighten the bolts to 23 Nm (17 ft. lbs.). 3. Install the fan assembly. 4. Install the J 46406 to the fan clutch. Tighten the nut clockwise to 56 Nm (41 ft. lbs.). 5. Install the upper fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5154 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5155 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5156 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5157 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5163 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5164 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5165 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5166 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-08-50-011A > Apr > 11 > Body - Sticking/Binding Door Mounted Seat Switches Power Seat Switch: All Technical Service Bulletins Body - Sticking/Binding Door Mounted Seat Switches TECHNICAL Bulletin No.: 09-08-50-011A Date: April 13, 2011 Subject: Sticking/Binding Door Mounted Seat Switches (Align Switch) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon XL Denali All Equipped with RPOs AN3, KA1, KB6 Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 09-08-50-011 (Section 08 - Body and Accessories). Condition Some customers may comment that the door mounted memory/ heated/ cool seat switch buttons are sticking or binding. Cause This condition may be caused by the switch being out of alignment in the bezel, creating a hard contact between the switch button and the inside release handle bezel. Correction 1. Remove the door trim. Refer to Front Side Door Trim Panel Replacement in SI. 2. Loosen both screws (1) holding the switch to the inside release handle bezel. 3. Using a flat-bladed tool (1), carefully shift the position of the switch to create a nominal gap all around its perimeter within the bezel. Tighten the two screws holding the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-08-50-011A > Apr > 11 > Body - Sticking/Binding Door Mounted Seat Switches > Page 5172 4. Confirm that the switch buttons are free moving, and there is a nominal gap (1) all around its perimeter within the bezel. 5. Reinstall the door trim. Refer to Front Side Door Trim Panel Replacement in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-08-50-011A > Apr > 11 > Body - Sticking/Binding Door Mounted Seat Switches > Page 5178 4. Confirm that the switch buttons are free moving, and there is a nominal gap (1) all around its perimeter within the bezel. 5. Reinstall the door trim. Refer to Front Side Door Trim Panel Replacement in SI. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5179 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5180 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5181 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5182 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5183 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement Fan Shroud: Service and Repair Cooling Fan and Shroud Replacement Cooling Fan and Shroud Replacement Removal Procedure 1. Disengage the radiator inlet hose clip (2) at the fan shroud. 2. Reposition the surge tank inlet hose clamp at the radiator. 3. Remove the surge tank inlet hose from the radiator. 4. Disconnect the electrical connectors from the cooling fans. 5. Remove the clip attaching the wiring harness to the shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5188 6. If necessary, open the engine oil cooler line clip and remove the cooler lines from the clip. 7. Remove the cooling fan shroud bolts. 8. Remove the cooling fan and shroud. Installation Procedure 1. Important: Insert the three lower tabs into the radiator support flange. Keeping the shroud parallel to the radiator will ensure the correct installation of the lower tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5189 Install the cooling fan and shroud. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the cooling fan shroud bolts. Tighten the bolts to 9 Nm (80 inch lbs.). 3. If equipped, install the cooler lines to the clip and close the clip. 4. Connect the electrical connectors to the cooling fans. 5. Install the clip attaching the wiring harness to the shroud. 6. Install the surge tank inlet hose to the radiator. 7. Reposition the surge tank inlet hose clamp at the radiator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5190 8. Engage the radiator inlet hose clip (2) at the fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5191 Fan Shroud: Service and Repair Engine Coolant Fan Lower Shroud Replacement Engine Coolant Fan Lower Shroud Replacement Removal Procedure 1. Remove the cooling fan. 2. If equipped with engine oil cooler, remove the oil cooler hose clip from the lower fan shroud. 3. Lift the lower fan shroud up in order to disengage the fan shroud from the retaining clips on the radiator. Installation Procedure 1. Install the lower fan shroud to the retaining clips on the radiator and firmly push down. 2. If equipped with the engine oil cooler, Install the oil cooler hose clip to the lower fan shroud. 3. Install the cooling fan. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5192 Fan Shroud: Service and Repair Engine Coolant Fan Upper Shroud Replacement Automatic Transmission Engine Coolant Fan Upper Shroud Replacement (Automatic Transmission - Gasoline) Removal Procedure 1. Loosen the air cleaner outlet duct clamps from the throttle body. 2. Loosen the air cleaner outlet duct clamps from the mass airflow sensor. 3. Remove the air cleaner outlet duct. 4. Remove the A/C line retainer from the fan shroud. 5. Remove the engine harness clip from the powertrain control module (PCM) cover. 6. Remove the transmission control module (TCM) cover bolts. 7. Remove TCM cover from the fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5193 8. Loosen the TCM electrical connector bolts. 9. Disconnect the TCM electrical connectors (1). 10. Remove the TCM and cover. 11. Remove the fan shroud retainers. 12. Remove the fan shroud bolts 13. Remove the upper fan shroud. Installation Procedure 1. Install the upper fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5194 Notice: Refer to Fastener Notice in Service Precautions. 2. Install the fan shroud bolts. Tighten the bolts to 9 Nm (80 inch lbs.). 3. Install the fan shroud retainers. 4. Connect the TCM electrical connectors (1). 5. Install the TCM and cover. 6. Tighten the TCM electrical connector bolts. Tighten the bolts to 8 Nm (71 inch lbs.). 7. Install the TCM cover to the fan shroud. 8. Install the TCM cover bolts. Tighten the bolts to 9 Nm (80 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5195 9. Install the engine harness clip to the PCM cover. 10. Install the A/C line retainer to the fan shroud. 11. Install the air cleaner outlet duct. 12. Tighten the air cleaner outlet duct clamp at the throttle body. Tighten the clamp to 4 Nm (35 inch lbs.). 13. Tighten the air cleaner outlet duct clamp at the mass airflow sensor. Tighten the clamp to 4 Nm (35 inch lbs.). Manual Transmission Engine Coolant Fan Upper Shroud Replacement (Manual Transmission - Gasoline) Removal Procedure 1. Loosen the air cleaner outlet duct clamps from the throttle body. 2. Loosen the air cleaner outlet duct clamps from the mass airflow sensor. 3. Remove the air cleaner outlet duct. 4. If equipped remove the throttle body heater hose retainer from the fan shroud. 5. If equipped remove the inlet radiator hose retainer from the fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5196 6. Remove the fan shroud retainers. 7. Remove the fan shroud bolts 8. Remove the upper fan shroud. Installation Procedure 1. Install the upper fan shroud. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the fan shroud bolts. Tighten the bolts to 9 Nm (80 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Fan Shroud > Component Information > Service and Repair > Cooling Fan and Shroud Replacement > Page 5197 3. Install the fan shroud retainers. 4. If equipped install the inlet radiator hose retainer to the fan shroud. 5. If equipped install the throttle body heater hose retainer to the fan shroud. 6. Install the air cleaner outlet duct. 7. Tighten the air cleaner outlet duct clamp at the throttle body. Tighten the clamp to 4 Nm (35 inch lbs.). 8. Tighten the air cleaner outlet duct clamp at the mass airflow sensor. Tighten the clamp to 4 Nm (35 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Technical Service Bulletins > Cooling System, A/C - Aluminum Heater Cores/Radiators Heater Core: Technical Service Bulletins Cooling System, A/C - Aluminum Heater Cores/Radiators INFORMATION Bulletin No.: 05-06-02-001A Date: July 16, 2008 Subject: Information On Aluminum Heater Core and/or Radiator Replacement Models: 2005 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2005 HUMMER H2 Supercede: This bulletin is being revised to update the Warranty Information. Please discard Corporate Bulletin Number 05-06-02-001 (Section 06 - Engine/Propulsion System). Important: 2004-05 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX-COOL(R). Refer to the flushing procedure explained later in this bulletin. The following information should be utilized when servicing aluminum heater core and/or radiators on repeat visits. A replacement may be necessary because erosion, corrosion, or insufficient inhibitor levels may cause damage to the heater core, radiator or water pump. A coolant check should be performed whenever a heater core, radiator, or water pump is replaced. The following procedures/ inspections should be done to verify proper coolant effectiveness. Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if the radiator cap or surge tank cap is removed while the engine and radiator are still hot. Important: If the vehicle's coolant is low, drained out, or the customer has repeatedly added coolant or water to the system, then the system should be completely flushed using the procedure explained later in this bulletin. Technician Diagnosis ^ Verify coolant concentration. A 50% coolant/water solution ensures proper freeze and corrosion protection. Inhibitor levels cannot be easily measured in the field, but can be indirectly done by the measurement of coolant concentration. This must be done by using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale), or equivalent, coolant tester. The Refractometer uses a minimal amount of coolant that can be taken from the coolant recovery reservoir, radiator or the engine block. Inexpensive gravity float testers (floating balls) will not completely analyze the coolant concentration fully and should not be used. The concentration levels should be between 50% and 65% coolant concentrate. This mixture will have a freeze point protection of -34 degrees Fahrenheit (-37 degrees Celsius). If the concentration is below 50%, the cooling system must be flushed. ^ Inspect the coolant flow restrictor if the vehicle is equipped with one. Refer to Service Information (SI) and/or the appropriate Service Manual for component location and condition for operation. ^ Verify that no electrolysis is present in the cooling system. This electrolysis test can be performed before or after the system has been repaired. Use a digital voltmeter set to 12 volts. Attach one test lead to the negative battery post and insert the other test lead into the radiator coolant, making sure the lead does not touch the filler neck or core. Any voltage reading over 0.3 volts indicates that stray current is finding its way into the coolant. Electrolysis is often an intermittent condition that occurs when a device or accessory that is mounted to the radiator is energized. This type of current could be caused from a poorly grounded cooling fan or some other accessory and can be verified by watching the volt meter and turning on and off various accessories or engage the starter motor. Before using one of the following flush procedures, the coolant recovery reservoir must be removed, drained, cleaned and reinstalled before refilling the system. Notice: ^ Using coolant other than DEX‐COOL(R) may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50,000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX‐COOL(R) (silicate free) coolant in your vehicle. ^ If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Technical Service Bulletins > Cooling System, A/C - Aluminum Heater Cores/Radiators > Page 5202 Flushing Procedures using DEX-COOL(R) Important: The following procedure recommends refilling the system with DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. This coolant is orange in color and has a service interval of 5 years or 240,000 km (150,000 mi). However, when used on vehicles built prior to the introduction of DEX-COOL(R), maintenance intervals will remain the same as specified in the Owner's Manual. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling system flush and fill machine is not available, drain the coolant and dispose of properly following the draining procedures in the appropriate Service Manual. Refill the system using clear, drinkable water and run the vehicle until the thermostat opens. Repeat and run the vehicle three (3) times to totally remove the old coolant or until the drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with DEX‐COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. Then slowly add clear, drinkable water (preferably distilled) to the system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and reverify the coolant level. If necessary, add clean water to restore the coolant to the appropriate level. Once the system is refilled, reverify the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. The concentration levels should be between 50% and 65%. Flushing Procedures using Conventional Silicated (Green Colored) Coolant Important: 2004-2005 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX‐COOL(R). The Aveo and Wave are filled with conventional, silicated engine coolant that is blue in color. Silicated coolants are typically green in color and are required to be drained, flushed and refilled every 30,000 miles (48,000 km). The Aveo and Wave are to be serviced with conventional, silicated coolant. Use P/N 12378560 (1 gal) (in Canada, use P/N 88862159 (1 L). Refer to the Owner's Manual or Service Information (SI) for further information on OEM coolant. Important: Do not mix the OEM orange colored DEX-COOL(R) coolant with green colored coolant when adding coolant to the system or when servicing the vehicle's cooling system. Mixing the orange and green colored coolants will produce a brown coolant which may be a customer dissatisfier and will not extend the service interval to that of DEX-COOL(R). Conventional silicated coolants offered by GM Service and Parts Operations are green in color. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling systems flush and fill machine is not available, drain coolant and dispose of properly following the draining procedures in appropriate Service Manual. Refill the system using clear, drinkable water and run vehicle until thermostat opens. Repeat and run vehicle three (3) times to totally remove old coolant or until drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with a good quality ethylene glycol base engine coolant, P/N 12378560, 1 gal (in Canada, use P/N 88862159 1 L), conforming to GM specification 1825M, or recycled coolant conforming to GM specification 1825M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% good quality ethylene glycol base (green colored) engine coolant, P/N 12378560 1 gal., (in Canada, use P/N 88862159 1 L) conforming to GM specification 1825M. Then slowly add clear, drinkable water (preferably distilled) to system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and recheck coolant level. If necessary, add clean water to restore coolant to the appropriate level. Once the system is refilled, recheck the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. Concentration levels should be between 50% and 65%. Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Technical Service Bulletins > Cooling System, A/C - Aluminum Heater Cores/Radiators > Page 5203 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Service and Repair > Heater Core Replacement (Delphi) Heater Core: Service and Repair Heater Core Replacement (Delphi) Heater Core Replacement (Delphi) Removal Procedure 1. Remove the HVAC module assembly. 2. Remove the screws from the heater core cover. 3. Remove the heater core cover (1) from the HVAC module assembly (2). 4. Remove the heater core cowl gasket (1) from the heater core (2). 5. Remove the heater core (2) from the HVAC module assembly (3). Installation Procedure 1. Install the heater core (2) to the HVAC module assembly (3). 2. Install the heater core cowl gasket (1) to the heater core (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Service and Repair > Heater Core Replacement (Delphi) > Page 5206 3. Install the heater core cover (1) to the HVAC module assembly (2). Notice: Refer to Fastener Notice. 4. Install the screws to the heater core cover (1). Tighten the screws to 2 N.m (18 lb in). 5. Install the HVAC module assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Service and Repair > Heater Core Replacement (Delphi) > Page 5207 Heater Core: Service and Repair Heater Core Replacement (Heat Only) Heater Core Replacement (Heat Only) Removal Procedure 1. Remove the heater/vent module. 2. Remove the heater core cover screws. 3. Remove the heater core cover. 4. Remove the heater core. Installation Procedure 1. Install the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Service and Repair > Heater Core Replacement (Delphi) > Page 5208 2. Install the heater core cover. Notice: Refer to Fastener Notice. 3. Install heater core cover screws. Tighten the screws to 1.6 N.m (14 lb in). 4. Install the heater/vent module. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Service and Repair > Heater Core Replacement (Delphi) > Page 5209 Heater Core: Service and Repair Heater Core Replacement (Visteon) Heater Core Replacement (Visteon) Removal Procedure 1. Remove the HVAC module assembly. 2. Remove the screws from the heater core cover. 3. Remove the heater core cover (1) from the HVAC module assembly (2). 4. Remove the heater core cowl gasket (1) from the heater core (2). 5. Remove the heater core (1) from the HVAC module assembly (2). Installation Procedure 1. Install the heater core (1) to the HVAC module assembly (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Core > Component Information > Service and Repair > Heater Core Replacement (Delphi) > Page 5210 2. Install the heater core cowl gasket (1) to the HVAC module assembly (2). 3. Install the heater core cover (1) to the HVAC module assembly (2). Notice: Refer to Fastener Notice. 4. Install the screws to the heater core cover (1). Tighten the screws to 2 N.m (18 lb in). 5. Install the HVAC module assembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) Heater Hose: Service and Repair Heater Inlet Hose Replacement (LB7) Heater Inlet Hose Replacement (LB7) Tools Required J 43181 Quick Connect Connector Removal Tool Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air intake tube. 3. Remove the heater and surge tank hose from the mounting clip. 4. Using the J 43181 disconnect the heater hose from the heater core inlet. 1. Install the J 43181 to the heater core pipe. 2. Close the tool around the heater core pipe. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5215 5. Reposition the inlet heater hose clamp from the engine coolant outlet. 6. Remove the inlet heater hose (1) from the engine coolant outlet. 7. Remove the auxiliary inlet heater hose if equipped. 8. Remove the inlet heater hose. Installation Procedure 1. Install the heater hose. 2. Connect the auxiliary inlet heater hose if equipped. 3. Install the inlet heater hose (1) to the engine coolant outlet. 4. Reposition the inlet heater hose clamp to the engine coolant outlet. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5216 5. Connect the heater and surge tank hoses to the heater core. Firmly push the quick connect onto the heater core pipe until you hear an audible click. 6. Install the heater and surge tank hose to the mounting clip. 7. Install the air intake tube. 8. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5217 Heater Hose: Service and Repair Heater Outlet Hose Replacement (LB7) Heater Outlet Hose Replacement (LB7) Tools Required J 43181 Quick Connect Connector Removal Tool Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air intake tube. 3. Remove the heater and surge tank hose from the mounting clip. 4. Using the J 43181 disconnect the heater hose from the heater core outlet. 1. Install the J 43181 to the heater core pipe. 2. Close the tool around the heater core pipe. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5218 5. Remove the outlet heater hose nut from the engine. Discard the nut. 6. Remove the outlet heater hose bolt from the engine. Discard the bolt. 7. Remove the auxiliary outlet heater hose if equipped. 8. Remove the outlet heater hose from the outlet pipe assembly. 9. Remove the outlet heater hose. Installation Procedure 1. Install the outlet heater hose. 2. Install the outlet heater hose to the outlet pipe assembly. 3. Install the auxiliary outlet heater hose if equipped. Notice: Refer to Fastener Notice. 4. Install the NEW outlet heater hose nut and bolt to the engine. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5219 Tighten the nut and bolt to 25 N.m (18 lb ft). 5. Connect the outlet heater hose to the heater core. Firmly push the quick connect onto the heater core pipe until you hear an audible click. 6. Install the outlet heater hose to the mounting clip. 7. Install the air intake tube. 8. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5220 Heater Hose: Service and Repair Heater Outlet Hose Replacement (LR4, LM7, LQ4) Heater Outlet Hose Replacement (LR4, LM7, LQ4) Tools Required J 43181 Quick Connect Connector Removal Tool Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air intake tube. 3. Remove the heater and surge tank hose from the mounting clip. 4. Using the J 43181 disconnect the heater hose from the heater core outlet. 1. Install the J 43181 to the heater core pipe. 2. Close the tool around the heater core pipe. 3. Firmly pull the tool into the quick connect end of the heater hose. 4. Firmly grasp the heater hose. Pull the heater hose forward in order to disengage the hose from the heater core. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5221 5. Remove the outlet heater hose from the engine. 6. Remove the outlet heater hose. Installation Procedure 1. Install the outlet heater hose. 2. Install the outlet heater hose to the engine. 3. Connect the outlet heater hose to the heater core. Firmly push the quick connect onto the heater core pipe until you hear an audible click. 4. Install the heater and surge tank hose to the mounting clip. 5. Install the air intake tube. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Heater Hose > Component Information > Service and Repair > Heater Inlet Hose Replacement (LB7) > Page 5222 6. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator > Component Information > Technical Service Bulletins > Cooling System, A/C - Aluminum Heater Cores/Radiators Radiator: Technical Service Bulletins Cooling System, A/C - Aluminum Heater Cores/Radiators INFORMATION Bulletin No.: 05-06-02-001A Date: July 16, 2008 Subject: Information On Aluminum Heater Core and/or Radiator Replacement Models: 2005 and Prior GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2005 HUMMER H2 Supercede: This bulletin is being revised to update the Warranty Information. Please discard Corporate Bulletin Number 05-06-02-001 (Section 06 - Engine/Propulsion System). Important: 2004-05 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX-COOL(R). Refer to the flushing procedure explained later in this bulletin. The following information should be utilized when servicing aluminum heater core and/or radiators on repeat visits. A replacement may be necessary because erosion, corrosion, or insufficient inhibitor levels may cause damage to the heater core, radiator or water pump. A coolant check should be performed whenever a heater core, radiator, or water pump is replaced. The following procedures/ inspections should be done to verify proper coolant effectiveness. Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if the radiator cap or surge tank cap is removed while the engine and radiator are still hot. Important: If the vehicle's coolant is low, drained out, or the customer has repeatedly added coolant or water to the system, then the system should be completely flushed using the procedure explained later in this bulletin. Technician Diagnosis ^ Verify coolant concentration. A 50% coolant/water solution ensures proper freeze and corrosion protection. Inhibitor levels cannot be easily measured in the field, but can be indirectly done by the measurement of coolant concentration. This must be done by using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale), or equivalent, coolant tester. The Refractometer uses a minimal amount of coolant that can be taken from the coolant recovery reservoir, radiator or the engine block. Inexpensive gravity float testers (floating balls) will not completely analyze the coolant concentration fully and should not be used. The concentration levels should be between 50% and 65% coolant concentrate. This mixture will have a freeze point protection of -34 degrees Fahrenheit (-37 degrees Celsius). If the concentration is below 50%, the cooling system must be flushed. ^ Inspect the coolant flow restrictor if the vehicle is equipped with one. Refer to Service Information (SI) and/or the appropriate Service Manual for component location and condition for operation. ^ Verify that no electrolysis is present in the cooling system. This electrolysis test can be performed before or after the system has been repaired. Use a digital voltmeter set to 12 volts. Attach one test lead to the negative battery post and insert the other test lead into the radiator coolant, making sure the lead does not touch the filler neck or core. Any voltage reading over 0.3 volts indicates that stray current is finding its way into the coolant. Electrolysis is often an intermittent condition that occurs when a device or accessory that is mounted to the radiator is energized. This type of current could be caused from a poorly grounded cooling fan or some other accessory and can be verified by watching the volt meter and turning on and off various accessories or engage the starter motor. Before using one of the following flush procedures, the coolant recovery reservoir must be removed, drained, cleaned and reinstalled before refilling the system. Notice: ^ Using coolant other than DEX‐COOL(R) may cause premature engine, heater core or radiator corrosion. In addition, the engine coolant may require changing sooner, at 30,000 miles (50,000 km) or 24 months, whichever occurs first. Any repairs would not be covered by your warranty. Always use DEX‐COOL(R) (silicate free) coolant in your vehicle. ^ If you use an improper coolant mixture, your engine could overheat and be badly damaged. The repair cost would not be covered by your warranty. Too much water in the mixture can freeze and crack the engine, radiator, heater core and other parts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator > Component Information > Technical Service Bulletins > Cooling System, A/C - Aluminum Heater Cores/Radiators > Page 5227 Flushing Procedures using DEX-COOL(R) Important: The following procedure recommends refilling the system with DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. This coolant is orange in color and has a service interval of 5 years or 240,000 km (150,000 mi). However, when used on vehicles built prior to the introduction of DEX-COOL(R), maintenance intervals will remain the same as specified in the Owner's Manual. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling system flush and fill machine is not available, drain the coolant and dispose of properly following the draining procedures in the appropriate Service Manual. Refill the system using clear, drinkable water and run the vehicle until the thermostat opens. Repeat and run the vehicle three (3) times to totally remove the old coolant or until the drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with DEX‐COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% DEX-COOL(R), P/N 12346290 (in Canada, use P/N 10953464), GM specification 6277M. Then slowly add clear, drinkable water (preferably distilled) to the system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and reverify the coolant level. If necessary, add clean water to restore the coolant to the appropriate level. Once the system is refilled, reverify the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. The concentration levels should be between 50% and 65%. Flushing Procedures using Conventional Silicated (Green Colored) Coolant Important: 2004-2005 Chevrolet Aveo (Pontiac Wave, Canada Only) does not use DEX‐COOL(R). The Aveo and Wave are filled with conventional, silicated engine coolant that is blue in color. Silicated coolants are typically green in color and are required to be drained, flushed and refilled every 30,000 miles (48,000 km). The Aveo and Wave are to be serviced with conventional, silicated coolant. Use P/N 12378560 (1 gal) (in Canada, use P/N 88862159 (1 L). Refer to the Owner's Manual or Service Information (SI) for further information on OEM coolant. Important: Do not mix the OEM orange colored DEX-COOL(R) coolant with green colored coolant when adding coolant to the system or when servicing the vehicle's cooling system. Mixing the orange and green colored coolants will produce a brown coolant which may be a customer dissatisfier and will not extend the service interval to that of DEX-COOL(R). Conventional silicated coolants offered by GM Service and Parts Operations are green in color. ^ If available, use the approved cooling system flush and fill machine (available through the GM Dealer Equipment Program) following the manufacturer's operating instructions. ^ If approved cooling systems flush and fill machine is not available, drain coolant and dispose of properly following the draining procedures in appropriate Service Manual. Refill the system using clear, drinkable water and run vehicle until thermostat opens. Repeat and run vehicle three (3) times to totally remove old coolant or until drained coolant is almost clear. Once the system is completely flushed, refill the cooling system to a 50%-60% concentration with a good quality ethylene glycol base engine coolant, P/N 12378560, 1 gal (in Canada, use P/N 88862159 1 L), conforming to GM specification 1825M, or recycled coolant conforming to GM specification 1825M, following the refill procedures in the appropriate Service Manual. If a Service Manual is not available, fill half the capacity of the system with 100% good quality ethylene glycol base (green colored) engine coolant, P/N 12378560 1 gal., (in Canada, use P/N 88862159 1 L) conforming to GM specification 1825M. Then slowly add clear, drinkable water (preferably distilled) to system until the level of the coolant mixture has reached the base of the radiator neck. Wait two (2) minutes and recheck coolant level. If necessary, add clean water to restore coolant to the appropriate level. Once the system is refilled, recheck the coolant concentration using a Refractometer J 23688 (Fahrenheit scale) or J 26568 (centigrade scale) coolant tester, or equivalent. Concentration levels should be between 50% and 65%. Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator > Component Information > Technical Service Bulletins > Cooling System, A/C - Aluminum Heater Cores/Radiators > Page 5228 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator > Component Information > Service and Repair > Radiator Air Baffle and Deflector Replacement - Side Radiator: Service and Repair Radiator Air Baffle and Deflector Replacement - Side Radiator Air Side Baffle and Deflector Replacement Removal Procedure 1. Remove the radiator. 2. Remove the radiator air baffle retainers. 3. Remove the radiator air baffles. Installation Procedure 1. Install the radiator air baffles. 2. Install the radiator air baffle retainers. 3. Install the radiator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator > Component Information > Service and Repair > Radiator Air Baffle and Deflector Replacement - Side > Page 5231 Radiator: Service and Repair Radiator Air Baffle and Deflector Replacement - Upper Radiator Air Upper Baffle and Deflector Replacement Removal Procedure 1. Remove the radiator air upper baffle retainers. 2. Remove the radiator air upper baffle. Installation Procedure 1. Install the radiator air upper baffle. 2. Install the radiator air upper baffle retainers. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator > Component Information > Service and Repair > Radiator Air Baffle and Deflector Replacement - Side > Page 5232 Radiator: Service and Repair Radiator Replacement Radiator Replacement (4.3, 4.8, 5.3, and 6.0L) Removal Procedure 1. Remove the cooling fan and shroud. 2. Remove the radiator outlet hose for the 4.3L engine, or the 4.8L, 5.3L and 6.0L engines. 3. Disconnect the engine oil cooler lines from the radiator, if necessary. 4. Disconnect the transmission oil cooler lines from the radiator, if necessary. 5. Remove the radiator bolts. 6. Remove the radiator. Installation Procedure 1. Install the radiator. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the radiator bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 3. Connect the transmission oil cooler lines to the radiator, if necessary. 4. Connect the engine oil cooler lines to the radiator, if necessary. 5. Install the radiator outlet hose for the 4.3L engine, or the 4.8L, 5.3L and 6.0L engines. 6. Install the cooling fan and shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cap > Component Information > Service Precautions Radiator Cap: Service Precautions Radiator Cap Removal Caution Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if radiator cap or surge tank cap is removed while the engine and radiator are still hot. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Cap > Component Information > Service Precautions > Page 5236 Radiator Cap: Testing and Inspection Pressure Cap Testing Tools required ^ J 24460-01 Cooling System Pressure Tester ^ J 42401 Radiator Cap / Surge Tank Test Adapter Pressure Cap Testing 1. Caution: To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam under pressure if radiator cap or surge tank cap is removed while the engine and radiator are still hot. Remove the pressure cap. 2. Wash the pressure cap sealing surface with water. 3. Use the J 24460-01 (1) with J 42401 (2) in order to test the pressure cap. 4. Test the pressure cap for the following conditions: ^ Pressure release when the J 24460-01 exceeds the pressure rating of the pressure cap. ^ Maintain the rated pressure for at least 10 seconds. Note the rate of pressure loss. 5. Replace the pressure cap under the following conditions: ^ The pressure cap does not release pressure which exceeds the rated pressure of the cap. ^ The pressure cap does not hold the rated pressure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement Radiator Hose: Service and Repair Radiator Inlet Hose Replacement Radiator Inlet Hose Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Loosen the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ Mass airflow/intake air temperature (MAF/IAT) sensor 3. Remove the radiator inlet hose clip from the outlet hose. 4. Remove the air cleaner outlet duct. 5. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 6. Remove the radiator vent inlet hose from the radiator inlet hose clips. 7. Reposition the inlet hose clamp at the radiator. 8. Remove the inlet hose clip from the fan shroud. 9. Remove the inlet hose (1) from the radiator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 5241 10. Reposition the inlet hose clamp at the water pump. 11. Remove the inlet hose from the water pump. Installation Procedure 1. Install the inlet hose to the water pump. 2. Position the inlet hose clamp at the water pump. 3. Install the inlet hose (1) to the radiator. 4. Position the inlet hose clamp at the radiator. 5. Install the inlet hose clip to the fan shroud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 5242 6. Install the radiator vent inlet hose to the radiator inlet hose clips. 7. If necessary, install the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 8. Important: Align the arrow at the throttle body end of the duct with the throttle body attaching stud. Install the air cleaner outlet duct. 9. Install the radiator inlet hose clip to the outlet duct. 10. Tighten the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ MAF/IAT sensor Tighten the clamps to 4 Nm (35 inch lbs.). 11. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 5243 Radiator Hose: Service and Repair Radiator Outlet Hose Replacement Radiator Outlet Hose Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Loosen the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ Mass airflow/intake air temperature (MAF/IAT) sensor 3. Remove the radiator inlet hose clip from the outlet duct. 4. Remove the air cleaner outlet duct. 5. Reposition the outlet hose clamp at the water pump. 6. Remove the outlet hose from the water pump. 7. Reposition the outlet hose clamp at the radiator. 8. Remove the outlet hose (6) from the radiator. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Radiator Hose > Component Information > Service and Repair > Radiator Inlet Hose Replacement > Page 5244 1. Install the outlet hose (6) to the radiator. 2. Position the outlet hose clamp at the radiator. 3. Install the outlet hose to the water pump. 4. Position the outlet hose clamp at the water pump. 5. Important: Align the arrow at the throttle body end of the duct with the throttle body attaching stud. Install the air cleaner outlet duct. 6. Install the radiator inlet hose clip to the outlet duct. 7. Tighten the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ MAF/IAT sensor Tighten the clamps to 4 Nm (35 inch lbs.). 8. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5250 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5251 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5252 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5253 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5254 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5255 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5256 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5257 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5258 Radiator Cooling Fan Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5259 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5260 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5261 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5262 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5263 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5264 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5265 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5266 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5267 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5268 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5269 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5270 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5271 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5272 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5273 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5274 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5275 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5276 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5277 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5278 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5279 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5280 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5281 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5282 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5283 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5284 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5285 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5286 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5287 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5288 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5289 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5290 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5291 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5292 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5293 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5294 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5295 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5296 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5297 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5298 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5299 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5300 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5301 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5302 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5303 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5304 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5305 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5306 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5307 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5308 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5309 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5310 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5311 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5312 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5313 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5314 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5315 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5316 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5317 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5318 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5319 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5320 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5321 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5322 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5323 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5324 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5325 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5326 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5327 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5328 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5329 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5330 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5331 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5332 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5333 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5334 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5335 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5336 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5337 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5338 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5339 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5340 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5341 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Locations Radiator Cooling Fan Motor Relay: Locations Fuse Block - Underhood - Cooling Fan (10 Series) Fuse Block - Underhood - Cooling Fan (10 Series) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions Radiator Cooling Fan Motor Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5347 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5348 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5349 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5350 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5351 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5352 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5353 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5354 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5355 Radiator Cooling Fan Motor Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5356 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5357 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5358 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5359 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5360 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5361 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5362 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5363 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5364 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5365 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5366 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5367 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5368 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5369 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5370 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5371 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5372 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5373 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5374 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5375 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5376 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5377 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5378 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5379 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5380 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5381 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5382 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5383 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5384 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5385 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5386 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5387 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5388 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5389 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5390 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5391 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5392 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5393 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5394 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5395 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5396 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5397 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5398 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5399 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5400 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5401 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5402 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5403 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5404 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5405 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5406 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5407 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5408 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5409 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5410 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5411 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5412 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5413 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5414 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5415 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5416 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5417 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5418 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5419 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5420 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5421 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5422 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5423 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5424 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5425 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5426 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5427 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5428 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5429 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5430 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5431 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5432 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5433 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5434 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5435 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5436 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5437 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Relays and Modules - Cooling System > Radiator Cooling Fan Motor Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5438 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Coolant Level Sensor > Component Information > Locations Coolant Level Sensor: Locations Cooling System Component Views 1 - Auxiliary Battery Relay (TP2) 2 - A/C Accumulator 3 - A/C Low Pressure Switch 4 - Inner Wheel Well 5 - Coolant Level Switch Connector Diesel and 8.1L 6 - Mass Air Flow (MAF) Sensor 7 - Air Cleaner Assembly 8 - Engine Coolant Recovery Reservoir 9 - Auxiliary Battery Relay Electrical Connector (TP2) 10 - Battery Right (TP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5452 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5453 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5454 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5455 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5461 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5462 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5463 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 5464 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules Relay Module: All Technical Service Bulletins Electrical - MIL ON/DTC's Set By Various Control Modules TECHNICAL Bulletin No.: 09-06-03-004D Date: December 08, 2010 Subject: Intermittent No Crank/No Start, No Module Communication, MIL, Warning Lights, Vehicle Messages or DTCs Set by Various Control Modules - Diagnosing and Repairing Fretting Corrosion (Disconnect Affected Connector and Apply Dielectric Lubricant) Models: 2011 and Prior GM Passenger Cars and Trucks Attention: This repair can be applied to ANY electrical connection including, but not limited to: lighting, body electrical, in-line connections, powertrain control sensors, etc. DO NOT over apply lubricant to the point where it prevents the full engagement of sealed connectors. A light coating on the terminal surfaces is sufficient to correct the condition. Supercede: This bulletin is being revised to update the Attention statement and add the 2011 model year. Please discard Corporate Bulletin Number 09-06-03-004C (Section 06 Engine/Propulsion System). Condition Some customers may comment on any of the following conditions: - An intermittent no crank/no start - Intermittent malfunction indicator lamp (MIL) illumination - Intermittent service lamp illumination - Intermittent service message(s) being displayed The technician may determine that he is unable to duplicate the intermittent condition. Cause This condition may be caused by a buildup of nonconductive insulating oxidized debris known as fretting corrosion, occurring between two electrical contact surfaces of the connection or connector. This may be caused by any of the following conditions: - Vibration - Thermal cycling - Poor connection/terminal retention - Micro motion - A connector, component or wiring harness not properly secured resulting in movement On low current signal circuits this condition may cause high resistance, resulting in intermittent connections. On high current power circuits this condition may cause permanent increases in the resistance and may cause a device to become inoperative. Representative List of Control Modules and Components The following is only a representative list of control modules and components that may be affected by this connection or connector condition and DOES NOT include every possible module or component for every vehicle. - Blower Control Module - Body Control Module (BCM) - Communication Interface Module (CIM) - Cooling Fan Control Module - Electronic Brake Control Module (EBCM) - Electronic Brake and Traction Control Module (EBTCM) - Electronic Suspension Control (ESC) Module - Engine Control Module (ECM) - Heating, Ventilation and Air Conditioning (HVAC) Control Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 5470 - HVAC Actuator - Inflatable Restraint Sensing and Diagnostic Module (SDM) - Any AIR BAG module - Seatbelt Lap Anchor Pretensioner - Seatbelt Retractor Pretensioner - An SIR system connection or connector condition resulting in the following DTCs being set: B0015, B0016, B0019, B0020, B0022, or B0023 - Powertrain Control Module (PCM) - Remote Control Door Lock Receiver (RCDLR) - Transmission Control Module (TCM) Correction Important DO NOT replace the control module, wiring or component for the following conditions: - The condition is intermittent and cannot be duplicated. - The condition is present and by disconnecting and reconnecting the connector the condition can no longer be duplicated. Use the following procedure to correct the conditions listed above. 1. Install a scan tool and perform the Diagnostic System Check - Vehicle. Retrieve and record any existing history or current DTCs from all of the control modules (refer to SI). ‹› If any DTC(s) are set, refer to Diagnostic Trouble Code (DTC) List - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). ‹› If DTCs are not set, refer to Symptoms - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). 2. When identified, use the appropriate DTC Diagnostics, Symptoms, Schematics, Component Connector End Views and Component Locator documents to locate and disconnect the affected harness connector(s) which are causing the condition. Note Fretting corrosion looks like little dark smudges on electrical terminals and appear where the actual electrical contact is being made. In less severe cases it may be unable to be seen or identified without the use of a magnifying glass. Important DO NOT apply an excessive amount of dielectric lubricant to the connectors as shown, as hydrolock may result when attempting to mate the connectors. Use ONLY a clean nylon brush that is dedicated to the repair of the conditions in this bulletin. 3. With a one-inch nylon bristle brush, apply dielectric lubricant to both the module/component side and the harness side of the affected connector(s). 4. Reconnect the affected connector(s) and wipe away any excess lubricant that may be present. 5. Attempt to duplicate the condition by using the following information: - DTC Diagnostic Procedure - Circuit/System Description - Conditions for Running the DTC - Conditions for Setting the DTC - Diagnostic Aids - Circuit/System Verification ‹› If the condition cannot be duplicated, the repair is complete. ‹› If the condition can be duplicated, then follow the appropriate DTC, Symptom or Circuit/System Testing procedure (refer to SI). Repair Order Documentation Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 5471 Important The following information MUST be documented on the repair order. Failure to do so may result in a chargeback. - Customer vehicle condition. - Was a Service Lamp or Service Message illuminated? If yes, specify which Service Lamp or Service Message. - Was a DTC(s) set? If yes, specify which DTC(s) were set. - After following the procedure contained within this bulletin, could the condition be duplicated? ‹› If the condition was not duplicated, then document the affected module/component connector name and number on the repair order. - If the condition was duplicated after the procedure contained within this bulletin was followed, and additional diagnosis led to the replacement of a module or component, the SI Document ID Number MUST be written on the repair order. Parts Information Alternate Distributor For All of North America Note NyoGel(R) 760G Lubricant* is equivalent to GMSPO P/N 12377900, and P/N 10953529 (Canada), specified for use to correct the condition in this bulletin. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to: Warranty Information (Saab Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 5472 For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to refer to the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 5478 - HVAC Actuator - Inflatable Restraint Sensing and Diagnostic Module (SDM) - Any AIR BAG module - Seatbelt Lap Anchor Pretensioner - Seatbelt Retractor Pretensioner - An SIR system connection or connector condition resulting in the following DTCs being set: B0015, B0016, B0019, B0020, B0022, or B0023 - Powertrain Control Module (PCM) - Remote Control Door Lock Receiver (RCDLR) - Transmission Control Module (TCM) Correction Important DO NOT replace the control module, wiring or component for the following conditions: - The condition is intermittent and cannot be duplicated. - The condition is present and by disconnecting and reconnecting the connector the condition can no longer be duplicated. Use the following procedure to correct the conditions listed above. 1. Install a scan tool and perform the Diagnostic System Check - Vehicle. Retrieve and record any existing history or current DTCs from all of the control modules (refer to SI). ‹› If any DTC(s) are set, refer to Diagnostic Trouble Code (DTC) List - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). ‹› If DTCs are not set, refer to Symptoms - Vehicle to identify the connector(s) of the control module/component which may be causing the condition (refer to SI). 2. When identified, use the appropriate DTC Diagnostics, Symptoms, Schematics, Component Connector End Views and Component Locator documents to locate and disconnect the affected harness connector(s) which are causing the condition. Note Fretting corrosion looks like little dark smudges on electrical terminals and appear where the actual electrical contact is being made. In less severe cases it may be unable to be seen or identified without the use of a magnifying glass. Important DO NOT apply an excessive amount of dielectric lubricant to the connectors as shown, as hydrolock may result when attempting to mate the connectors. Use ONLY a clean nylon brush that is dedicated to the repair of the conditions in this bulletin. 3. With a one-inch nylon bristle brush, apply dielectric lubricant to both the module/component side and the harness side of the affected connector(s). 4. Reconnect the affected connector(s) and wipe away any excess lubricant that may be present. 5. Attempt to duplicate the condition by using the following information: - DTC Diagnostic Procedure - Circuit/System Description - Conditions for Running the DTC - Conditions for Setting the DTC - Diagnostic Aids - Circuit/System Verification ‹› If the condition cannot be duplicated, the repair is complete. ‹› If the condition can be duplicated, then follow the appropriate DTC, Symptom or Circuit/System Testing procedure (refer to SI). Repair Order Documentation Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 5479 Important The following information MUST be documented on the repair order. Failure to do so may result in a chargeback. - Customer vehicle condition. - Was a Service Lamp or Service Message illuminated? If yes, specify which Service Lamp or Service Message. - Was a DTC(s) set? If yes, specify which DTC(s) were set. - After following the procedure contained within this bulletin, could the condition be duplicated? ‹› If the condition was not duplicated, then document the affected module/component connector name and number on the repair order. - If the condition was duplicated after the procedure contained within this bulletin was followed, and additional diagnosis led to the replacement of a module or component, the SI Document ID Number MUST be written on the repair order. Parts Information Alternate Distributor For All of North America Note NyoGel(R) 760G Lubricant* is equivalent to GMSPO P/N 12377900, and P/N 10953529 (Canada), specified for use to correct the condition in this bulletin. *We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Warranty Information (excluding Saab Models) For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to: Warranty Information (Saab Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 09-06-03-004D > Dec > 10 > Electrical - MIL ON/DTC's Set By Various Control Modules > Page 5480 For vehicles repaired under warranty, use the appropriate/closest labor operation depending upon the module/component connection that the dielectric lubricant was applied to refer to the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5481 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5482 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5483 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5484 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Sensors and Switches - Cooling System > Engine - Coolant Temperature Sensor/Switch > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 5485 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Thermostat, Engine Cooling > Component Information > Specifications Thermostat: Specifications The thermostat should begin to open .................................................................................................. ............................................................. 87°C (188°F). The thermostat should be fully open .............. .................................................................................................................................................. 97°C (206°F). Replace the coolant thermostat if it does not operate properly between this temperature range. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Thermostat Housing, Engine Cooling > Component Information > Service and Repair Thermostat Housing: Service and Repair Engine Coolant Thermostat Housing Replacement (4.8L, 5.3L, and 6.0L Engines) Removal Procedure Important: The thermostat is not serviceable separately. The water pump inlet and thermostat must be replaced as an assembly. 1. Remove the radiator outlet hose. 2. Remove the water pump inlet bolts. 3. Remove the water pump inlet and thermostat from the water pump. Installation Procedure 1. Install the thermostat and thermostat housing to the water pump. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the thermostat housing bolts. Tighten the bolts to 15 Nm (11 ft. lbs.). 3. Install the radiator outlet hose. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Specifications Water Pump: Specifications Water Pump Bolts - First Pass ............................................................................................................ ....................................................... 15 Nm (11 ft. lbs.) Water Pump Bolts - Final Pass ...................... ............................................................................................................................................ 30 Nm (22 ft. lbs.) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Specifications > Page 5495 Water Pump: Locations Cooling System Component Views Auxiliary Water Pump - HP2 1 - Auxiliary Water Pump Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Specifications > Page 5496 Water Pump: Diagrams Auxiliary Water Pump (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement Water Pump: Service and Repair Auxiliary Water Pump Replacement Auxiliary Water Pump Replacement Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Reposition the front heater inlet hose clamp (4) from the auxiliary water pump (1). 3. Remove the front heater inlet hose (6) from the auxiliary water pump (1). 4. Reposition the rear heater inlet hose clamp (2) from the auxiliary water pump (1). 5. Remove the rear heater inlet hose (3) from the auxiliary water pump (1). 6. Remove the heater outlet hose from the clip. 7. Disconnect the electrical connector (1) from the auxiliary water pump (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5499 8. Remove the nuts (4) from the auxiliary water pump bracket (1). 9. Remove the auxiliary water pump (1) from the vehicle. 10. Remove the clips (2) from the auxiliary water pump bracket (1). 11. Remove the auxiliary water pump (3) from the auxiliary water pump bracket (1). Installation Procedure 1. Install the auxiliary water pump (3) to the auxiliary water pump bracket (1). 2. Install the clips (2) to the auxiliary water pump bracket (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5500 3. Install the auxiliary water pump (1) to the vehicle. 4. Notice: Refer to Fastener Notice in Service Precautions. Install the nuts (4) to the auxiliary water pump bracket (1). Tighten the nuts to 9 Nm (80 inch lbs.). 5. Connect the electrical connector (1) to the auxiliary water pump (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5501 6. Install the heater outlet hose to the clip. 7. Install the rear heater inlet hose (3) to the auxiliary water pump (1). 8. Position the rear heater inlet hose clamp (2) to the auxiliary water pump (1). 9. Install the front heater inlet hose (6) to the auxiliary water pump (1). 10. Position the front heater inlet hose clamp (4) to the auxiliary water pump (1). 11. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5502 Water Pump: Service and Repair Water Pump Replacement Water Pump Replacement (4.8L, 5.3L, and 6.0L) Removal Procedure 1. Drain the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Loosen the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ Mass airflow/intake air temperature (MAF/IAT) sensor 3. Remove the radiator inlet hose clip from the outlet duct. 4. Remove the air cleaner outlet duct. 5. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 6. Remove the radiator vent inlet hose from the radiator hose clips. 7. Reposition the inlet hose clamp at the water pump. 8. Remove the inlet hose from the water pump. 9. If necessary, remove the fan blade. Refer to Fan Replacement (Diesel) Fan Replacement (Mechanical). 10. Remove the accessory drive belt. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5503 11. Reposition the outlet hose clamp at the water pump. 12. Remove the outlet hose from the water pump. 13. Reposition the surge tank outlet hose clamp at the water pump. 14. Remove the surge tank outlet hose from the water pump. 15. Reposition the heater inlet hose clamp at the water pump. 16. Remove the heater inlet hose from the water pump. 17. Remove the water pump bolts. 18. Remove the water pump and gaskets. 19. Discard the water pump gaskets. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5504 Important: All gaskets surfaces are to be free of oil or other foreign material during assembly. 1. Install the water pump and NEW gaskets. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the water pump bolts. 1. Tighten the bolts a first pass to 15 Nm (11 ft. lbs.). 2. Tighten the bolts a final pass to 30 Nm (22 ft. lbs.). 3. Install the heater inlet hose to the water pump. 4. Position the heater inlet hose clamp at the water pump. 5. Install the surge tank outlet hose to the water pump. 6. Position the surge tank outlet hose clamp at the water pump. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5505 7. Install the outlet hose to the water pump. 8. Position the outlet hose clamp at the water pump. 9. Install the accessory drive belt. 10. If necessary, install the fan blade. 11. Install the inlet hose to the water pump. 12. Position the inlet hose clamp at the water pump. 13. Install the engine vent inlet hose to the radiator hose clips. 14. If necessary, install the engine sight shield. 15. Important: Align the arrow at the throttle body end of the duct with the throttle body attaching stud. Install the air cleaner outlet duct. 16. Install the radiator inlet hose clip to the outlet duct. 17. Tighten the air cleaner outlet duct clamps at the following locations: ^ Throttle body ^ MAF/IAT sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Cooling System > Water Pump > Component Information > Service and Repair > Auxiliary Water Pump Replacement > Page 5506 Tighten the clamps to 4 Nm (35 inch lbs.). 18. Fill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Catalytic Converter > Component Information > Technical Service Bulletins > Exhaust System - Catalytic Converter Precautions Catalytic Converter: Technical Service Bulletins Exhaust System - Catalytic Converter Precautions Bulletin No.: 06-06-01-010A Date: February 04, 2008 INFORMATION Subject: Information on Close-Coupled Converter and Engine Breakdown or Non-Function Due to Severe Overheat or Lack of Oil Causing Piston(s) Connecting Rod(s) Crankshaft Cylinder(s) and/or Head(s) Camshaft(s) Intake and/or Exhaust Valve(s) Main and/or Rod Bearing(s) Damage Models: 2004-2008 GM Passenger Cars and Trucks with Close-Coupled Catalytic Converters Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-06-01-010 (Section 06 - Engine/Propulsion System). Certain 2004-2008 General Motors products may be equipped with a new style of catalytic converter technically known as the close-coupled catalytic converter providing quick catalyst warm-up resulting in lower tail pipe emissions earlier in the vehicle operating cycle. If an engine breakdown or non-function were to occur (such as broken intake/exhaust valve or piston) debris may be deposited in the converter through engine exhaust ports. If the engine is non-functioning due to a severe overheat event damage to the ceramic "brick" internal to the catalytic converter may occur. This may result in ceramic debris being drawn into the engine through the cylinder head exhaust ports. If a replacement engine is installed in either of these instances the replacement engine may fail due to the debris being introduced into the combustion chambers when started. When replacing an engine for a breakdown or non-function an inspection of the catalytic converters and ALL transferred components (such as exhaust/ intake manifolds) should be performed. Any debris found should be removed. In cases of engine failure due to severe overheat dealers should also inspect each catalytic converter for signs of melting or cracking of the ceramic "brick". If damage is observed the converter should be replaced. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Catalytic Converter > Component Information > Technical Service Bulletins > Page 5512 Catalytic Converter: Service and Repair Catalytic Converter Replacement (6.0L and 8.1L Engines) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Support the transmission with a suitable transmission jack. 3. Remove the transmission mount to transmission support nuts. 4. Raise the transmission off of the transmission support. 5. Remove the transmission support crossmember bolts. 6. Remove the transmission support crossmember. 7. Depending on which side is being replaced, perform one of the following steps: ^ Remove the exhaust muffler nuts. ^ Loosen the exhaust pipe clamp. 8. Remove the necessary exhaust system hangers so that the pipes can be separated. 9. Use a jack stand to support the exhaust. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Catalytic Converter > Component Information > Technical Service Bulletins > Page 5513 10. Disconnect the connector position assurance (CPA) retainers. 11. Disconnect the oxygen sensor electrical connectors (1, 2). 12. Loosen the right exhaust manifold pipe nuts. 13. Remove the left exhaust manifold pipe nuts. 14. Using the transmission jack, lower the transmission slightly. 15. Remove the catalytic converter. 16. Slide the catalytic converter hanger out of the exhaust pipe hanger bracket. 17. If equipped with a 6.0L engine, with regular production option (RPO) Y91, remove the catalytic converter. 18. Slide the catalytic converter hanger out of the exhaust pipe hanger bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Catalytic Converter > Component Information > Technical Service Bulletins > Page 5514 19. Remove the oxygen sensors if the catalytic converter is to be replaced. Installation Procedure Notice: Refer to Fastener Notice in Service Precautions. 1. If the catalytic converter was replaced, perform the following: 1. Apply anti-seize compound GM P/N 12377953 or equivalent to the threads of the old oxygen sensors. 2. Install the oxygen sensors. Tighten the sensors to 42 Nm (31 ft. lbs.). 2. If equipped with a 6.0L engine, with RPO Y91, install a NEW exhaust seal to the exhaust manifold. 3. Install the catalytic converter. Slide the catalytic converter hanger into the exhaust pipe hanger bracket. 4. Install a NEW exhaust seal to the exhaust manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Catalytic Converter > Component Information > Technical Service Bulletins > Page 5515 5. Install the catalytic converter. Slide the catalytic converter hanger into the exhaust pipe hanger bracket. 6. Install the left exhaust manifold pipe nuts. 7. Tighten the right exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (39 ft. lbs.). 8. Using the transmission jack, raise the transmission slightly. 9. Connect the oxygen sensor electrical connectors (1, 2). 10. Connect the CPA retainers. 11. Install the exhaust pipe/catalytic converter to the vehicle. 12. Install the exhaust system hangers. 13. Depending on which side is being replaced, perform one of the following steps: ^ Install the exhaust muffler nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). or ^ Install a NEW exhaust pipe clamp. Tighten the clamp to 44 Nm (33 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Catalytic Converter > Component Information > Technical Service Bulletins > Page 5516 14. Install the transmission support crossmember. 15. Install the transmission support crossmember bolts. Tighten the bolts to 95 Nm (70 ft. lbs.). 16. Lower the transmission onto the transmission support. 17. Install the transmission mount to transmission support nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). 18. Remove the support from the transmission. 19. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Manifold > Component Information > Specifications Exhaust Manifold: Specifications Exhaust Manifold Bolts - First Pass ........................................................................................................................................................... 15 Nm (11 ft. lbs.) Exhaust Manifold Bolts - Final Pass .......................................................................................................................................................... 25 Nm (18 ft. lbs.) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Manifold > Component Information > Service and Repair > Exhaust Manifold Replacement - Left Side Exhaust Manifold: Service and Repair Exhaust Manifold Replacement - Left Side Exhaust Manifold Replacement - Left Side (4.8L, 5.3L, and 6.0L Engine) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the exhaust manifold pipe nuts. 3. Lower the vehicle. 4. Remove the spark plugs. 5. Remove the exhaust manifold bolts, manifold, and gasket. 6. Discard the gasket. 7. Remove the heat shield bolts (3), and shield (2) from the exhaust manifold (1), if necessary. 8. Clean and inspect the exhaust manifold. Refer to Exhaust Manifold Cleaning and Inspection. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Manifold > Component Information > Service and Repair > Exhaust Manifold Replacement - Left Side > Page 5522 1. Notice: Refer to Fastener Notice in Service Precautions. Install the heat shield (2), and bolts (3) to the exhaust manifold (1), if necessary. Tighten the bolts to 9 Nm (80 inch lbs.). 2. Important: ^ Tighten the exhaust manifold bolts as specified in the service procedure. Improperly installed and/or leaking exhaust manifold gaskets may affect vehicle emissions and/or On-Board Diagnostics (OBD) II system performance. ^ The cylinder head exhaust manifold bolt hole threads must be clean and free of debris or threadlocking material. Important: Do not apply sealant to the first three threads of the bolt. Apply a 5 mm (0.2 inch) wide band of threadlock GM P/N 12345493 (Canadian P/N 10953488), or equivalent to the threads of the exhaust manifold bolts. 3. Install the exhaust manifold, NEW gasket and bolts. 1. Tighten the bolts a first pass to 15 Nm (11 ft. lbs.). Tighten the bolts beginning with the center two bolts. Alternate from side-to-side, and work toward the outside bolts. 2. Tighten the bolts a final pass to 25 Nm (18 ft. lbs.). Tighten the bolts beginning with the center two bolts. Alternate from side-to-side, and work toward the outside bolts. 4. Using a flat-punch, bend over the exposed edge of the exhaust manifold gasket at the rear of the left cylinder head. 5. Install the spark plugs. 6. Raise the vehicle. 7. Install the exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (37 ft. lbs.). 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Manifold > Component Information > Service and Repair > Exhaust Manifold Replacement - Left Side > Page 5523 Exhaust Manifold: Service and Repair Exhaust Manifold Replacement - Right Side Exhaust Manifold Replacement - Right Side (4.8L, 5.3L, and 6.0L Engines) 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the exhaust manifold pipe nuts. 3. Lower the vehicle. 4. Remove the spark plugs. 5. Remove the exhaust manifold bolts, manifold, and gasket. 6. Discard the gasket. 7. Remove the heat shield bolts (1), and shield (2) from the exhaust manifold (1), if necessary. 8. Clean and inspect the exhaust manifold. Refer to Exhaust Manifold Cleaning and Inspection. Installation Procedure Notice: Refer to Fastener Notice in Service Precautions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Manifold > Component Information > Service and Repair > Exhaust Manifold Replacement - Left Side > Page 5524 1. Install the heat shield (2), and bolts (1) to the exhaust manifold (1), if necessary. Tighten the bolts to 9 Nm (80 inch lbs.). 2. Important: ^ Tighten the exhaust manifold bolts as specified in the service procedure. Improperly installed and/or leaking exhaust manifold gaskets may affect vehicle emissions and/or On-Board Diagnostics (OBD) II system performance. ^ The cylinder head exhaust manifold bolt hole threads must be clean and free of debris or threadlocking material. Important: Do not apply sealant to the first three threads of the bolt. Apply a 5 mm (0.2 inch) wide band of threadlock GM P/N 12345493 (Canadian P/N 10953488), or equivalent to the threads of the exhaust manifold bolts. 3. Install the exhaust manifold, NEW gasket and bolts. 1. Tighten the bolts a first pass to 15 Nm (11 ft. lbs.). Tighten the bolts beginning with the center 2 bolts. Alternate from side-to-side, and work toward the outside bolts. 2. Tighten the bolts a final pass to 25 Nm (18 ft. lbs.). Tighten the bolts beginning with the center 2 bolts. Alternate from side-to-side, and work toward the outside bolts. 4. Using a flat punch, bend over the exposed edge of the exhaust manifold gasket at the front of the right cylinder head. 5. Install the spark plugs. 6. Raise the vehicle. 7. Install the exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (37 ft. lbs.). 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe > Component Information > Service and Repair Exhaust Pipe: Service and Repair Exhaust Manifold Pipe Replacement (6.0L, and 8.1L Engines) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Support the transmission with a suitable transmission jack. 3. Remove the transmission mount to transmission support nuts. 4. Raise the transmission off of the transmission support. 5. Remove the transmission support crossmember bolts. 6. Remove the transmission support crossmember. 7. Depending on which side is being replaced, perform one of the following steps: ^ Remove the exhaust muffler nuts. ^ Loosen the exhaust pipe clamp. 8. Remove the necessary exhaust system hangers so that the pipes can be separated. 9. Use a jack stand to support the exhaust. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe > Component Information > Service and Repair > Page 5528 10. Remove the clip around the engine harness and the oxygen sensor pigtail. 11. Disconnect the connector position assurance (CPA) retainer. 12. Disconnect the oxygen sensor electrical connector. 13. Remove the oxygen sensor. 14. Remove the exhaust manifold pipe nuts. 15. Using the transmission jack, lower the transmission slightly. 16. Remove the exhaust manifold pipe. 17. Slide the exhaust manifold pipe hanger out of the exhaust pipe hanger bracket. 18. Discard the exhaust manifold pipe seal. 19. If equipped with a 6.0L engine, with regular production option (RPO) Y91, remove the exhaust manifold pipe. 20. Slide the exhaust manifold pipe hanger out of the exhaust pipe hanger bracket. 21. Discard the exhaust manifold pipe seal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe > Component Information > Service and Repair > Page 5529 Installation Procedure 1. If equipped with a 6.0L engine, with RPO Y91, install a new exhaust manifold pipe seal to the exhaust manifold pipe. 2. Install the exhaust manifold pipe. 3. Apply lubricant to the exhaust pipe hanger bracket, in order to aid in installation. 4. Slide the exhaust manifold pipe hanger into the exhaust pipe hanger bracket. 5. Install a new exhaust manifold pipe seal to the exhaust manifold pipe. 6. Install the exhaust manifold pipe. 7. Apply lubricant to the exhaust pipe hanger bracket, in order to aid in installation. 8. Slide the exhaust manifold pipe hanger into the exhaust pipe hanger bracket. 9. Notice: Refer to Fastener Notice in Service Precautions. Install the exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (39 ft. lbs.). 10. Using the transmission jack, raise the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe > Component Information > Service and Repair > Page 5530 11. If the exhaust manifold pipe was replaced perform the following: 1. Apply anti-seize compound GM P/N 12377953 or equivalent to the threads of the old oxygen sensor. 2. Install the old oxygen sensor. Tighten the sensor to 42 Nm (31 ft. lbs.). 12. If the exhaust manifold pipe was not replaced perform the following: 1. Connect the oxygen sensor electrical connector. 2. Connect the CPA retainer. 3. Install the clip around the engine harness and the oxygen sensor pigtail. 13. Install the exhaust pipe/catalytic converter to the vehicle. 14. Install the exhaust system hangers. 15. Depending on which side is being replaced, perform one of the following steps: ^ Install the exhaust muffler nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). or ^ Install a NEW exhaust pipe clamp. Tighten the clamp to 44 Nm (33 ft. lbs.). 16. Install the transmission support crossmember. 17. Install the transmission support crossmember bolts. Tighten the bolts to 95 Nm (70 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe > Component Information > Service and Repair > Page 5531 18. Lower the transmission onto the transmission support. 19. Install the transmission mount to transmission support nuts. Tighten the bolts to 40 Nm (30 ft. lbs.). 20. Remove the support from the transmission. 21. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Customer Interest for Exhaust Pipe/Muffler Hanger: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation Exhaust Pipe/Muffler Hanger: Customer Interest Exhaust - Muffler Heat Shield Buzz During Operation TECHNICAL Bulletin No.: 07-06-05-001I Date: March 22, 2011 Subject: V8 Engines - Muffler Heat Shield Buzz During Vehicle Operation (Perform Repair as Outlined) or Exhaust Pinging/Popping/Snapping Noise During Cool Down, at Idle, or After Vehicle is Shut Off (Normal Characteristic - No Repair Required) Models: 2007-2011 Cadillac Escalade, Escalade Hybrid, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, Tahoe Hybrid 2007-2011 GMC Sierra, Sierra Denali, Yukon, Yukon Hybrid, Yukon XL, Yukon Denali, Yukon Denali XL Equipped with the following V8 Engines: - 4.8L (RPO LY2, L20) - 5.3L (RPOs LC9, LH6, LMG, LY5) - 6.0L (RPOs LFA, LY6, LZ1, L96) - 6.2L (RPOs L9H, L92, L94) Please Refer to GWM/IVH Supercede: This bulletin is being revised to update the Condition, Cause and Correction information. Please discard Corporate Bulletin Number 07-06-05-001H (Section 06 Engine/Propulsion System). Condition 1 Some customers may comment on a pinging/popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause 1 Exhaust Pinging/Popping/Snapping As the exhaust system cools, the muffler shell and muffler internals contract at different rates. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. Correction 1 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Exhaust Pinging/Popping/Snapping Noise (Normal) This condition is normal to the muffler design and does not indicate poor quality or part failure. No repairs are necessary for this condition. Replacing the muffler heat shield straps will NOT eliminate this noise. A new muffler may sound quiet for this condition, but as it ages may again produce this same condition. Condition 2 Some customers may also comment on a buzz noise coming from the muffler during vehicle operation. Cause 2 Muffler Heat Shield Buzz If the muffler heat shield straps are loose, the heat shield may be free to buzz during vehicle operation. Correction 2 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Muffler Heat Shield Buzz (Perform Repair) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Customer Interest for Exhaust Pipe/Muffler Hanger: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 5540 Confirm the origin of the buzz by shimming (use metal shims) the straps tight and rerunning the vehicle. If the buzz concern is gone, then it is caused by the loose shield. Using the following procedure, install new straps to secure the heat shield to the muffler. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 2. Mark the position of the heat shield (1) and straps (2) on the muffler shell. 3. Cut and remove the heat shield straps using tin snips along the muffler shell seam (1), and remove the shield from the muffler. 4. Position the heat shield to the muffler and install new heat shield straps on the muffler shell in the positions marked prior to removal. Important Do Not position the strap screw heads directly across from the propeller shaft. Ensure the strap heads are positioned below the midpoint of the muffler. 5. Position the strap screw heads (1) on the inboard side of the muffler. Ensure that the strap screw heads (1) are below the midpoint of the muffler. Tighten Tighten the straps to 4 Nm (35‹›lb‹›in). 6. Cut off the excess strap material and ensure that the ends (2) are flat against the muffler. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Customer Interest for Exhaust Pipe/Muffler Hanger: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 5541 Warranty Information For vehicles with Exhaust Pinging/Popping/Snapping Noise, NO repairs are necessary as it is a normal condition. For vehicles repaired for a muffler buzz, use the labor operation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Exhaust Pipe/Muffler Hanger: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation Exhaust Pipe/Muffler Hanger: All Technical Service Bulletins Exhaust - Muffler Heat Shield Buzz During Operation TECHNICAL Bulletin No.: 07-06-05-001I Date: March 22, 2011 Subject: V8 Engines - Muffler Heat Shield Buzz During Vehicle Operation (Perform Repair as Outlined) or Exhaust Pinging/Popping/Snapping Noise During Cool Down, at Idle, or After Vehicle is Shut Off (Normal Characteristic - No Repair Required) Models: 2007-2011 Cadillac Escalade, Escalade Hybrid, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, Tahoe Hybrid 2007-2011 GMC Sierra, Sierra Denali, Yukon, Yukon Hybrid, Yukon XL, Yukon Denali, Yukon Denali XL Equipped with the following V8 Engines: - 4.8L (RPO LY2, L20) - 5.3L (RPOs LC9, LH6, LMG, LY5) - 6.0L (RPOs LFA, LY6, LZ1, L96) - 6.2L (RPOs L9H, L92, L94) Please Refer to GWM/IVH Supercede: This bulletin is being revised to update the Condition, Cause and Correction information. Please discard Corporate Bulletin Number 07-06-05-001H (Section 06 Engine/Propulsion System). Condition 1 Some customers may comment on a pinging/popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause 1 Exhaust Pinging/Popping/Snapping As the exhaust system cools, the muffler shell and muffler internals contract at different rates. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. Correction 1 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Exhaust Pinging/Popping/Snapping Noise (Normal) This condition is normal to the muffler design and does not indicate poor quality or part failure. No repairs are necessary for this condition. Replacing the muffler heat shield straps will NOT eliminate this noise. A new muffler may sound quiet for this condition, but as it ages may again produce this same condition. Condition 2 Some customers may also comment on a buzz noise coming from the muffler during vehicle operation. Cause 2 Muffler Heat Shield Buzz If the muffler heat shield straps are loose, the heat shield may be free to buzz during vehicle operation. Correction 2 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Muffler Heat Shield Buzz (Perform Repair) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Exhaust Pipe/Muffler Hanger: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 5547 Confirm the origin of the buzz by shimming (use metal shims) the straps tight and rerunning the vehicle. If the buzz concern is gone, then it is caused by the loose shield. Using the following procedure, install new straps to secure the heat shield to the muffler. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 2. Mark the position of the heat shield (1) and straps (2) on the muffler shell. 3. Cut and remove the heat shield straps using tin snips along the muffler shell seam (1), and remove the shield from the muffler. 4. Position the heat shield to the muffler and install new heat shield straps on the muffler shell in the positions marked prior to removal. Important Do Not position the strap screw heads directly across from the propeller shaft. Ensure the strap heads are positioned below the midpoint of the muffler. 5. Position the strap screw heads (1) on the inboard side of the muffler. Ensure that the strap screw heads (1) are below the midpoint of the muffler. Tighten Tighten the straps to 4 Nm (35‹›lb‹›in). 6. Cut off the excess strap material and ensure that the ends (2) are flat against the muffler. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Exhaust Pipe/Muffler Hanger: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 5548 Warranty Information For vehicles with Exhaust Pinging/Popping/Snapping Noise, NO repairs are necessary as it is a normal condition. For vehicles repaired for a muffler buzz, use the labor operation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Page 5549 Exhaust Pipe/Muffler Hanger: Service and Repair Exhaust Hanger Mounting Bracket Replacement (6.0L, 6.6L, and 8.1L Engines) Removal Procedure 1. Remove the exhaust manifold pipe. 2. Remove the catalytic converter. 3. If equipped with a 4L60-E automatic transmission, remove the exhaust pipe hanger bracket bolts. 4. If equipped with a 6.0L engine and a 4L80-E automatic transmission, remove the exhaust pipe hanger bracket bolts. 5. If equipped with a 6.0L, or 8.1L engine and a 4L80-E automatic transmission, remove the exhaust pipe hanger bracket bolts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Page 5550 6. If equipped with a 6.0L engine and a 5-speed manual transmission, remove the transmission bolts. 7. If equipped with a 6.0L engine and a 5-speed manual transmission, remove the exhaust pipe hanger bracket bolts. 8. If equipped with a 6.6L or 8.1L engine and a Allison transmission, remove the exhaust pipe hanger bracket bolts. 9. If equipped with a 6.6L or 8.1L engine and a 6-speed manual transmission, remove the exhaust pipe hanger bracket bolts. 10. Remove the exhaust manifold pipe bracket. Installation Procedure 1. Install the exhaust manifold pipe bracket. Notice: Refer to Fastener Notice in Service Precautions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Page 5551 2. If equipped with a 6.6L or 8.1L engine and a 6-speed manual transmission, install the exhaust pipe hanger bracket bolts. Tighten the bolts to 12 Nm (106 inch lbs.). 3. If equipped with a 6.6L or 8.1L engine and a Allison transmission, install the exhaust pipe hanger bracket bolts. Tighten the bolts to 12 Nm (106 inch lbs.). 4. If equipped with a 6.0L engine and a 5-speed manual transmission, install the exhaust pipe hanger bracket bolts. Tighten the bolts to 12 Nm (106 inch lbs.). 5. If equipped with a 6.0L engine and a 5-speed manual transmission, install the transmission bolts. Tighten the bolts to 100 Nm (74 ft. lbs.). 6. If equipped with a 6.0L or 8.1L engine and a 4L80-E automatic transmission, install the exhaust pipe hanger bracket bolts. Tighten the bolts to 12 Nm (106 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Exhaust Pipe/Muffler Hanger > Component Information > Technical Service Bulletins > Page 5552 7. If equipped with a 6.0L engine and a 4L80-E automatic transmission, install the exhaust pipe hanger bracket bolts. Tighten the bolts to 12 Nm (106 inch lbs.). 8. If equipped with a 4L60-E automatic transmission, install the exhaust pipe hanger bracket bolts. Tighten the bolts to 17 Nm (13 ft. lbs.). 9. Install the catalytic converter. 10. Install the exhaust manifold pipe. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 07-06-05-001I > Mar > 11 > Exhaust Muffler Heat Shield Buzz During Operation Heat Shield: Customer Interest Exhaust - Muffler Heat Shield Buzz During Operation TECHNICAL Bulletin No.: 07-06-05-001I Date: March 22, 2011 Subject: V8 Engines - Muffler Heat Shield Buzz During Vehicle Operation (Perform Repair as Outlined) or Exhaust Pinging/Popping/Snapping Noise During Cool Down, at Idle, or After Vehicle is Shut Off (Normal Characteristic - No Repair Required) Models: 2007-2011 Cadillac Escalade, Escalade Hybrid, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, Tahoe Hybrid 2007-2011 GMC Sierra, Sierra Denali, Yukon, Yukon Hybrid, Yukon XL, Yukon Denali, Yukon Denali XL Equipped with the following V8 Engines: - 4.8L (RPO LY2, L20) - 5.3L (RPOs LC9, LH6, LMG, LY5) - 6.0L (RPOs LFA, LY6, LZ1, L96) - 6.2L (RPOs L9H, L92, L94) Please Refer to GWM/IVH Supercede: This bulletin is being revised to update the Condition, Cause and Correction information. Please discard Corporate Bulletin Number 07-06-05-001H (Section 06 Engine/Propulsion System). Condition 1 Some customers may comment on a pinging/popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause 1 Exhaust Pinging/Popping/Snapping As the exhaust system cools, the muffler shell and muffler internals contract at different rates. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. Correction 1 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Exhaust Pinging/Popping/Snapping Noise (Normal) This condition is normal to the muffler design and does not indicate poor quality or part failure. No repairs are necessary for this condition. Replacing the muffler heat shield straps will NOT eliminate this noise. A new muffler may sound quiet for this condition, but as it ages may again produce this same condition. Condition 2 Some customers may also comment on a buzz noise coming from the muffler during vehicle operation. Cause 2 Muffler Heat Shield Buzz If the muffler heat shield straps are loose, the heat shield may be free to buzz during vehicle operation. Correction 2 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Muffler Heat Shield Buzz (Perform Repair) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 07-06-05-001I > Mar > 11 > Exhaust Muffler Heat Shield Buzz During Operation > Page 5561 Confirm the origin of the buzz by shimming (use metal shims) the straps tight and rerunning the vehicle. If the buzz concern is gone, then it is caused by the loose shield. Using the following procedure, install new straps to secure the heat shield to the muffler. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 2. Mark the position of the heat shield (1) and straps (2) on the muffler shell. 3. Cut and remove the heat shield straps using tin snips along the muffler shell seam (1), and remove the shield from the muffler. 4. Position the heat shield to the muffler and install new heat shield straps on the muffler shell in the positions marked prior to removal. Important Do Not position the strap screw heads directly across from the propeller shaft. Ensure the strap heads are positioned below the midpoint of the muffler. 5. Position the strap screw heads (1) on the inboard side of the muffler. Ensure that the strap screw heads (1) are below the midpoint of the muffler. Tighten Tighten the straps to 4 Nm (35‹›lb‹›in). 6. Cut off the excess strap material and ensure that the ends (2) are flat against the muffler. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 07-06-05-001I > Mar > 11 > Exhaust Muffler Heat Shield Buzz During Operation > Page 5562 Warranty Information For vehicles with Exhaust Pinging/Popping/Snapping Noise, NO repairs are necessary as it is a normal condition. For vehicles repaired for a muffler buzz, use the labor operation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling Heat Shield: Customer Interest Exhaust System - Popping/Snapping Noise When Hot/Idling Bulletin No.: 03-06-05-008D Date: March 05, 2007 TECHNICAL Subject: Exhaust Popping/Snapping Noise When Vehicle is Hot, at Idle, or Immediately After Vehicle is Shut Off (Replace Muffler Heat Shield) Models: 2002-2006 Cadillac Escalade, Escalade EXT 2003-2006 Cadillac Escalade ESV 2002-2006 Chevrolet Avalanche, Suburban, Tahoe, Silverado, Silverado HD 2007 Chevrolet Silverado Classic, Silverado HD Classic 2002-2006 GMC Sierra, Sierra HD , Yukon, Yukon Denali, Yukon Denali XL 2007 GMC Sierra Classic, Sierra HD Classic 2003-2006 HUMMER H2 with 4.8L, 5.3L, 6.0L or 8.1L Gasoline Engine (VINs V, B, T, Z, N, V, G - RPOs LR4, L33, LM7, L59, LQ9, LQ4, L18) Supercede: This bulletin is being revised to add the 2006 and 2007 (Classic Only) model years and the 5.3L (L33) engine. Please discard Corporate Bulletin Number 03-06-05-008C (Section 06 Engine/Propulsion System). Condition Some customers may comment on a popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause As the exhaust system warms and cools, the muffler and the muffler heat shield expand and contract at different rates and may cause a popping and/or snapping noise. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The customer should be made aware that this service procedure is designed to reduce but not eliminate all exhaust system popping and snapping during cool down. Correction Follow the service procedure below to correct this condition. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The customer should be made aware that this service procedure is designed to reduce but not eliminate all exhaust system popping and snapping during cool down. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in General Information. In order to avoid being burned, do not service the exhaust system while it is still hot. Service the system when it is cool. Always wear protective goggles and gloves when removing exhaust parts as falling rust and sharp edges could result in serious personal injury. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5567 Remove the nuts securing the muffler to the catalytic converter. On 6.0L and 8.1L equipped vehicles only, loosen the exhaust pipe clamp. Do not use oil base lubricants on the rubber exhaust hangers. Apply a soapy solution to the exhaust pipe hanger rods in order to ease the removal of the exhaust hangers. Pry the exhaust hangers free from the exhaust pipe hanger rods. It is not necessary to remove the muffler from the vehicle to replace the muffler heat shield. Reposition the muffler to gain access to the muffler heat shield. Use extreme caution not to damage the muffler when removing the heat shield from the muffler. Using an air-powered hack saw blade, or equivalent, cut off the existing muffler heat shield just as the heat shield rises off of the muffler. See the illustration above. Remove the heat shield from the muffler. Hammer flush the remaining heat shield to the muffler. The new heat shield should not come in contact with the remaining muffler heat shield. The new heat shield should not come in contact with the horizontal lock seam on the muffler. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5568 Install the new heat shield (see parts list below) onto the muffler as shown above. Install three straps, P/N 10391259, so that the strap screw head will be located on top of the muffler. Tighten Tighten the strap screw to 4 N.m (35 lb in). Cut off the excess strap material and bend the strap over the strap screw head as indicated above. Remove the exhaust pipe clamp. ONLY 6.0L and 8.1L equipped vehicles require a new exhaust pipe clamp, P/N 15103174. On 6.0L and 8.1L equipped vehicles only, install a new exhaust pipe clamp, P/N 15103174, on the exhaust pipe. Reposition the muffler in the correct position. Slide the muffler forward into position, aligning the studs with the rear of the catalytic converter. Install the nuts securing the muffler to the catalytic converter, but DO NOT tighten at this time. Apply a soapy solution to the following areas in order to ease the installation of the hangers. The inner diameter of the exhaust pipe hanger The exhaust pipe hanger rod Press the exhaust pipe hangers over the exhaust pipe hanger rods. Tighten Tighten the muffler nuts by hand until each contacts the metal flange. Tighten the muffler nuts to 45 N.m (33 lb ft). On 6.0L and 8.1L equipped vehicles only, tighten the exhaust clamp to 50 N.m (36 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5569 Lower the vehicle. Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > Customer Interest for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5570 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation Heat Shield: All Technical Service Bulletins Exhaust - Muffler Heat Shield Buzz During Operation TECHNICAL Bulletin No.: 07-06-05-001I Date: March 22, 2011 Subject: V8 Engines - Muffler Heat Shield Buzz During Vehicle Operation (Perform Repair as Outlined) or Exhaust Pinging/Popping/Snapping Noise During Cool Down, at Idle, or After Vehicle is Shut Off (Normal Characteristic - No Repair Required) Models: 2007-2011 Cadillac Escalade, Escalade Hybrid, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, Tahoe Hybrid 2007-2011 GMC Sierra, Sierra Denali, Yukon, Yukon Hybrid, Yukon XL, Yukon Denali, Yukon Denali XL Equipped with the following V8 Engines: - 4.8L (RPO LY2, L20) - 5.3L (RPOs LC9, LH6, LMG, LY5) - 6.0L (RPOs LFA, LY6, LZ1, L96) - 6.2L (RPOs L9H, L92, L94) Please Refer to GWM/IVH Supercede: This bulletin is being revised to update the Condition, Cause and Correction information. Please discard Corporate Bulletin Number 07-06-05-001H (Section 06 Engine/Propulsion System). Condition 1 Some customers may comment on a pinging/popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause 1 Exhaust Pinging/Popping/Snapping As the exhaust system cools, the muffler shell and muffler internals contract at different rates. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. Correction 1 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Exhaust Pinging/Popping/Snapping Noise (Normal) This condition is normal to the muffler design and does not indicate poor quality or part failure. No repairs are necessary for this condition. Replacing the muffler heat shield straps will NOT eliminate this noise. A new muffler may sound quiet for this condition, but as it ages may again produce this same condition. Condition 2 Some customers may also comment on a buzz noise coming from the muffler during vehicle operation. Cause 2 Muffler Heat Shield Buzz If the muffler heat shield straps are loose, the heat shield may be free to buzz during vehicle operation. Correction 2 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Muffler Heat Shield Buzz (Perform Repair) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 5576 Confirm the origin of the buzz by shimming (use metal shims) the straps tight and rerunning the vehicle. If the buzz concern is gone, then it is caused by the loose shield. Using the following procedure, install new straps to secure the heat shield to the muffler. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 2. Mark the position of the heat shield (1) and straps (2) on the muffler shell. 3. Cut and remove the heat shield straps using tin snips along the muffler shell seam (1), and remove the shield from the muffler. 4. Position the heat shield to the muffler and install new heat shield straps on the muffler shell in the positions marked prior to removal. Important Do Not position the strap screw heads directly across from the propeller shaft. Ensure the strap heads are positioned below the midpoint of the muffler. 5. Position the strap screw heads (1) on the inboard side of the muffler. Ensure that the strap screw heads (1) are below the midpoint of the muffler. Tighten Tighten the straps to 4 Nm (35‹›lb‹›in). 6. Cut off the excess strap material and ensure that the ends (2) are flat against the muffler. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 5577 Warranty Information For vehicles with Exhaust Pinging/Popping/Snapping Noise, NO repairs are necessary as it is a normal condition. For vehicles repaired for a muffler buzz, use the labor operation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling Heat Shield: All Technical Service Bulletins Exhaust System - Popping/Snapping Noise When Hot/Idling Bulletin No.: 03-06-05-008D Date: March 05, 2007 TECHNICAL Subject: Exhaust Popping/Snapping Noise When Vehicle is Hot, at Idle, or Immediately After Vehicle is Shut Off (Replace Muffler Heat Shield) Models: 2002-2006 Cadillac Escalade, Escalade EXT 2003-2006 Cadillac Escalade ESV 2002-2006 Chevrolet Avalanche, Suburban, Tahoe, Silverado, Silverado HD 2007 Chevrolet Silverado Classic, Silverado HD Classic 2002-2006 GMC Sierra, Sierra HD , Yukon, Yukon Denali, Yukon Denali XL 2007 GMC Sierra Classic, Sierra HD Classic 2003-2006 HUMMER H2 with 4.8L, 5.3L, 6.0L or 8.1L Gasoline Engine (VINs V, B, T, Z, N, V, G - RPOs LR4, L33, LM7, L59, LQ9, LQ4, L18) Supercede: This bulletin is being revised to add the 2006 and 2007 (Classic Only) model years and the 5.3L (L33) engine. Please discard Corporate Bulletin Number 03-06-05-008C (Section 06 Engine/Propulsion System). Condition Some customers may comment on a popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause As the exhaust system warms and cools, the muffler and the muffler heat shield expand and contract at different rates and may cause a popping and/or snapping noise. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The customer should be made aware that this service procedure is designed to reduce but not eliminate all exhaust system popping and snapping during cool down. Correction Follow the service procedure below to correct this condition. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The customer should be made aware that this service procedure is designed to reduce but not eliminate all exhaust system popping and snapping during cool down. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in General Information. In order to avoid being burned, do not service the exhaust system while it is still hot. Service the system when it is cool. Always wear protective goggles and gloves when removing exhaust parts as falling rust and sharp edges could result in serious personal injury. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5582 Remove the nuts securing the muffler to the catalytic converter. On 6.0L and 8.1L equipped vehicles only, loosen the exhaust pipe clamp. Do not use oil base lubricants on the rubber exhaust hangers. Apply a soapy solution to the exhaust pipe hanger rods in order to ease the removal of the exhaust hangers. Pry the exhaust hangers free from the exhaust pipe hanger rods. It is not necessary to remove the muffler from the vehicle to replace the muffler heat shield. Reposition the muffler to gain access to the muffler heat shield. Use extreme caution not to damage the muffler when removing the heat shield from the muffler. Using an air-powered hack saw blade, or equivalent, cut off the existing muffler heat shield just as the heat shield rises off of the muffler. See the illustration above. Remove the heat shield from the muffler. Hammer flush the remaining heat shield to the muffler. The new heat shield should not come in contact with the remaining muffler heat shield. The new heat shield should not come in contact with the horizontal lock seam on the muffler. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5583 Install the new heat shield (see parts list below) onto the muffler as shown above. Install three straps, P/N 10391259, so that the strap screw head will be located on top of the muffler. Tighten Tighten the strap screw to 4 N.m (35 lb in). Cut off the excess strap material and bend the strap over the strap screw head as indicated above. Remove the exhaust pipe clamp. ONLY 6.0L and 8.1L equipped vehicles require a new exhaust pipe clamp, P/N 15103174. On 6.0L and 8.1L equipped vehicles only, install a new exhaust pipe clamp, P/N 15103174, on the exhaust pipe. Reposition the muffler in the correct position. Slide the muffler forward into position, aligning the studs with the rear of the catalytic converter. Install the nuts securing the muffler to the catalytic converter, but DO NOT tighten at this time. Apply a soapy solution to the following areas in order to ease the installation of the hangers. The inner diameter of the exhaust pipe hanger The exhaust pipe hanger rod Press the exhaust pipe hangers over the exhaust pipe hanger rods. Tighten Tighten the muffler nuts by hand until each contacts the metal flange. Tighten the muffler nuts to 45 N.m (33 lb ft). On 6.0L and 8.1L equipped vehicles only, tighten the exhaust clamp to 50 N.m (36 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5584 Lower the vehicle. Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Heat Shield: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 5585 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Service and Repair > Floor Panel Heat Shield Replacement Heat Shield: Service and Repair Floor Panel Heat Shield Replacement Floor Panel Heat Shield Replacement Removal Procedure 1. Remove the exhaust manifold pipe, if necessary. 2. Remove the catalytic converter, if necessary. 3. Remove the exhaust front heat shield nuts. 4. Remove the exhaust front heat shield from the studs. 5. If vehicle is a regular cab pick-up truck, remove the exhaust heat shield nuts. 6. Remove the exhaust front heat shield (1) and/or the exhaust heat shield (2) from the studs. 7. If vehicle is a extended cab pick-up truck, remove the exhaust heat shield nuts. 8. Remove the exhaust heat shield (1, 2) from the studs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Service and Repair > Floor Panel Heat Shield Replacement > Page 5588 9. If vehicle is a crew cab pick-up truck, remove the exhaust heat shield nuts. 10. Remove the exhaust heat shields from the studs. Installation Procedure 1. If vehicle is a crew cab pick-up truck, install the exhaust heat shields to the studs. 2. Notice: Refer to Fastener Notice in Service Precautions. Install the exhaust heat shield nuts. Tighten the exhaust heat shield nuts to 9 Nm (80 inch lbs.). 3. If vehicle is a extended cab pick-up truck, install the exhaust heat shield (1, 2) to the studs. 4. Install the exhaust heat shield nuts. Tighten the exhaust heat shield nuts to 9 Nm (80 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Service and Repair > Floor Panel Heat Shield Replacement > Page 5589 5. If vehicle is a regular cab pick-up truck, install the exhaust front heat shield (1) and/or the exhaust heat shield (2) to the studs. 6. Install the exhaust heat shield nuts. Tighten the exhaust heat shield nuts to 9 Nm (80 inch lbs.). 7. Install the exhaust front heat shield to the studs. 8. Install the exhaust front heat shield nuts. Tighten the exhaust heat shield nuts to 9 Nm (80 inch lbs.). 9. Install the catalytic converter, if necessary. 10. Install the exhaust manifold pipe, if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Service and Repair > Floor Panel Heat Shield Replacement > Page 5590 Heat Shield: Service and Repair Exhaust Heat Shield Replacement Exhaust Heat Shield Replacement Removal Procedure 1. Remove the exhaust muffler. 2. Remove the spare tire hoist. 3. If equipped with a 6 1/2 ft box, remove the exhaust heat shield bolts. 4. Remove the exhaust heat shield. 5. If equipped with a 8 ft box, remove the exhaust heat shield bolts. 6. Remove the exhaust heat shield. Installation Procedure 1. If equipped with a 8 ft box, install the exhaust heat shield. Notice: Refer to Fastener Notice in Service Precautions. 2. Install the exhaust heat shield bolts. Tighten the exhaust heat shield bolts to 9 Nm (80 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Service and Repair > Floor Panel Heat Shield Replacement > Page 5591 3. If equipped with a 6 1/2 ft box, install the exhaust heat shield. 4. Install the exhaust heat shield bolts. Tighten the exhaust heat shield bolts to 9 Nm (80 inch lbs.). 5. Install the spare tire hoist. 6. Install the exhaust muffler. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Heat Shield, Exhaust > Component Information > Service and Repair > Floor Panel Heat Shield Replacement > Page 5592 Heat Shield: Service and Repair Exhaust Heat Shield Replacement - Dash Panel Exhaust Heat Shield Replacement - Dash Panel Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the exhaust heat shield nuts. 3. Remove the exhaust heat shield (1, 3) from the dash panel studs. 4. If removing the heat shield (3), remove the shield out thru the passenger side wheelwell. Installation Procedure 1. If installing the heat shield (3), install the shield thru the passenger side wheelwell. 2. Install the exhaust heat shield (1, 3) to the dash panel studs. Notice: Refer to Fastener Notice in Service Precautions. 3. Install the exhaust heat shield nuts. Tighten the nuts to 9 Nm (80 inch lbs.). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Muffler > Component Information > Service and Repair Muffler: Service and Repair Muffler Replacement (6.0L, 6.6L, and 8.1L Engines) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Remove the spare tire, if necessary. 3. Install adjustable jack stands under the rear axle, if necessary. 4. If equipped with a 8.6 or 9.5 inch ring gear, remove the rear axle vent hose from the rear axle, if necessary. 5. Remove the vent hose swivel clip from the rear brake crossover pipe, if necessary. 6. If equipped with a 10.5 inch ring gear, remove the rear axle vent hose from the rear axle, if necessary. 7. Remove the vent hose swivel clip from the rear brake crossover pipe, if necessary. 8. Remove the rear shock absorbers lower bolts and nuts, if necessary. 9. Lower the rear axle using the adjustable jack stands, if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Muffler > Component Information > Service and Repair > Page 5596 10. If equipped with a 6.0L or 8.1L engine, remove the exhaust muffler nuts. 11. Loosen the exhaust pipe clamp. 12. With the aid of an assistant, support the exhaust muffler. 13. If equipped with a 6.6L engine, loosen the catalytic converter coupling nuts (1). 14. With the aid of an assistant, support the exhaust muffler. 15. If equipped with a 6.0L or 8.1L engine, remove the insulators from the frame hangers. 16. With the aid of an assistant, slide the muffler rearward in order to remove the muffler from the catalytic converter. 17. Remove the insulators from the muffler hangers. 18. Remove the exhaust manifold pipe gasket, if necessary. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Muffler > Component Information > Service and Repair > Page 5597 19. If equipped with a 6.6L engine, gently pry up the catalytic converter coupling clip (1) (on the muffler end) in order to disengage the locator button (3) from the coupling clip. 20. With the aid of an assistant, slide the muffler rearward until the locator button is fully disengaged. 21. If equipped with a 6.6L engine, remove the insulators from the frame hangers with the aid of an assistant. 22. Remove the exhaust muffler gasket, if necessary. 23. Remove the insulators from the muffler hangers. 24. If equipped with a 6.0L or 8.1L engine, remove the oxygen sensor if the muffler is being replaced. 25. If the muffler is NOT being replaced as an assembly, the band clamp MUST be replaced. Perform the following: 1. Mark the position of the band clamp on the intermediate exhaust pipe. 2. Remove the band clamp from the exhaust pipe by grinding the weld. 3. Install a NEW band clamp onto the exhaust pipe. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Muffler > Component Information > Service and Repair > Page 5598 1. If equipped with a 6.0L or 8.1L engine, and the muffler was replaced re-install the old oxygen sensor. 2. Apply anti-seize compound GM P/N 12377953 or equivalent to the threads of the old oxygen sensor. 3. Notice: Refer to Fastener Notice in Service Precautions. Install the oxygen sensor. Tighten the sensor to 42 Nm (31 ft. lbs.). 4. If equipped with a 6.6L engine, using the aid of an assistant, align the muffler locator button (3) to the catalytic converter coupling groove (2). 5. Install the muffler until the locator button is fully engaged by the coupling clip (1). 6. Important: Apply lubricant to the insulators to aid in installation. If equipped with a 6.6L engine, install the insulators to the muffler hangers. 7. Install a new exhaust muffler gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Muffler > Component Information > Service and Repair > Page 5599 8. Install the insulators to the frame hangers. 9. Important: Apply lubricant to the insulators to aid in installation. If equipped with a 6.0L or 8.1L engine, install the insulators to the muffler hangers. 10. Install a new exhaust manifold pipe gasket. 11. With the aid of an assistant, slide the muffler forward in order to install the muffler to the catalytic converter. 12. Install the insulators to the frame hangers. 13. If equipped with a 6.6L engine, tighten the catalytic converter coupling nuts until snug. 14. Once snug, tighten the catalytic converter coupling nuts (1) to specifications. Tighten the nuts to 45 Nm (33 ft. lbs.). 15. If equipped with a 6.0L or 8.1L engine, position the NEW band clamp on the intermediate exhaust pipe, using the alignment mark created previously. The band clamp bolt must NOT be positioned below the exhaust pipe. 16. Install the exhaust muffler nuts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Muffler > Component Information > Service and Repair > Page 5600 17. Tighten the exhaust pipe clamp bolt. ^ Tighten the nuts to 40 Nm (30 ft. lbs.). ^ Tighten the clamp to 44 Nm (33 ft. lbs.). 18. Raise the rear axle using the adjustable jack stands, if necessary. 19. Install the rear shock absorbers lower bolts and nuts, if necessary. Tighten the bolts to 95 Nm (70 ft. lbs.). 20. If equipped with a 10.5 inch ring gear, install the rear axle vent hose to the rear axle, if necessary. 21. Connect the vent hose swivel clip to the rear brake crossover pipe, if necessary. 22. If equipped with a 8.6 or 9.5 inch ring gear, install the rear axle vent hose to the rear axle, if necessary. 23. Connect the vent hose swivel clip to the rear brake crossover pipe, if necessary. 24. Remove the adjustable jack stands from under the rear axle, if necessary. 25. Install the spare tire, if necessary. 26. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Seals and Gaskets, Exhaust > Component Information > Service and Repair Seals and Gaskets: Service and Repair Exhaust Seal Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. If equipped with a 4.3L, 4.8L, or 5.3L engine, perform the following: 1. Remove the clip from around the engine harness and the oxygen sensor pigtail. 2. Disconnect the connector position assurance (CPA) retainer. 3. Disconnect the forward oxygen sensor electrical connector. 3. If equipped with a 4.3L, 4.8L, or 5.3L engine, perform the following: 1. Unclip the oxygen sensor electrical connector from the hose clip. 2. Disconnect the CPA retainer. 3. Disconnect the oxygen sensor electrical connector (1). 4. If equipped with a 6.0L or 8.1L engine, perform the following: 1. Disconnect the CPA retainer. 2. Disconnect the oxygen sensor electrical connector (1). 5. Support the catalytic converter or exhaust manifold pipe with adjustable jackstands. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Seals and Gaskets, Exhaust > Component Information > Service and Repair > Page 5604 6. If equipped with a 4.3L, 4.8L, or 5.3L engine, remove the left exhaust manifold pipe nuts. 7. If equipped with a 4.3L, 4.8L, or 5.3L engine, remove the right exhaust manifold pipe nuts. 8. If equipped with a 6.0L or 8.1L engine, remove the right exhaust manifold pipe nuts. 9. If equipped with a 6.0L or 8.1L engine, perform the following: 1. Remove the left exhaust manifold pipe nuts. 2. Remove the exhaust hanger mounting bracket bolts. 10. Lower the catalytic converter or exhaust manifold pipe using the adjustable jackstands. 11. Remove the exhaust manifold pipe seal(s). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Seals and Gaskets, Exhaust > Component Information > Service and Repair > Page 5605 1. Install the exhaust manifold pipe seal(s). 2. Raise the catalytic converter or exhaust manifold pipe using the adjustable jackstands. 3. Notice: Refer to Fastener Notice in Service Precautions. If equipped with a 6.0L or 8.1L engine, perform the following: 1. Install the exhaust hanger mounting bracket bolts. 2. Install the left exhaust manifold pipe nuts. * Tighten the bolts to 12 Nm (106 inch lbs.). * Tighten the nuts to 50 Nm (39 ft. lbs.). 4. If equipped with a 6.0L or 8.1L engine, install the right exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (39 ft. lbs.). 5. If equipped with a 4.3L, 4.8L, or 5.3L engine, install the right exhaust manifold pipe nuts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Seals and Gaskets, Exhaust > Component Information > Service and Repair > Page 5606 6. If equipped with a 4.3L, 4.8L, or 5.3L engine, install the left exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (39 ft. lbs.). 7. If equipped with a 6.0L or 8.1L engine, perform the following: 1. Connect the oxygen sensor electrical connector (1). 2. Connect the CPA retainer. 8. Remove the adjustable jackstands from catalytic converter or exhaust manifold pipe. 9. If equipped with a 4.3L, 4.8L, or 5.3L engine, perform the following: 1. Connect the oxygen sensor electrical connector (1). 2. Connect the CPA retainer. 3. Clip the oxygen sensor electrical connector to the hose clip. 10. If equipped with a 4.3L, 4.8L, or 5.3L engine, perform the following: 1. Connect the forward oxygen sensor electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Engine, Cooling and Exhaust > Exhaust System > Seals and Gaskets, Exhaust > Component Information > Service and Repair > Page 5607 2. Connect the CPA retainer. 3. Install the clip around the engine harness and the oxygen sensor pigtail. 11. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: Customer Interest Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: Customer Interest Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 5623 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: All Technical Service Bulletins Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module Body Control Module: All Technical Service Bulletins Body Controls - Unable To Reprogram Body Control Module INFORMATION Bulletin No.: 09-08-47-001A Date: June 14, 2010 Subject: Unable to Reprogram Body Control Module (BCM), BCM Reprogramming Did Not Complete - Revised Reprogramming Instructions Models: 2006-2010 Buick Lucerne 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, SRX 2008-2010 Cadillac CTS 2010 Cadillac CTS Wagon 2010 Chevrolet Camaro 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Impala 2007-2010 Chevrolet Avalanche, Equinox, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2007-2010 GMC Acadia, Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2008-2010 GMC Savana 2010 GMC Terrain 2007-2009 Pontiac Torrent 2008-2009 Pontiac G8 2008-2009 HUMMER H2 2007-2009 Saturn OUTLOOK 2008-2009 Saturn VUE Refer to GMVIS Supercede: This bulletin is being revised to update the models and the model years. Please discard Corporate Bulletin Number 09-08-47-001 (Section 08 - Body and Accessories). Some technicians may experience an unsuccessful body control module (BCM) reprogramming event, when choosing the Reprogram ECU selection on the Service Programming System (SPS). The technician may also notice that when attempting to reprogram the BCM again after this incident has occurred, the BCM may not complete the programming event. This condition may be caused by the following: - A reprogramming event that was interrupted due to a lack of communication between the vehicle and the TIS2WEB terminal. - The vehicle experienced low system voltage during the reprogramming event. Important Do not replace the BCM for this condition. SPS Programming Process Selection Perform this procedure first. 1. If reprogramming has failed during the initial reprogramming event, back out of the SPS application completely. 2. Re-select SPS from the TIS2WEB terminal application. 3. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 4. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module > Page 5633 During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. BCM Still Fails to Reprogram If the BCM still fails to reprogram perform this procedure: 1. Turn OFF the ignition, and remove the key. 2. Remove the fuses that power up the following modules/components for a minimum of 2 minutes: - BCM - EBCM - ECM - IS LPS (located in the left IP fusebox) - TCM 3. Open and close the driver door. Allow enough time for the retained accessory power (RAP) to turn OFF. 4. Reinstall the fuses. 5. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 6. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: All Technical Service Bulletins Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 5638 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly Oil Cooler: All Technical Service Bulletins Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly TECHNICAL Bulletin No.: 08-06-02-003A Date: October 27, 2010 Subject: Engine Oil Leak at Engine Oil Cooler Hose/Pipe Adapter to Engine Connection (Diagnose and Repair as Outlined) Models: 2007-2011 Chevrolet Silverado, Suburban, Tahoe 2008-2011 Chevrolet Express 2007-2011 GMC Sierra, Yukon, Yukon XL 2008-2011 GMC Savana Equipped with 4.8L, 5.3L, 6.0L or 6.2L V8 Engine (VIN Code C, M, L, J, 4, 0, 3, 5, K, Y, 8 or 2 - RPO LY2, LH6, LY5, LMF, LMG, LC9, LFA, LY6, L76, L92 or L9H) and Engine Oil Cooling System RPO KC4 Supercede: This bulletin is being revised to clarify the Subject text, add model years, Cause, Correction, graphics and part number information. Please discard Corporate Bulletin Number 08-06-02-003 (Section 06 - Engine/Propulsion System). Condition Some customers may comment on an engine oil leak. Upon further investigation, the technician may find engine oil leaking from the engine oil cooler hose/pipe adapter at the point where it connects to the engine. Cause This condition may be caused by any of the following: - A damaged engine oil cooler hose/pipe adapter gasket, due to a temporary steel sealing device not being removed when the engine oil cooler hose/pipe adapter was first connected to the engine. - Previous oil leak servicing of the engine oil cooler hose/pipe adapter gasket that involved failing to remove the temporary steel sealing device. - Casting porosity at the engine oil cooler hose/pipe adapter bolt holes of the engine. - The engine oil cooler hose/pipe adapter bolts are not torqued to the proper specification. Correction 1. Perform the oil leak diagnosis procedure. Refer to Oil Leak Diagnosis in SI. 2. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 3. The temporary steel sealing device (1) is shown separately from the adapter gasket (2). The temporary steel sealing device SHOULD NOT be installed on the engine or the engine oil cooler hose/pipe adapter. Note Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 5644 Inspect closely for the temporary steel sealing device (1) being positioned tightly to the gasket (2) as shown. Only a small corner (1) of the temporary steel sealing device may be observable, depending on orientation. Perform a visual inspection in order to verify that the oil leak is coming from the engine oil cooler hose/pipe adapter area or the gasket where it connects to the engine. ‹› If the leak is coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, proceed to Step 4. ‹› If the leak is not coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, refer to Oil Leak Diagnosis in SI. 4. To gain clearance, loosen or remove the engine oil cooler hose/pipe retaining bracket bolt (1). 5. Remove the engine oil cooler hose/pipe adapter bolts (2). 6. Remove and DISCARD both the temporary steel sealing device if present and the gasket. 7. Clean the mating surfaces of the engine oil cooler hose/pipe adapter and the engine. 8. Clean both bolt holes with brake cleaner and dry using regulated compressed air. 9. Clean both bolt threads and apply Pipe Sealant P/N 12346004 (Canada P/N 10953480) or equivalent (Loctite(R) 565) to the bolt threads. Verify that the sealant is applied 360 degrees around the bolt and extends from the tip of the bolt and covers at least 15 mm (0.59 in) of threads. 10. Install the engine oil cooler hose/pipe adapter with a NEW gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 5645 11. Install the engine oil cooler hose/pipe adapter bolts (2) and: Tighten Tighten the bolts to 12 Nm (106 lb in). 12. Install the engine oil cooler hose/pipe retaining bracket bolt (1) and: Tighten Tighten the bolt to 25 Nm (18 lb ft). 13. Verify the correct engine oil level. 14. Verify the repair. Refer to Oil Leak Diagnosis in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 5646 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 5652 Inspect closely for the temporary steel sealing device (1) being positioned tightly to the gasket (2) as shown. Only a small corner (1) of the temporary steel sealing device may be observable, depending on orientation. Perform a visual inspection in order to verify that the oil leak is coming from the engine oil cooler hose/pipe adapter area or the gasket where it connects to the engine. ‹› If the leak is coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, proceed to Step 4. ‹› If the leak is not coming from the engine oil cooler hose/pipe adapter area, the bolts or the gasket where it connects to the engine, refer to Oil Leak Diagnosis in SI. 4. To gain clearance, loosen or remove the engine oil cooler hose/pipe retaining bracket bolt (1). 5. Remove the engine oil cooler hose/pipe adapter bolts (2). 6. Remove and DISCARD both the temporary steel sealing device if present and the gasket. 7. Clean the mating surfaces of the engine oil cooler hose/pipe adapter and the engine. 8. Clean both bolt holes with brake cleaner and dry using regulated compressed air. 9. Clean both bolt threads and apply Pipe Sealant P/N 12346004 (Canada P/N 10953480) or equivalent (Loctite(R) 565) to the bolt threads. Verify that the sealant is applied 360 degrees around the bolt and extends from the tip of the bolt and covers at least 15 mm (0.59 in) of threads. 10. Install the engine oil cooler hose/pipe adapter with a NEW gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 5653 11. Install the engine oil cooler hose/pipe adapter bolts (2) and: Tighten Tighten the bolts to 12 Nm (106 lb in). 12. Install the engine oil cooler hose/pipe retaining bracket bolt (1) and: Tighten Tighten the bolt to 25 Nm (18 lb ft). 13. Verify the correct engine oil level. 14. Verify the repair. Refer to Oil Leak Diagnosis in SI. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-06-02-003A > Oct > 10 > Engine - Oil Leak At Oil Cooler Hose/Pipe Assembly > Page 5654 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5657 Body Control Module: Diagrams Body Control Module (BCM) - C2 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5658 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5659 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5660 Body Control Module: Diagrams Body Control Module (BCM) - C4 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5661 Body Control Module (BCM) - C4 (Pin B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5662 Body Control Module: Diagrams Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5663 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5664 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5665 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5666 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5667 Body Control Module (BCM) - C4 (Pin B12) Body Control Module (BCM) - C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 5668 Body Control Module (BCM) - C6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 5669 Body Control Module: Service and Repair BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cables. 2. Remove the knee bolster. 3. Disconnect the brown connector. 4. Disconnect all other connectors (1). 5. Remove the body control module (BCM) from the sliding bracket. INSTALLATION PROCEDURE 1. Slide the BCM onto the bracket. 2. Connect all the connectors (1) except the brown connector. 3. Connect the brown connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 5670 4. Install the knee bolster. 5. Connect the negative battery cables. 6. Reprogram the BCM. Refer to Body Control Module Programming and Setup. 7. Perform the Passlock Learn Procedure. Refer to Programming Theft Deterrent System Components. 8. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Locations Throttle Actuator Control (TAC) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 Throttle Actuator Control (TAC) Module C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 > Page 5676 Throttle Actuator Control (TAC) Module C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 5677 Electronic Throttle Control Module: Service and Repair ELECTRONIC THROTTLE ACTUATOR CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the instrument panel (I/P) harness electrical connector (2). 2. Release the red connector position assurance (CPA) retainer. 3. Disconnect the engine wiring harness electrical connector (1). 4. Remove the throttle actuator control (TAC) module nuts. 5. Remove the TAC module. INSTALLATION PROCEDURE 1. Install the TAC module. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 5678 NOTE: Refer to Fastener Notice. 2. Install the TAC module nuts. Tighten the nuts to 9 N.m (80 lb in). 3. Connect the engine wiring harness electrical connector (1). 4. Install the red CPA retainer. 5. Connect the I/P harness electrical connector (2). 6. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: Customer Interest Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: Customer Interest Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 5691 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-06-04-054B > Nov > 10 > Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-06-04-054B > Nov > 10 > Engine Controls - Aftermarket Accessory Usage > Page 5697 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 5702 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 5703 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 5704 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026B Date: April 07, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2010 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2010 model year and information about retrieving calibrations on a Global A vehicle. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine, transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 5709 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 5710 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 5711 Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: All Technical Service Bulletins Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: All Technical Service Bulletins Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 5720 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Transmission Mode Switch: All Technical Service Bulletins A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 5726 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 5727 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 5728 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 5734 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 5735 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 5736 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Page 5737 Left Front Of The Engine Compartment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5740 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5741 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5742 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5743 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5744 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5745 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5746 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5747 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5748 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5749 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5750 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5751 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5752 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5753 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5754 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5755 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5756 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5757 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5758 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5759 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5760 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5761 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5762 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5763 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5764 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5765 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5766 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5767 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5768 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5769 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5770 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5771 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5772 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5773 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5774 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5775 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5776 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5777 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5778 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5779 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5780 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5781 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5782 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5783 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5784 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5785 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5786 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5787 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5788 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5789 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5790 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5791 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5792 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5793 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5794 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5795 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5796 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5797 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5798 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5799 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5800 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5801 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5802 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5803 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5804 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5805 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5806 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5807 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5808 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5809 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5810 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5811 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5812 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5813 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5814 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5815 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5816 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5817 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5818 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5819 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5820 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5821 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5822 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5823 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5824 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5825 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5826 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5827 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5828 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5829 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5830 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5831 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5832 Engine Control Module: Connector Views Powertrain Control Module (PCM) C1 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5833 Powertrain Control Module (PCM) C1 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5834 Powertrain Control Module (PCM) C1 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5835 Powertrain Control Module (PCM) C2 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5836 Powertrain Control Module (PCM) C2 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 5837 Powertrain Control Module (PCM) C2 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5838 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5839 Engine Control Module: Description and Operation POWERTRAIN CONTROL MODULE DESCRIPTION POWERTRAIN The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: The engine fueling - The ignition control (IC) - The knock sensor (KS) system - The evaporative emissions (EVAP) system - The secondary air injection (AIR) system (if equipped) - The exhaust gas recirculation (EGR) system - The automatic transmission functions - The generator - The A/C clutch control - The cooling fan control POWERTRAIN CONTROL MODULE FUNCTION The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. MALFUNCTION INDICATOR LAMP (MIL) OPERATION The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. - The MIL turns OFF after the engine is started if a diagnostic fault is not present. - The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5840 Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. - The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. - When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. - When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. TRIP A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). WARM-UP CYCLE The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. DIAGNOSTIC TROUBLE CODES (DTCS) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC STATUS When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) Indicates that this DTC failed during the present ignition cycle. Last Test Fail Indicates that this DTC failed the last time the test ran. MIL Request Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5841 Engine Control Module: Testing and Inspection FUEL COMPOSITION DIAGNOSIS SYSTEM DESCRIPTION When an E85 compatible vehicle is built, an engine control module (ECM) or powertrain control module (PCM) replaced, or when the learned alcohol content has been reset with a scan tool the fuel system will need to contain ASTM gasoline with 10 percent or less ethanol content. If the fuel in the fuel system needs to be drained and replaced with ASTM gasoline, the engine will need to run at operating temperature and consume at least 1 liter of fuel before the system will recognize the correct alcohol content. Either ASTM gasoline or ASTM E85 fuel can then be used TEST Step 1 - Step 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5842 Engine Control Module: Service and Repair POWERTRAIN CONTROL MODULE REPLACEMENT Service of the powertrain control module (PCM) should consist of either replacement of the PCM or programming of the electrically erasable programmable read only memory (EEPROM). If the diagnostic procedures call for the PCM to be replaced, the replacement PCM should be checked to ensure that the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. NOTE: - Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. - Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. - In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. - Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. - The replacement control module must be programmed. IMPORTANT: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Disconnect the negative battery cable. 3. If equipped with regular production option (RPO) NYS, remove the harness ground clip from the PCM cover. 4. If equipped with RPO HP2, remove the hybrid control module (HCM). 5. If vehicle is NOT equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5843 6. If vehicle is equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. 7. Loosen the PCM electrical connector bolts (2). NOTE: Refer to PCM and ESD Notice. - In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 8. Disconnect the PCM electrical connectors. 9. Release the spring latch from the PCM. 10. Release the PCM mounting tabs from the PCM. 11. Remove the PCM. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5844 1. Install the PCM.Ensure that the mounting tabs are engaged. 2. Secure the spring latch to the PCM. 3. Connect the PCM electrical connectors. NOTE: Refer to Fastener Notice. 4. Tighten the PCM electrical connector bolts (2). Tighten the bolts to 8 N.m (71 lb in). 5. If vehicle is equipped with RPO HP2, install the PCM cover. 6. If vehicle is NOT equipped with RPO HP2, install the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 5845 7. If equipped with RPO HP2, install the HCM. 8. If equipped with RPO NYS, install the harness ground clip to the PCM cover. 9. Connect the negative battery cable. 10. If a NEW PCM was installed, program the PCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Locations Fuel Pump Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5852 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5853 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5854 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5855 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5856 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5857 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5858 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5859 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5860 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5861 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5862 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5863 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5864 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5865 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5866 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5867 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5868 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5869 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5870 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5871 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5872 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5873 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5874 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5875 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5876 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5877 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5878 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5879 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5880 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5881 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5882 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5883 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5884 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5885 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5886 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5887 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5888 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5889 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5890 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5891 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5892 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5893 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5894 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5895 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5896 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5897 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5898 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5899 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5900 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5901 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5902 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5903 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5904 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5905 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5906 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5907 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5908 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5909 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5910 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5911 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5912 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5913 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5914 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5915 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5916 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5917 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5918 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5919 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5920 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5921 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5922 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5923 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5924 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5925 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5926 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5927 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5928 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5929 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5930 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5931 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5932 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5933 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5934 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5935 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5936 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5937 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5938 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5939 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5940 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5941 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5942 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5943 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 5944 Fuel Pump (FP) Relay - Secondary (With RPO Code Dual Tanks) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations Ignition Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 5949 Ignition Relay: Testing and Inspection IGNITION RELAY DIAGNOSIS CIRCUIT DESCRIPTION The ignition relay is a normally open relay. The relay armature is held in the open position by spring tension. When the ignition switch is turned to the run or start position, current will flow through the relay coil. A wire connected to the other end of the relay coil completes the path to ground. The electomagnetic field created by the relay coil, overcomes the spring tension and moves the armature allowing the relay contacts to close. The closed relay contacts allow current to flow from the battery to the following fuses: The PCM 1 fuse - The ETC/ECM fuse - The INJ 1 fuse - The INJ 2 fuse - The SBA fuse, if equipped. When the ignition switch is turned to the OFF position, the electromagnetic field collapses. This action allows the spring tension to move the armature away from the relay contacts, which interrupts current flow to the fuses. If the ignition relay fails to close, the engine will crank, but will not run. The class 2 communications will be available with the use of a scan tool. The ignition relay table assumes that the vehicle battery is fully charged. Refer to Battery Inspection/Test (Non-HP2) Battery Inspection/Test (HP2). See: Starting and Charging/Testing and Inspection/Component Tests and General Diagnostics/Battery Inspection/Test (Non-HP2) TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 5950 Step 1 - Step 6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 5951 Step 7 - Step 16 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 5952 Step 17 - Step 24 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Relays and Modules - Powertrain Management > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 5953 Step 25 - Step 31 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 5959 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 5960 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 5961 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 5962 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5968 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5969 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5970 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5971 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5972 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5973 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5974 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5975 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5976 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5977 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5978 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5979 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5980 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5981 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5982 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5983 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5984 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5985 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5986 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5987 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5988 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5989 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5990 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5991 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5992 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5993 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5994 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5995 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5996 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5997 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5998 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 5999 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6000 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6001 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6002 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6003 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6004 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6005 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6006 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6007 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6008 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6009 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6010 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6011 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6012 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6013 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6014 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6015 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6016 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6017 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6018 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6019 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6020 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6021 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6022 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6023 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6024 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6025 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6026 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6027 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6028 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6029 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6030 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6031 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6032 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6033 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6034 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6035 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6036 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6037 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6038 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6039 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6040 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6041 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6042 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6043 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6044 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6045 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6046 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6047 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6048 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6049 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6050 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6051 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6052 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6053 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6054 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6055 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6056 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6057 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6058 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6059 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6060 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 6061 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 6062 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Battery Current Sensor > Component Information > Diagrams Battery Current Sensor: Diagrams Engine Electrical Connector End Views Current Sensor (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6070 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6071 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6072 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6073 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6074 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6075 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6076 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6077 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6078 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6079 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6080 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6081 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6082 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6083 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6084 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6085 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6086 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6087 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6088 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6089 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6090 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6091 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6092 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6093 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6094 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6095 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6096 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6097 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6098 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6099 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6100 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6101 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6102 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6103 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6104 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6105 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6106 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6107 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6108 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6109 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6110 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6111 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6112 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6113 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6114 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6115 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6116 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6117 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6118 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6119 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6120 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6121 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6122 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6123 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6124 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6125 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6126 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6127 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6128 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6129 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6130 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6131 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6132 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6133 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6134 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6135 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6136 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6137 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6138 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6139 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6140 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6141 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6142 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6143 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6144 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6145 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6146 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6147 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6148 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6149 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6150 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6151 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6152 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6153 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6154 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6155 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6156 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6157 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6158 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6159 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6160 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6161 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6162 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Page 6163 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Clutch Switch, ECM > Component Information > Diagrams Clutch Switch: Diagrams Engine Electrical Connector End Views Clutch Pedal Position (CPP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6175 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6176 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6177 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6178 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6184 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6185 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6186 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 6187 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-46-002D > Jul > 09 > Audio System - Noise When Using OnStar(R) Radio/Stereo Noise Filter: All Technical Service Bulletins Audio System - Noise When Using OnStar(R) TECHNICAL Bulletin No.: 07-08-46-002D Date: July 29, 2009 Subject: Audio Whine Noise from Radio Speakers When Using OnStar(R) (Install Noise Suppression Filter) Models: 2007-2010 GM Passenger Cars and Trucks (Including Saturn) 2007-2010 HUMMER H2, H3 2007-2009 Saab 9-7X Equipped with OnStar(R) (RPO UE1) Supercede: This bulletin is being revised to update the Warranty Information. Please discard Corporate Bulletin Number 07-08-46-002C (Section 08 - Body and Accessories). Condition Some customers may comment on an audio whine coming from the radio speakers when using the OnStar(R) system. The amplitude and frequency of the whine will change with an increase or decrease in engine speed. Cause This condition may be caused by electrical noise on the OnStar(R) Vehicle Communication Interface Module (VCIM) battery feed wire being passed to the microphone output pins at the radio. Correction Technicians are to install a noise suppression filter, P/N 1224205, into the OnStar(R) battery voltage circuit, a few centimeters (inches) from the VCIM. The filter package has three attached wires - a single yellow wire at one end with a yellow wire and a black wire at the other. Install the single yellow wire side into the battery voltage circuit towards the VCIM. Install the remaining single yellow wire into the battery voltage circuit toward the fuse and the black wire to ground. Important The noise suppression filter is polarity sensitive. The filter is designed to be most effective when the end with the capacitor ground is connected towards the source of the electrical noise. Install the filter in this polarity first. If the noise level is still not satisfactory, try disconnecting the capacitor ground. In some cases, if the first installation does not correct the noise, try reversing the filter polarity (removing the filter, turning it end for end and then reinstalling it) and grounding the capacitor lead. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-46-002D > Jul > 09 > Audio System - Noise When Using OnStar(R) > Page 6193 Warranty Information (Saab U.S. Models) Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Other Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 07-08-46-002D > Jul > 09 > Audio System - Noise When Using OnStar(R) > Page 6199 Warranty Information (Saab U.S. Models) Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 6200 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 6201 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 6202 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 6203 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 6204 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6209 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6210 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6211 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6212 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6213 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6214 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6215 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6216 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6217 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6218 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6219 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6220 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6221 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6222 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6223 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6224 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6225 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6226 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6227 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6228 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6229 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6230 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6231 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6232 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6233 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6234 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6235 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6236 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6237 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6238 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6239 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6240 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6241 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6242 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6243 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6244 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6245 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6246 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6247 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6248 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6249 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6250 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6251 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6252 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6253 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6254 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6255 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6256 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6257 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6258 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6259 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6260 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6261 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6262 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6263 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6264 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6265 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6266 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6267 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6268 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6269 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6270 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6271 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6272 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6273 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6274 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6275 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6276 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6277 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6278 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6279 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6280 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6281 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6282 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6283 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6284 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6285 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6286 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6287 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6288 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6289 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6290 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6291 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6292 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6293 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6294 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6295 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6296 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6297 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6298 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6299 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6300 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6301 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 6304 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 6305 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 6311 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement 1 FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 4. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. 7. IMPORTANT: - Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 6314 Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 6315 Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement FUEL LEVEL SENSOR REPLACEMENT (4.8L, 5.3L, AND 6.0L ENGINES) REMOVAL PROCEDURE 1. Remove the sending unit. 2. Disconnect the fuel pump electrical connector. 3. Remove the fuel lever sensor electrical connector retaining clip. 4. Disconnect the fuel level sensor electrical connector. 5. Remove the fuel level sensor retaining clip. 6. Remove the fuel level sensor (1). INSTALLATION PROCEDURE 1. Install the fuel level sensor (1). 2. Install the fuel level sensor retaining clip. 3. Connect the fuel level sensor electrical connector. 4. Install the fuel lever sensor electrical connector retaining clip. 5. Connect the fuel pump electrical connector. 6. Install the sending unit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 6319 Fuel Tank Pressure (FTP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 6320 Fuel Tank Pressure Sensor: Service and Repair FUEL TANK PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Using a slight rocking motion, while pulling straight up, remove the fuel tank pressure sensor (1). INSTALLATION PROCEDURE 1. Install the fuel tank pressure sensor (1). 2. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 6324 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 6325 Intake Air Temperature Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 6326 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6332 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6333 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6334 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6335 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6336 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6337 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6338 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6339 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6340 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6341 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6342 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6343 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6344 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6345 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6346 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6347 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6348 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6349 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6350 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6351 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6352 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6353 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6354 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6355 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6356 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6357 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6358 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6359 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6360 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6361 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6362 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6363 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6364 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6365 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6366 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6367 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6368 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6369 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6370 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6371 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6372 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6373 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6374 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6375 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6376 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6377 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6378 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6379 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6380 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6381 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6382 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6383 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6384 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6385 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6386 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6387 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6388 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6389 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6390 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6391 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6392 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6393 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6394 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6395 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6396 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6397 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6398 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6399 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6400 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6401 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6402 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6403 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6404 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6405 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6406 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6407 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6408 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6409 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6410 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6411 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6412 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6413 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6414 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6415 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6416 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6417 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6418 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6419 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6420 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6421 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6422 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6423 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6424 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6425 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 6426 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 6427 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 6428 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations Top of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 6432 Manifold Absolute Pressure (MAP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 6433 Manifold Pressure/Vacuum Sensor: Service and Repair MANIFOLD ABSOLUTE PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the engine sight shield. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector (1). 3. Remove the MAP sensor (1). INSTALLATION PROCEDURE IMPORTANT: Lightly coat the MAP sensor seal with clean engine oil before installing the sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 6434 1. Install the MAP sensor (1). 2. Connect the MAP sensor electrical connector (1). 3. Install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 6446 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 6452 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 6453 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 6454 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Locations Heated Oxygen Sensors (HO2S) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6460 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6461 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6462 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6463 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6464 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6465 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6466 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6467 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6468 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6469 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6470 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6471 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6472 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6473 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6474 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6475 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6476 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6477 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6478 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6479 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6480 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6481 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6482 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6483 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6484 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6485 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6486 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6487 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6488 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6489 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6490 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6491 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6492 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6493 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6494 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6495 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6496 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6497 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6498 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6499 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6500 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6501 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6502 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6503 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6504 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6505 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6506 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6507 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6508 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6509 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6510 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6511 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6512 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6513 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6514 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6515 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6516 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6517 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6518 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6519 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6520 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6521 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6522 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6523 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6524 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6525 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6526 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6527 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6528 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6529 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6530 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6531 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6532 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6533 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6534 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6535 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6536 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6537 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6538 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6539 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6540 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6541 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6542 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6543 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6544 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6545 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6546 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6547 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6548 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6549 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6550 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6551 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6552 Oxygen Sensor: Connector Views Heated Oxygen Sensor (HO2S) Bank 1 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6553 Heated Oxygen Sensor (HO2S) Bank 1 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6554 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6555 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice > Page 6558 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If necessary, unbolt the front propeller shaft from the front differential. Refer to Front Propeller Shaft Replacement. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. Remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (1). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (1). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6561 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (1). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (1). 5. Install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If necessary, bolt the front propeller shaft to the front differential. Refer to Front Propeller Shaft Replacement. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6562 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If equipped, disconnect the fuel composition sensor electrical connector. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a fuel composition sensor, remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (2). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (2). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6563 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (2). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (2). 5. If equipped with a fuel composition sensor, install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If equipped, connect the fuel composition sensor electrical connector. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6564 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. 3. Remove the heated oxygen sensor (HO2S) from the clips NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6565 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S to the clips 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6566 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 3. Remove the heated oxygen sensor (HO2S) connector clip from the frame. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 6567 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S connector clip to the frame. 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6572 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6573 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6574 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6575 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6576 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6577 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6578 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6579 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6580 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6581 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6582 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6583 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6584 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6585 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6586 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6587 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6588 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6589 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6590 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6591 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6592 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6593 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6594 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6595 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6596 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6597 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6598 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6599 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6600 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6601 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6602 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6603 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6604 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6605 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6606 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6607 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6608 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6609 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6610 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6611 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6612 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6613 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6614 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6615 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6616 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6617 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6618 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6619 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6620 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6621 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6622 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6623 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6624 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6625 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6626 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6627 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6628 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6629 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6630 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6631 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6632 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6633 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6634 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6635 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6636 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6637 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6638 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6639 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6640 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6641 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6642 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6643 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6644 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6645 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6646 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6647 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6648 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6649 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6650 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6651 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6652 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6653 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6654 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6655 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6656 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6657 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6658 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6659 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6660 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6661 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6662 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6663 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70-E 2 - Park/Neutral Position (PNP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range Switch, Wiring Harness Side Transmission Range Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6669 Transmission Position Switch/Sensor: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range (TR) Switch Connector, Wiring Harness Side Transmission Range (TR) Switch Connector, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Adjustments 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the PNP switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the park/neutral position (PNP) switch bolts. 4. With the vehicle in the neutral (N) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine off. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6672 Transmission Position Switch/Sensor: Adjustments 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the shift lever in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the PNP switch bolts. 4. With the vehicle in neutral (N), rotate the PNP switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the manual shaft lever nut. 7. Remove the transmission control lever from the manual shaft. 8. Remove the PNP switch bolts. 9. Remove the PNP switch from the manual shaft. If the PNP switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6675 1. Install the PNP switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a NEW PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. 4. Install J 41364-A onto the PNP switch. Ensure that the two slots on the switch where the manual shaft is inserted are lined up with the lower two tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the transmission control lever to the manual shaft with the nut. Tighten the nut to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6676 8. Connect the PNP switch electrical connector (2). 9. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 10. Lower the vehicle. 11. Check the switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6677 Transmission Position Switch/Sensor: Service and Repair 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the range selector cable end (2) from the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6678 7. Remove the control lever to the manual shaft nut. 8. Remove the control lever from the manual shaft. 9. Remove the PNP switch bolts. 10. Remove the PNP switch from the manual shaft. If the PNP switch does not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the PNP switch to the manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a new PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6679 4. Position the J 41364-A onto the PNP switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate J 41364-A until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove J 41364-A from the PNP switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the control lever to the manual shaft with the nut. 8. Install the manual shaft nut. Tighten the nut to 25 Nm (18 ft. lbs.). 9. Install the range selector cable end (2) to the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6680 10. Connect the PNP switch electrical connector (2). 11. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 12. Lower the vehicle. 13. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6681 Transmission Position Switch/Sensor: Service and Repair Allison - Automatic Transmission Manual Shift Shaft, Detent Lever, and Position Switch Assembly Replacement Removal Procedure 1. Remove the control valve assembly from the transmission. Refer to Control Valve Body Replacement. 2. Important: The detent lever/IMS retaining bolt contains patch lock material on the threads. Do not reuse the retaining bolt. Remove the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit and discard the retaining bolt. 3. Notice: DO NOT mar the transmission case surface around the spherical pin when removing or installing the spherical pin. An unmarred surface is required to maintain the seal between the control valve assembly and the transmission case. Notice: DO NOT twist the spherical pin when removing the pin from the transmission case. Damage to the transmission case can occur. Place a protective plate on the transmission case surface around the spherical pin (3). Remove the spherical pin (3) from the transmission case. 4. Slide the manual shift shaft (5) through the detent lever/IMS assembly (4) and through the manual shift shaft seal. 5. Rotate the detent lever/IMS assembly to disengage the park pawl apply assembly (2). Remove the detent lever/IMS assembly (4). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6682 1. Place the new detent lever/IMS assembly (4) in position in the transmission case. Rotate the detent lever/IMS assembly to engage the park pawl apply assembly (2). Reinstall the manual shift shaft (5) through the manual shift shaft seal and through the detent lever/IMS assembly (4). 2. Notice: Refer to Fastener Notice in Service Precautions. Push the manual shift shaft (5) into the final position in the transmission case. 3. Install the spherical pin (3) into the transmission case that retains the manual shift shaft. 4. Install the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit. Tighten the bolt (1) to 10 Nm (92 inch lbs.). 5. Install the control valve assembly. Refer to Control Valve Body Replacement. 6. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Vehicle Speed Sensor Assembly, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6687 Vehicle Speed Sensor: Diagrams NV 3500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6688 Vehicle Speed Sensor: Diagrams NV 4500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 6689 Vehicle Speed Sensor: Diagrams ZF S6-650 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission Vehicle Speed Sensor: Service and Repair NV 3500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (1). 3. Remove the VSS and O-ring seal. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 6692 1. Coat a NEW O-ring seal with a thin film of Synchro-mesh transmission fluid GM P/N 12345349 (Canadian P/N 10953465), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS and O-ring seal. Tighten the VSS to 16 Nm (12 ft. lbs.). 3. Connect the VSS electrical connector (1). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 6693 Vehicle Speed Sensor: Service and Repair NV 4500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (3). 3. Remove the VSS and seal. Installation Procedure 1. Coat the NEW O-ring seal with a thin film of transmission fluid, use GM P/N 12346190 (Canadian P/N 10953477), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS. Tighten the VSS to 16 Nm (12 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 6694 3. Connect the VSS electrical connector (3). Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 6695 Vehicle Speed Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (2). 3. Remove the VSS bolt (2). 4. Remove the VSS (1). 5. Remove the O-ring seal (3). Installation Procedure 1. Install the O-ring seal (3) onto the VSS (1). 2. Coat the O-ring seal (3) with a thin film of transmission fluid. 3. Install the VSS (1). 4. Notice: Refer to Fastener Notice. Install the VSS bolt (2). Tighten the bolt to 11 Nm (97 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 6696 5. Connect the VSS electrical connector (2). 6. Lower the vehicle. 7. Refill the fluid as required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 6701 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 6702 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 6703 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 6704 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6710 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6711 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6712 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6713 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6714 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6715 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6716 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6717 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6718 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6719 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6720 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6721 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6722 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6723 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6724 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6725 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6726 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6727 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6728 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6729 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6730 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6731 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6732 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6733 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6734 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6735 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6736 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6737 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6738 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6739 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6740 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6741 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6742 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6743 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6744 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6745 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6746 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6747 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6748 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6749 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6750 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6751 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6752 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6753 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6754 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6755 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6756 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6757 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6758 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6759 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6760 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6761 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6762 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6763 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6764 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6765 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6766 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6767 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6768 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6769 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6770 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6771 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6772 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6773 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6774 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6775 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6776 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6777 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6778 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6779 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6780 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6781 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6782 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6783 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6784 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6785 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6786 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6787 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6788 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6789 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6790 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6791 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6792 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6793 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6794 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6795 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6796 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6797 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6798 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6799 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6800 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6801 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6802 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 6803 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 6804 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6809 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6810 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6811 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6812 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6813 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6814 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6815 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6816 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6817 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6818 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6819 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6820 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6821 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6822 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6823 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6824 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6825 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6826 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6827 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6828 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6829 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6830 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6831 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6832 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6833 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6834 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6835 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6836 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6837 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6838 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6839 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6840 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6841 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6842 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6843 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6844 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6845 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6846 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6847 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6848 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6849 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6850 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6851 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6852 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6853 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6854 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6855 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6856 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6857 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6858 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6859 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6860 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6861 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6862 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6863 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6864 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6865 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6866 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6867 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6868 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6869 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6870 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6871 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6872 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6873 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6874 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6875 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6876 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6877 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6878 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6879 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6880 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6881 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6882 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6883 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6884 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6885 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6886 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6887 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6888 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6889 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6890 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6891 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6892 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6893 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6894 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6895 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6896 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6897 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6898 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6899 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6900 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6906 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6907 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6908 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6909 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6910 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6911 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6912 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6913 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6914 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6915 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6916 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6917 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6918 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6919 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6920 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6921 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6922 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6923 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6924 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6925 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6926 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6927 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6928 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6929 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6930 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6931 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6932 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6933 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6934 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6935 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6936 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6937 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6938 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6939 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6940 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6941 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6942 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6943 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6944 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6945 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6946 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6947 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6948 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6949 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6950 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6951 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6952 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6953 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6954 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6955 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6956 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6957 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6958 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6959 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6960 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6961 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6962 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6963 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6964 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6965 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6966 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6967 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6968 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6969 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6970 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6971 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6972 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6973 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6974 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6975 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6976 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6977 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6978 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6979 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6980 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6981 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6982 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6983 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6984 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6985 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6986 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6987 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6988 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6989 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6990 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6991 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6992 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6993 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6994 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6995 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6996 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6997 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 6998 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Page 6999 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7004 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7005 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7006 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7007 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7008 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7009 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7010 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7011 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7012 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7013 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7014 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7015 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7016 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7017 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7018 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7019 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7020 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7021 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7022 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7023 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7024 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7025 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7026 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7027 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7028 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7029 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7030 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7031 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7032 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7033 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7034 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7035 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7036 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7037 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7038 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7039 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7040 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7041 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7042 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7043 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7044 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7045 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7046 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7047 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7048 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7049 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7050 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7051 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7052 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7053 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7054 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7055 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7056 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7057 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7058 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7059 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7060 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7061 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7062 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7063 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7064 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7065 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7066 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7067 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7068 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7069 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7070 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7071 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7072 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7073 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7074 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7075 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7076 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7077 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7078 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7079 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7080 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7081 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7082 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7083 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7084 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7085 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7086 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7087 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7088 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7089 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7090 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7091 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7092 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7093 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7094 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7095 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7096 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 7099 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 7100 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation Ignition Switch Lock Cylinder: Description and Operation Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation > Page 7105 Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7111 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7112 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7113 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7114 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7115 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7116 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7117 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7118 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7119 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7120 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7121 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7122 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7123 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7124 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7125 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7126 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7127 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7128 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7129 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7130 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7131 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7132 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7133 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7134 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7135 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7136 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7137 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7138 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7139 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7140 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7141 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7142 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7143 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7144 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7145 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7146 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7147 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7148 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7149 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7150 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7151 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7152 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7153 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7154 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7155 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7156 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7157 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7158 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7159 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7160 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7161 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7162 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7163 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7164 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7165 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7166 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7167 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7168 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7169 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7170 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7171 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7172 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7173 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7174 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7175 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7176 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7177 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7178 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7179 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7180 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7181 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7182 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7183 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7184 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7185 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7186 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7187 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7188 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7189 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7190 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7191 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7192 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7193 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7194 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7195 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7196 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7197 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7198 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7199 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7200 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7201 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7202 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7203 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7204 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 7205 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 7206 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Sensors and Switches - Powertrain Management > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 7207 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................384-425 kPa (55-62 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Technician Safety Information > Page 7214 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 7215 Fuel Pressure: Testing and Inspection FUEL SYSTEM DIAGNOSIS SYSTEM DESCRIPTION The control module enables the fuel pump relay when the ignition switch is turned ON. The control module will disable the fuel pump relay within two seconds unless the control module detects ignition reference pulses. The control module continues to enable the fuel pump relay as long as ignition reference pulses are detected. The control module disables the fuel pump relay within two seconds if ignition reference pulses cease to be detected and the ignition remains ON. The Fuel System is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. The fuel tank stores the fuel supply. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pump also supplies fuel to a venturi pump located on the bottom of the fuel sender assembly. The function of the venturi pump is to fill the fuel sender assembly reservoir. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 7216 Step 1 - Step 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Pressure > System Information > Service Precautions > Page 7217 Step 6 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Idle Speed > System Information > Specifications Idle Speed: Specifications Information not supplied by the manufacturer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Cleaner Fresh Air Duct/Hose > Component Information > Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair AIR CLEANER RESONATOR OUTLET DUCT REPLACEMENT REMOVAL PROCEDURE 1. Loosen the clamp and separate the air cleaner outlet duct at the mass air flow (MAF)/intake air temperature (IAT) sensor. 2. Loosen the clamp and separate the air cleaner outlet duct from the throttle body. 3. Remove the radiator inlet hose clamp from the outlet duct. 4. Remove the air cleaner outlet duct. INSTALLATION PROCEDURE 1. Install the air cleaner outlet duct. 2. Install the air cleaner outlet duct to the throttle body. 3. Install the air cleaner outlet duct to MAF/IAT sensor. 4. Install the radiator inlet hose clamp to the outlet duct. NOTE: Refer to Fastener Notice. 5. Tighten the air cleaner outlet duct clamps. Tighten the clamps to 4 N.m (35 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 7233 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Air Filter Element: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 7239 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 7240 Air Filter Element: Service and Repair AIR CLEANER ELEMENT REPLACEMENT REMOVAL PROCEDURE 1. Remove the air cleaner outlet duct. 2. Disconnect the mass air flow/intake air temperature (MAF/IAT) sensor electrical connector (4). 3. Loosen the air cleaner housing top screws. 4. Remove the air cleaner housing cover. 5. Remove the air filter element. INSTALLATION PROCEDURE 1. Install a NEW air filter element. 2. Install the air cleaner housing cover. 3. Tighten the air cleaner housing top screws until snug. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 7241 4. Connect the MAF/IAT sensor electrical connector (4). 5. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 7247 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 7248 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 7249 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 7250 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications Ignition Cable: Specifications Spark Plug Wire Resistance................................................................................................................. ...........................................................397-1337 Ohms Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 7254 Ignition Cable: Testing and Inspection SPARK PLUG WIRE INSPECTION Spark plug wire integrity is vital for proper engine operation. A thorough inspection is necessary to accurately identify conditions that may affect engine operation. Inspect for the following conditions: 1. Correct routing of the spark plug wires-Incorrect routing may cause cross-firing. 2. Any signs of cracks or splits in the wires. 3. Inspect each boot for the following conditions: - Tearing - Piercing - Arcing - Carbon tracking - Corroded terminal If corrosion, carbon tracking or arcing are indicated on a spark plug wire boot or terminal, replace the wire and the component connected to the wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 7255 Ignition Cable: Service and Repair SPARK PLUG WIRE REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire from the spark plug. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the spark plug. 2. Remove the spark plug wire from the ignition coil. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the ignition coil. 3. IMPORTANT: The Melco(R) spark plug wires MUST be used only with the Melco(R) coils and bracket, like wise the Delphi(R) spark plug wires MUST be used only with Delphi(R) coils and bracket. The components are NOT interchangeable. There are 2 different manufacturers for the spark plug wire, ignition coils and coil brackets. They are as follows: 4. The Melco(R) spark plug wire (1) will have a blue foil mark on it, and the wire is 145 mm (5.70 in) in length from cable seal to cable seal. 5. The Delphi(R) spark plug wire (2) will have a white foil mark on it, and the wire is 110 mm (4.30 in) in length cable seal to cable seal. 6. The Melco(r) (1) ignition coil is a square design. 7. The Delphi(r) (2) ignition coil is a round design. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Ignition Cable > Component Information > Specifications > Page 7256 8. The Melco(r) ignition coil bracket (1) is a square design. 9. The Delphi(r) ignition coil bracket (2) is a round design. INSTALLATION PROCEDURE 1. Install the spark plug wire to the ignition coil. 2. Install the spark plug wire to the spark plug. 3. Inspect the spark plug wire for proper installation: 1. Push sideways on each boot in order to inspect the seating. 2. Reinstall any loose boot. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications Spark Plug: Specifications Spark Plug Gap.................................................................................................................................... .......................................................1.52 mm - 0.060 in Spark Plug Torque.......................................... ................................................................................................................................................15 N.m 11 lb ft Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 7260 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ............................................25171803 [AC plug type] Spark Plug Type.............................................. ..............................................................................................................................12567759 [NGK plug type] Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 7261 Spark Plug: Testing and Inspection SPARK PLUG INSPECTION - Verify that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. - Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: Spark plug fouling - Colder plug - Pre-ignition causing spark plug and/or engine damage - Hotter plug - Inspect the terminal post (1) for damage. Inspect for a bent or broken terminal post (1). - Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should not move. - Inspect the insulator (2) for flashover or carbon tracking, or soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: Inspect the spark plug boot for damage. - Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated will cause arcing to ground. - Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). - Inspect for evidence of improper arcing. Measure the gap between the center electrode (4) and the side electrode (3). - Inspect for the correct spark plug torque. Insufficient torque can prevent correct spark plug operation. An over torqued spark plug, causes the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 7262 insulator (2) to crack. - Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). - Inspect for a broken or worn side electrode (3). - Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. - Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. - Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. - Inspect for excessive fouling. - Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Visual Inspection Normal operation - Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. - Carbon fouled - Dry, fluffy black carbon, or soot caused by the following conditions: Rich fuel mixtures Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion - Reduced ignition system voltage output Weak ignition coils - Worn ignition wires - Incorrect spark plug gap - Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. - Deposit fouling - Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark plug intensity. Most powdery deposits will not affect spark plug intensity unless they form into a glazing over the electrode. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 7263 Spark Plug: Service and Repair SPARK PLUG REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire. 2. Loosen the spark plug 1 or 2 turns. 3. Brush or using compressed air, blow away any dirt from around the spark plug. 4. Remove the spark plug.If removing more than one plug, place each plug in a tray marked with the corresponding cylinder number. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Spark Plug > Component Information > Specifications > Page 7264 1. Correctly position the spark plug washer. 2. Inspect the spark plug gap. Adjust the gap as needed. Spark plug gap: 1.016 mm (0.040 in) 3. Hand start the spark plug in the corresponding cylinder. NOTE: Refer to Fastener Notice. 4. Tighten the spark plug. - Tighten the plug to 15 N.m (11 lb ft) for used heads. - Tighten the plug to 20 N.m (15 lb ft) for NEW heads. 5. Install the spark plug wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Compression Check > System Information > Specifications Compression Check: Specifications The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Tune-up and Engine Performance Checks > Compression Check > System Information > Specifications > Page 7268 Compression Check: Testing and Inspection Engine Compression Test 1. Charge the battery if the battery is not fully charged. 2. Disable the ignition system. 3. Disable the fuel injection system. 4. Remove all the spark plugs. 5. Turn the ignition to the ON position. 6. Depress the accelerator pedal to position the throttle plate wide open. 7. Start with the compression gage at zero and crank the engine through 4 compression strokes, 4 puffs. 8. Measure the compression for each cylinder. Record the readings. 9. If a cylinder has low compression, inject approximately 15 ml (1 tablespoon) of engine oil into the combustion chamber through the spark plug hole. Measure the compression again and record the reading. 10. The minimum compression in any 1 cylinder should not be less than 70 percent of the highest cylinder. No cylinder should read less than 690 kPa (100 psi). For example, if the highest pressure in any 1 cylinder is 1,035 kPa (150 psi), the lowest allowable pressure for any other cylinder would be 725 kPa (105 psi). (1 035 x 70% = 725) (150 x 70% = 105). ^ Normal - Compression builds up quickly and evenly to the specified compression for each cylinder. ^ Piston Rings Leaking - Compression is low on the first stroke. Compression builds up with the following strokes, but does not reach normal. Compression improves considerably when you add oil. ^ Valves Leaking - Compression is low on the first stroke. Compression usually does not build up on the following strokes. Compression does not improve much when you add oil. ^ If 2 adjacent cylinders have lower than normal compression, and injecting oil into the cylinders does not increase the compression, the cause may be a head gasket leaking between the cylinders. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 7273 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 7274 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 7275 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 7276 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7282 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7283 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7284 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7285 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7286 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7287 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7288 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7289 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7290 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7291 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7292 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7293 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7294 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7295 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7296 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7297 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7298 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7299 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7300 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7301 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7302 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7303 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7304 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7305 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7306 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7307 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7308 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7309 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7310 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7311 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7312 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7313 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7314 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7315 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7316 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7317 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7318 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7319 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7320 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7321 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7322 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7323 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7324 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7325 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7326 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7327 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7328 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7329 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7330 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7331 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7332 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7333 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7334 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7335 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7336 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7337 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7338 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7339 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7340 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7341 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7342 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7343 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7344 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7345 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7346 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7347 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7348 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7349 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7350 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7351 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7352 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7353 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7354 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7355 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7356 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7357 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7358 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7359 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7360 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7361 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7362 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7363 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7364 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7365 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7366 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7367 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7368 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7369 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7370 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7371 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7372 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7373 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7374 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 7375 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 7376 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 7380 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 7381 Intake Air Temperature Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 7382 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Battery Current Sensor > Component Information > Diagrams Battery Current Sensor: Diagrams Engine Electrical Connector End Views Current Sensor (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 07-08-42-006E > Nov > 10 > Instruments Bulb Outage Detection Restoration Body Control Module: Customer Interest Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: Customer Interest Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 7398 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: All Technical Service Bulletins Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module Body Control Module: All Technical Service Bulletins Body Controls - Unable To Reprogram Body Control Module INFORMATION Bulletin No.: 09-08-47-001A Date: June 14, 2010 Subject: Unable to Reprogram Body Control Module (BCM), BCM Reprogramming Did Not Complete - Revised Reprogramming Instructions Models: 2006-2010 Buick Lucerne 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, SRX 2008-2010 Cadillac CTS 2010 Cadillac CTS Wagon 2010 Chevrolet Camaro 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Impala 2007-2010 Chevrolet Avalanche, Equinox, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2007-2010 GMC Acadia, Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2008-2010 GMC Savana 2010 GMC Terrain 2007-2009 Pontiac Torrent 2008-2009 Pontiac G8 2008-2009 HUMMER H2 2007-2009 Saturn OUTLOOK 2008-2009 Saturn VUE Refer to GMVIS Supercede: This bulletin is being revised to update the models and the model years. Please discard Corporate Bulletin Number 09-08-47-001 (Section 08 - Body and Accessories). Some technicians may experience an unsuccessful body control module (BCM) reprogramming event, when choosing the Reprogram ECU selection on the Service Programming System (SPS). The technician may also notice that when attempting to reprogram the BCM again after this incident has occurred, the BCM may not complete the programming event. This condition may be caused by the following: - A reprogramming event that was interrupted due to a lack of communication between the vehicle and the TIS2WEB terminal. - The vehicle experienced low system voltage during the reprogramming event. Important Do not replace the BCM for this condition. SPS Programming Process Selection Perform this procedure first. 1. If reprogramming has failed during the initial reprogramming event, back out of the SPS application completely. 2. Re-select SPS from the TIS2WEB terminal application. 3. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 4. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module > Page 7408 During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. BCM Still Fails to Reprogram If the BCM still fails to reprogram perform this procedure: 1. Turn OFF the ignition, and remove the key. 2. Remove the fuses that power up the following modules/components for a minimum of 2 minutes: - BCM - EBCM - ECM - IS LPS (located in the left IP fusebox) - TCM 3. Open and close the driver door. Allow enough time for the retained accessory power (RAP) to turn OFF. 4. Reinstall the fuses. 5. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 6. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: All Technical Service Bulletins Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 7413 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Transmission Mode Switch: All Technical Service Bulletins A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 7419 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 7420 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 7421 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 7427 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 7428 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 7429 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7432 Body Control Module: Diagrams Body Control Module (BCM) - C2 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7433 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7434 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7435 Body Control Module: Diagrams Body Control Module (BCM) - C4 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7436 Body Control Module (BCM) - C4 (Pin B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7437 Body Control Module: Diagrams Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7438 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7439 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7440 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7441 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7442 Body Control Module (BCM) - C4 (Pin B12) Body Control Module (BCM) - C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 7443 Body Control Module (BCM) - C6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 7444 Body Control Module: Service and Repair BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cables. 2. Remove the knee bolster. 3. Disconnect the brown connector. 4. Disconnect all other connectors (1). 5. Remove the body control module (BCM) from the sliding bracket. INSTALLATION PROCEDURE 1. Slide the BCM onto the bracket. 2. Connect all the connectors (1) except the brown connector. 3. Connect the brown connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 7445 4. Install the knee bolster. 5. Connect the negative battery cables. 6. Reprogram the BCM. Refer to Body Control Module Programming and Setup. 7. Perform the Passlock Learn Procedure. Refer to Programming Theft Deterrent System Components. 8. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7450 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7451 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7452 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7453 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7454 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7455 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7456 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7457 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7458 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7459 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7460 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7461 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7462 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7463 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7464 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7465 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7466 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7467 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7468 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7469 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7470 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7471 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7472 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7473 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7474 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7475 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7476 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7477 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7478 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7479 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7480 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7481 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7482 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7483 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7484 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7485 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7486 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7487 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7488 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7489 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7490 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7491 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7492 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7493 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7494 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7495 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7496 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7497 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7498 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7499 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7500 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7501 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7502 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7503 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7504 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7505 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7506 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7507 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7508 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7509 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7510 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7511 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7512 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7513 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7514 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7515 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7516 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7517 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7518 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7519 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7520 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7521 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7522 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7523 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7524 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7525 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7526 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7527 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7528 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7529 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7530 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7531 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7532 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7533 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7534 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7535 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7536 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7537 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7538 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7539 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7540 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7541 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7542 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Page 7543 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Clutch Switch, ECM > Component Information > Diagrams Clutch Switch: Diagrams Engine Electrical Connector End Views Clutch Pedal Position (CPP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7555 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7556 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7557 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7558 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7564 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7565 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7566 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 7567 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 7568 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 7569 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 7570 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 7571 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 7572 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7577 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7578 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7579 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7580 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7581 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7582 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7583 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7584 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7585 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7586 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7587 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7588 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7589 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7590 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7591 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7592 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7593 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7594 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7595 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7596 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7597 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7598 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7599 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7600 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7601 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7602 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7603 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7604 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7605 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7606 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7607 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7608 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7609 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7610 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7611 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7612 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7613 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7614 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7615 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7616 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7617 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7618 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7619 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7620 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7621 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7622 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7623 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7624 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7625 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7626 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7627 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7628 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7629 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7630 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7631 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7632 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7633 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7634 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7635 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7636 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7637 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7638 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7639 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7640 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7641 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7642 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7643 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7644 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7645 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7646 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7647 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7648 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7649 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7650 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7651 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7652 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7653 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7654 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7655 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7656 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7657 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7658 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7659 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7660 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7661 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7662 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7663 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7664 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7665 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7666 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7667 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7668 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 7669 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 7672 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 7673 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Data Link Connector > Component Information > Locations Lower Left Of The I/P Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Data Link Connector > Component Information > Locations > Page 7677 Data Link Connector (DLC) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Data Link Connector > Component Information > Locations > Page 7678 Data Link Connector: Description and Operation DATA LINK CONNECTOR (DLC) The data link connector (DLC) is a standardized 16 cavity connector. Connector design and location is dictated by an industry wide standard, and is required to provide the following: - Scan tool power battery positive voltage at terminal 16 - Scan tool power ground at terminal 4 - Common signal ground at terminal 5 - Class 2 signal at terminal 2 - High speed GMLAN serial data bus (+) at terminal 6 - High speed GMLAN serial data bus (-) at terminal 14 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Data Link Connector > Component Information > Locations > Page 7679 Data Link Connector: Testing and Inspection DATA LINK REFERENCES Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Data Link Connector > Component Information > Locations > Page 7680 This table identifies which serial data link that a particular module uses for in-vehicle data transmission. Some modules may use more than one data link to communicate. This table is used to assist in correcting a communication malfunction between the control module and the scan tool. For the description and operation of these serial data communication circuits refer to Data Link Communications Description and Operation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Data Link Connector > Component Information > Locations > Page 7681 Data Link Connector: Service and Repair DATA LINK CONNECTOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the bolt from the data link connector (DLC). 2. Remove the DLC from the instrument panel (I/P). INSTALLATION PROCEDURE 1. Install the DLC to the I/P. 2. NOTE: Refer to Fastener Notice. Install the DLC bolt. Tighten the bolt to 6 N.m (53 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Actuator > Component Information > Description and Operation Electronic Throttle Actuator: Description and Operation THROTTLE ACTUATOR CONTROL (TAC) SYSTEM DESCRIPTION The throttle actuator control (TAC) system delivers improved throttle response and greater reliability and eliminates the need for mechanical cable. The TAC system performs the following functions: - Accelerator pedal position (APP) sensing - Throttle positioning to meet driver and engine demands - Throttle position sensing - Internal diagnostics - Cruise control functions - Manage TAC electrical power consumption The TAC system components include the following: - The APP sensors - The throttle body assembly - The TAC module - The powertrain control module (PCM) Accelerator Pedal Position (APP) Sensor The accelerator pedal assembly contains 2 individual accelerator pedal position (APP) sensors within the assembly. The APP sensors 1 and 2 are potentiometer type sensors, each with the following circuits: A 5-Volt reference circuit - A low reference circuit - A signal circuit The APP sensors are used to determine the pedal angle. The control module provides each APP sensor a 5-Volt reference circuit and a low reference circuit. The APP sensors then provide the control module with signal voltage proportional to pedal movement. Both APP sensor signal voltages are low at rest position and increase as the pedal is applied. Throttle Body Assembly The throttle body assembly consists of the throttle body, the throttle position (TP) sensors, and the throttle actuator motor. The throttle body functions similar to a conventional throttle body with the following exceptions: An electric motor opens and closes the throttle valve. - The throttle blade is spring loaded in both directions and the default position is slightly open. - There are 2 individual TP sensors within the throttle body assembly. The TP sensors 1 and 2 are potentiometer type sensors, each with the following circuits: A 5-Volt reference circuit - A low reference circuit - A signal circuit The TP sensors are used to determine the throttle plate angle. The control module provides each TP sensor a 5-Volt reference circuit and a low reference circuit. The TP sensors then provide the control module with signal voltage proportional to throttle plate movement. Both TP sensor signal voltages are low at closed throttle and increase as the throttle opens. Throttle Actuator Control Module The throttle actuator control (TAC) module is the control center for the throttle actuator control system. The TAC system is self-diagnosing and provides diagnostic information to the powertrain control module (PCM) through a dedicated serial data line. The TAC achieves throttle positioning by providing a pulse width modulated voltage to the TAC, as directed by the PCM. Powertrain Control Module The powertrain control module (PCM) determines the driver's intent, then calculates the appropriate throttle response. This information is sent to the throttle actuator control (TAC) module through a dedicated serial data line. MODES OF OPERATION Normal Mode During the operation of the throttle actuator control (TAC) system, several modes or functions are considered normal. The following modes may be entered during normal operation: Minimum pedal value-At key-up the powertrain control module (PCM) updates the learned minimum pedal value. - Minimum throttle position (TP) values-At key-up the PCM updates the learned minimum TP value. In order to learn the minimum TP value, the throttle blade is moved to the closed position. - Ice break mode-If the throttle is not able to reach a predetermined minimum throttle position, the ice break mode is entered. During the ice break mode, the control module commands the maximum pulse width several times to the throttle actuator motor in the closing direction. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Actuator > Component Information > Description and Operation > Page 7685 - Battery saver mode-After a predetermined time without engine RPM, the control module commands the battery saver mode. During the battery saver mode, the TAC module removes the voltage from the motor control circuits, which removes the current draw used to maintain the idle position and allows the throttle to return to the spring loaded default position. Reduced Engine Power Mode When the PCM detects a condition with the TAC system, the PCM may enter a reduced engine power mode. Reduced engine power may cause one or more of the following conditions: Acceleration limiting-The control module will continue to use the accelerator pedal for throttle control; however, the vehicle acceleration is limited. - Limited throttle mode-The control module will continue to use the accelerator pedal for throttle control; however, the maximum throttle opening is limited. - Throttle default mode-The control module will turn off the throttle actuator motor and the throttle will return to the spring loaded default position. - Forced idle mode-The control module will perform the following actions: Limit engine speed to idle by positioning throttle position, or by controlling fuel and spark if throttle is turned off. - Ignore accelerator pedal input. - Engine shutdown mode-The control module will disable fuel and de-energize the throttle actuator. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Control Module > Component Information > Locations Throttle Actuator Control (TAC) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 Throttle Actuator Control (TAC) Module C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 > Page 7691 Throttle Actuator Control (TAC) Module C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 7692 Electronic Throttle Control Module: Service and Repair ELECTRONIC THROTTLE ACTUATOR CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the instrument panel (I/P) harness electrical connector (2). 2. Release the red connector position assurance (CPA) retainer. 3. Disconnect the engine wiring harness electrical connector (1). 4. Remove the throttle actuator control (TAC) module nuts. 5. Remove the TAC module. INSTALLATION PROCEDURE 1. Install the TAC module. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 7693 NOTE: Refer to Fastener Notice. 2. Install the TAC module nuts. Tighten the nuts to 9 N.m (80 lb in). 3. Connect the engine wiring harness electrical connector (1). 4. Install the red CPA retainer. 5. Connect the I/P harness electrical connector (2). 6. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 09-08-68-001 > Nov > 09 > Engine Controls Cruise Control Turns Off When Operated Engine Control Module: Customer Interest Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls MIL ON/Misfire/Misfire DTC's Set Engine Control Module: Customer Interest Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls MIL ON/Misfire/Misfire DTC's Set > Page 7706 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-06-04-054B > Nov > 10 > Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-06-04-054B > Nov > 10 > Engine Controls - Aftermarket Accessory Usage > Page 7712 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 7717 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 7718 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 7719 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026B Date: April 07, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2010 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2010 model year and information about retrieving calibrations on a Global A vehicle. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine, transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 7724 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 7725 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 7726 Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: All Technical Service Bulletins Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: All Technical Service Bulletins Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 7735 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously Control Module HVAC: All Technical Service Bulletins Campaign - HVAC Blower Not Functional Runs Continuously SPECIAL COVERAGE Bulletin No.: 11046 Date: April 07, 2011 Subject: 11046 - Special Coverage Adjustment - Heating, Ventilation, and Air Conditioning Blower Not Fully Functional on All Blower Speeds, Inoperative, or Runs Continuously with the Ignition Off Models: 2003-2006 Chevrolet Avalanche, Suburban, Tahoe 2003-2007 Chevrolet Silverado 2003-2006 GMC Yukon, Yukon XL 2003-2007 GMC Sierra Equipped with Manual HVAC (CJ3) or Heavy Duty Heater (C42) Due to part availability, owner letters will be released in phases starting with older model year first. Owners for model year vehicles not included in first phase owner mailing will receive an owner advisory letter. The letter will inform the customer that parts are not yet available and that another letter will be sent to them when parts become available. A copy of this letter will be attached to the dealer message announcing this bulletin. In the meantime, if a customer brings their vehicle to the dealership with the condition described in this bulletin, repair the vehicle using the parts called out in this bulletin. Condition On some 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual heating, ventilation, and air conditioning (HVAC) system (CJ3) or heavy duty heater (C42), the interface between the electrical terminals of the relay resistor module and the wiring connector that powers the module may be incapable of conducting higher current levels for sustained periods of blower motor operation. In addition, moisture and other contaminants may enter the fresh air intake plenum and contact the internal circuit of the module or corrode the terminals. Either of the above may cause the relay resistor module or wiring connector to overheat, resulting in one or more of the following symptoms: - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position In very rare events, if the above symptoms are ignored, a fire could occur. Special Coverage Adjustment This special coverage covers the condition described above for a period of 10 years or 240,000 km, whichever occurs first, from the date the vehicle was originally placed in service, regardless of ownership. Dealers are to install a new blower motor resistor and resistor module connector. The repairs will be made at no charge to the customer. For vehicles covered by Vehicle Service Contracts, all eligible claims with repair orders on or after April 8, 2011 are covered by this special coverage and must be submitted using the labor operation codes provided with this bulletin. Claims with repair orders prior to April 8, 2011 must be submitted to the Service Contract provider. Vehicles Involved Involved are certain 2003-2006 model year Chevrolet Avalanche, Suburban, Tahoe; GMC Yukon, Yukon XL; and 2003-2007 model year Chevrolet Silverado and GMC Sierra vehicles equipped with a manual HVAC (CJ3) or heavy duty heater (C42). Important Dealers are to confirm vehicle eligibility prior to beginning repairs by using the Applicable Warranties section in the Global Warranty Management system. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 7741 Parts required to complete this special coverage are to be obtained from General Motors Customer Care and Aftersales (GMCC&A;). Service Procedure Note The resistor module connector and blower motor resistor will need to be replaced if one or more of the symptoms below is present. - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position Determine if one or more of the above symptoms is present. If required refer to HVAC diagnostic information in SI. Refer to Resistor Module Connector and Blower Motor Resistor Replacement in this bulletin if one or more of the symptoms is present. Other HVAC repairs are NOT covered in this product safety special coverage bulletin. Resistor Module Connector and Blower Motor Resistor Replacement 1. Remove the blower fuses (Htr A/C & HVAC 1 fuses). 2. Lower the close-out panel enough to gain access to the resistor module connector. 3. Disconnect the connector from the resistor module. Note Connector replacement is required even if the connector was replaced on a previous service repair. 4. Remove the tape from the wiring harness to expose the wiring. 5. Cut the wires back far enough from the connector to eliminate any melted insulation on the wire. Note Use the old connector as a map for splicing the wires for the new connector. Be sure to use the correct crimping tool from the terminal repair kit J 38125. Use only Duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. 6. Install the new connector. Use the yellow splice sleeves provided with the connector. 7. Install the new blower motor resistor. 8. Reinstall the fuses. Test the blower motor to make sure all speeds are functional. 9. Reinstall the hush panel/close-out panel. Customer Reimbursement Customer requests for reimbursement of previously paid repairs to correct the condition described in this bulletin are to be submitted to the dealer prior to or by December 31, 2012. Repairs must have occurred within the 10 years of the date the vehicle was originally placed in service, or 240,000 kilometres, whichever occurs first. When a customer requests reimbursement, they must provide the following: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 7742 - Proof of ownership at time of repair. - Original paid receipt confirming the amount of unreimbursed repair expense(s) (including Service Contract deductibles), a description of the repair, and the person or entity performing the repair. If the work was done by someone other than a GM dealership, the amount of reimbursement will be limited to the amount that the repair would have cost GM to have it completed by a GM dealership. Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Warranty Transaction Information Submit a transaction using the table below. * The amount identified in "Net Item" should represent the dollar amount reimbursed to the customer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set Control Module HVAC: All Technical Service Bulletins A/C - Defaults To Full Hot/Full Cold/DTC's Set TECHNICAL Bulletin No.: 08-01-39-009B Date: September 24, 2010 Subject: HVAC Automatic Climate Control Defaults to Full Cold or Full Hot Despite Controls Being Set to Other Parameters, DTCs B0228, B0413, B0423, B0433, B3779 or B3782 Set (Reprogram HVAC Control Module) Models: 2008-2009 Buick Enclave 2007-2008 Cadillac Escalade Models 2007-2008 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Acadia, Sierra, Yukon Models 2008 HUMMER H2 Models 2007-2009 Saturn OUTLOOK with Automatic Climate Control System (RPO CJ2) Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 08-01-39-009A (Section 01 - HVAC). Condition Some customers may comment that the Heating, Ventilation and Air Conditioning (HVAC) automatic climate control system defaults to full hot and/or full cold, despite the HVAC controls being set to other parameters. This condition may not exist during the next ignition cycle and the system may operate normally. Technicians may find DTCs B0228, B0413, B0423, B0433, B3779 or B3782 set as Current or in History. Cause This condition may be caused by a software anomaly. Correction Important If the vehicle is a 2007-2009 GMC Acadia or Saturn OUTLOOK with an additional customer concern of an inaccurate ambient temperature display, then it may be necessary to reprogram the HVAC control module AND relocate the ambient air temperature (AAT) sensor. Refer to Corporate Bulletin Number 08-01-39-008A - HVAC Ambient Temperature Sensor Display In Instrument Panel Cluster (IPC) Inaccurate Or Too High for more information. Note The first step applies to the following vehicles: Avalanche, Escalade, Suburban, Tahoe, Yukon. 1. Inspect for an open HVAC-IGN Fuse in the underhood fuse block. ‹› If the fuse is open, repair the short to ground. 2. A revised calibration has been released to address this condition. Reprogram the HVAC control module using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the HVAC Control Module Programming and Setup procedure in SI. 3. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. 4. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. 5. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. 6. After reprogramming clear all DTCs. Operate the vehicle within the Conditions for Running the DTC and verify that DTCs B0228, B0413, B0423, B0433, B3779 or B3782 do not reset as Current. ‹› If DTCs B0228, B0413, B0423, B0433, B3779, or B3782 are set as Current, refer to the DTC diagnostic procedures in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set > Page 7747 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 06-01-39-014 > Dec > 06 > A/C - HVAC Control Module Lockup During Reprogramming Control Module HVAC: All Technical Service Bulletins A/C - HVAC Control Module Lockup During Reprogramming Bulletin No.: 06-01-39-014 Date: December 06, 2006 INFORMATION Subject: Information On HVAC Control Module Lockup During Reprogramming Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models with Automatic Temperature Control HVAC System (RPO CJ2) The purpose of this bulletin is to alert technicians to a condition they may encounter while trying to reprogram a Heating, Ventilation and Air Conditioning (HVAC) control module. If the HVAC control module reprogramming event is interrupted, the control module may go into a "lock up" mode. This will cause the HVAC control module to disable communications and a second try at reprogramming will fail. The interruption may be caused by a software anomaly inside the HVAC control module. If the HVAC reprogramming event was interrupted and a subsequent reprogramming attempt fails, perform a battery reset. This can be accomplished by either removing and reinstalling the HVAC BATT fuse, located in the underhood fuse block, or by disconnecting and reconnecting the HVAC control module connector C2. Connector C2 is grey in color with 16 cavities. Once the battery reset has been performed, the HVAC control module will resume communications and will then be able to be reprogrammed. The Warranty Parts Center (WPC) has received HVAC control modules that have been returned and described as non-functional but were tested with no problems found. If the module has been replaced due to a failed second attempt at reprogramming caused by the lock up, the module will be returned and charged back to the dealer. Technicians must also remember that after a new HVAC control module has been installed into a vehicle, it must be programmed, otherwise it will not be functional. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 7757 Parts required to complete this special coverage are to be obtained from General Motors Customer Care and Aftersales (GMCC&A;). Service Procedure Note The resistor module connector and blower motor resistor will need to be replaced if one or more of the symptoms below is present. - The HVAC blower may not function on certain or all blower speed settings - A burning plastic smell or smoke may be present in the vehicle - The HVAC blower may run continually with the ignition in the OFF position Determine if one or more of the above symptoms is present. If required refer to HVAC diagnostic information in SI. Refer to Resistor Module Connector and Blower Motor Resistor Replacement in this bulletin if one or more of the symptoms is present. Other HVAC repairs are NOT covered in this product safety special coverage bulletin. Resistor Module Connector and Blower Motor Resistor Replacement 1. Remove the blower fuses (Htr A/C & HVAC 1 fuses). 2. Lower the close-out panel enough to gain access to the resistor module connector. 3. Disconnect the connector from the resistor module. Note Connector replacement is required even if the connector was replaced on a previous service repair. 4. Remove the tape from the wiring harness to expose the wiring. 5. Cut the wires back far enough from the connector to eliminate any melted insulation on the wire. Note Use the old connector as a map for splicing the wires for the new connector. Be sure to use the correct crimping tool from the terminal repair kit J 38125. Use only Duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. 6. Install the new connector. Use the yellow splice sleeves provided with the connector. 7. Install the new blower motor resistor. 8. Reinstall the fuses. Test the blower motor to make sure all speeds are functional. 9. Reinstall the hush panel/close-out panel. Customer Reimbursement Customer requests for reimbursement of previously paid repairs to correct the condition described in this bulletin are to be submitted to the dealer prior to or by December 31, 2012. Repairs must have occurred within the 10 years of the date the vehicle was originally placed in service, or 240,000 kilometres, whichever occurs first. When a customer requests reimbursement, they must provide the following: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 11046 > Apr > 11 > Campaign - HVAC Blower Not Functional Runs Continuously > Page 7758 - Proof of ownership at time of repair. - Original paid receipt confirming the amount of unreimbursed repair expense(s) (including Service Contract deductibles), a description of the repair, and the person or entity performing the repair. If the work was done by someone other than a GM dealership, the amount of reimbursement will be limited to the amount that the repair would have cost GM to have it completed by a GM dealership. Courtesy Transportation The General Motors Courtesy Transportation program is intended to minimize customer inconvenience when a vehicle requires a repair that is covered by the New Vehicle Limited Warranties. The availability of courtesy transportation to customers whose vehicles are within the warranty coverage period and involved in a product program is very important in maintaining customer satisfaction. Dealers are to ensure that these customers understand that shuttle service or some other form of courtesy transportation is available and will be provided at no charge. Dealers should refer to the General Motors Service Policies and Procedures Manual for Courtesy Transportation guidelines. Warranty Transaction Information Submit a transaction using the table below. * The amount identified in "Net Item" should represent the dollar amount reimbursed to the customer. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-01-39-009B > Sep > 10 > A/C - Defaults To Full Hot/Full Cold/DTC's Set > Page 7763 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Page 7768 Left Front Of The Engine Compartment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7771 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7772 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7773 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7774 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7775 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7776 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7777 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7778 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7779 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7780 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7781 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7782 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7783 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7784 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7785 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7786 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7787 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7788 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7789 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7790 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7791 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7792 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7793 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7794 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7795 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7796 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7797 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7798 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7799 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7800 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7801 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7802 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7803 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7804 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7805 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7806 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7807 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7808 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7809 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7810 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7811 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7812 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7813 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7814 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7815 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7816 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7817 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7818 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7819 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7820 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7821 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7822 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7823 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7824 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7825 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7826 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7827 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7828 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7829 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7830 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7831 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7832 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7833 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7834 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7835 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7836 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7837 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7838 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7839 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7840 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7841 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7842 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7843 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7844 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7845 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7846 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7847 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7848 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7849 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7850 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7851 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7852 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7853 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7854 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7855 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7856 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7857 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7858 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7859 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7860 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7861 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7862 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7863 Engine Control Module: Connector Views Powertrain Control Module (PCM) C1 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7864 Powertrain Control Module (PCM) C1 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7865 Powertrain Control Module (PCM) C1 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7866 Powertrain Control Module (PCM) C2 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7867 Powertrain Control Module (PCM) C2 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 7868 Powertrain Control Module (PCM) C2 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7869 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7870 Engine Control Module: Description and Operation POWERTRAIN CONTROL MODULE DESCRIPTION POWERTRAIN The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: The engine fueling - The ignition control (IC) - The knock sensor (KS) system - The evaporative emissions (EVAP) system - The secondary air injection (AIR) system (if equipped) - The exhaust gas recirculation (EGR) system - The automatic transmission functions - The generator - The A/C clutch control - The cooling fan control POWERTRAIN CONTROL MODULE FUNCTION The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. MALFUNCTION INDICATOR LAMP (MIL) OPERATION The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. - The MIL turns OFF after the engine is started if a diagnostic fault is not present. - The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7871 Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. - The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. - When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. - When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. TRIP A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). WARM-UP CYCLE The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. DIAGNOSTIC TROUBLE CODES (DTCS) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC STATUS When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) Indicates that this DTC failed during the present ignition cycle. Last Test Fail Indicates that this DTC failed the last time the test ran. MIL Request Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7872 Engine Control Module: Testing and Inspection FUEL COMPOSITION DIAGNOSIS SYSTEM DESCRIPTION When an E85 compatible vehicle is built, an engine control module (ECM) or powertrain control module (PCM) replaced, or when the learned alcohol content has been reset with a scan tool the fuel system will need to contain ASTM gasoline with 10 percent or less ethanol content. If the fuel in the fuel system needs to be drained and replaced with ASTM gasoline, the engine will need to run at operating temperature and consume at least 1 liter of fuel before the system will recognize the correct alcohol content. Either ASTM gasoline or ASTM E85 fuel can then be used TEST Step 1 - Step 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7873 Engine Control Module: Service and Repair POWERTRAIN CONTROL MODULE REPLACEMENT Service of the powertrain control module (PCM) should consist of either replacement of the PCM or programming of the electrically erasable programmable read only memory (EEPROM). If the diagnostic procedures call for the PCM to be replaced, the replacement PCM should be checked to ensure that the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. NOTE: - Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. - Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. - In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. - Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. - The replacement control module must be programmed. IMPORTANT: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Disconnect the negative battery cable. 3. If equipped with regular production option (RPO) NYS, remove the harness ground clip from the PCM cover. 4. If equipped with RPO HP2, remove the hybrid control module (HCM). 5. If vehicle is NOT equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7874 6. If vehicle is equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. 7. Loosen the PCM electrical connector bolts (2). NOTE: Refer to PCM and ESD Notice. - In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 8. Disconnect the PCM electrical connectors. 9. Release the spring latch from the PCM. 10. Release the PCM mounting tabs from the PCM. 11. Remove the PCM. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7875 1. Install the PCM.Ensure that the mounting tabs are engaged. 2. Secure the spring latch to the PCM. 3. Connect the PCM electrical connectors. NOTE: Refer to Fastener Notice. 4. Tighten the PCM electrical connector bolts (2). Tighten the bolts to 8 N.m (71 lb in). 5. If vehicle is equipped with RPO HP2, install the PCM cover. 6. If vehicle is NOT equipped with RPO HP2, install the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 7876 7. If equipped with RPO HP2, install the HCM. 8. If equipped with RPO NYS, install the harness ground clip to the PCM cover. 9. Connect the negative battery cable. 10. If a NEW PCM was installed, program the PCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Level Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 7882 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement 1 FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 4. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. 7. IMPORTANT: - Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 7885 Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 7886 Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement FUEL LEVEL SENSOR REPLACEMENT (4.8L, 5.3L, AND 6.0L ENGINES) REMOVAL PROCEDURE 1. Remove the sending unit. 2. Disconnect the fuel pump electrical connector. 3. Remove the fuel lever sensor electrical connector retaining clip. 4. Disconnect the fuel level sensor electrical connector. 5. Remove the fuel level sensor retaining clip. 6. Remove the fuel level sensor (1). INSTALLATION PROCEDURE 1. Install the fuel level sensor (1). 2. Install the fuel level sensor retaining clip. 3. Connect the fuel level sensor electrical connector. 4. Install the fuel lever sensor electrical connector retaining clip. 5. Connect the fuel pump electrical connector. 6. Install the sending unit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 7890 Fuel Tank Pressure (FTP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 7891 Fuel Tank Pressure Sensor: Service and Repair FUEL TANK PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Using a slight rocking motion, while pulling straight up, remove the fuel tank pressure sensor (1). INSTALLATION PROCEDURE 1. Install the fuel tank pressure sensor (1). 2. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Idle Speed/Throttle Actuator - Electronic > Component Information > Service Precautions Idle Speed/Throttle Actuator - Electronic: Service Precautions Handling Idle Air Control Valve Notice Notice: If the IAC valve has been in service: DO NOT push or pull on the IAC valve pintle. The force required to move the pintle may damage the threads on the worm drive. Also, DO NOT soak the IAC valve in any liquid cleaner or solvent, as damage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Locations > Body Control Module (BCM) Body Control Module (BCM) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Locations > Body Control Module (BCM) > Page 7899 Center Of The I/P Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Locations > Body Control Module (BCM) > Page 7900 Lower Left Of The I/P Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions Information Bus: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7903 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7904 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7905 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7906 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7907 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7908 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7909 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7910 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7911 Information Bus: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7912 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7913 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7914 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7915 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7916 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7917 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7918 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7919 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7920 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7921 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7922 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7923 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7924 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7925 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7926 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7927 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7928 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7929 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7930 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7931 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7932 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7933 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7934 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7935 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7936 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7937 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7938 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7939 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7940 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7941 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7942 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7943 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7944 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7945 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7946 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7947 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7948 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7949 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7950 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7951 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7952 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7953 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7954 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7955 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7956 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7957 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7958 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7959 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7960 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7961 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7962 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7963 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7964 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7965 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7966 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7967 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7968 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7969 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7970 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7971 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7972 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7973 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7974 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7975 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7976 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7977 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7978 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7979 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7980 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7981 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7982 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7983 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7984 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7985 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7986 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7987 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7988 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7989 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7990 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7991 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7992 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7993 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Diagrams > Diagram Information and Instructions > Page 7994 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Service Precautions > Technician Safety Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Service Precautions > Technician Safety Information > Page 7997 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Service Precautions > Page 7998 Information Bus: Description and Operation DATA LINK COMMUNICATIONS DESCRIPTION AND OPERATION CIRCUIT DESCRIPTION The serial data communication among the control modules is performed through multiple serial data communication links. The class 2 serial data line is always present. The high speed GMLAN or controller area network (CAN) may be present for different vehicle options. The data link connector (DLC) allows a scan tool to communicate with the modules on class 2 or high speed GMLAN serial data lines. In order for the scan tool to communicate with the modules on high speed GMLAN link, a CANdi module is needed. The CANdi module behaves as an interface between the scan tool and the high speed GMLAN data link. The CAN is used for functional communication only, among the modules connected to it. DATA LINK CONNECTOR (DLC) The data link connector (DLC) is a standardized 16 cavity connector. Connector design and location is dictated by an industry wide standard, and is required to provide the following: Scan tool power battery positive voltage at terminal 16 - Scan tool power ground at terminal 4 - Common signal ground at terminal 5 - Class 2 signal at terminal 2 - High speed GMLAN serial data bus (+) at terminal 6 - High speed GMLAN serial data bus (-) at terminal 14 CLASS 2 SERIAL DATA LINE Class 2 serial data is transmitted on a single wire at an average of 10.4 kbps. This value is an average, class 2 uses a variable pulse width modulation to carry data and depending on the message it may operate faster or slower. The bus will float at a nominal 7 volts during normal operation. Each module can pull this lower during the transmission. The bus is not at battery positive voltage or ground potential during normal operation. When the ignition switch is in RUN, each module communicating on the class 2 serial data line sends a state of health (SOH) message every 2 seconds to ensure that the module is operating properly. When a module stops communicating on the class 2 serial data line, for example if the module loses power or ground, the SOH message it normally sends on the data line every 2 seconds disappears. Other modules on the class 2 serial data line, which expect to receive that SOH message, detect its absence; those modules in turn set an internal DTC associated with the loss of SOH of the non-communicating module. The DTC is unique to the module which is not communicating, for example, when the inflatable restraint sensing and diagnostic module (SDM) SOH message disappears, several modules set DTC U1088. Note that a loss of serial data DTC does not normally represent a failure of the module that set it. The class 2 serial data line on this vehicle is a star configuration. The powertrain control module (PCM) has an additional class 2 serial data circuit to body control module (BCM). If one of the class 2 serial data circuits to the PCM opens, communication will not be interrupted. The following modules communicate on the class 2 serial data line: The audio amplifier (AMP), w/UQ7 and Y91 - The body control module (BCM) - The communication interface module (OnStar(R)), w/UE1 - The digital radio receiver (DRR), w/U2K - The driver door module (DDM) - The electronic brake control module (EBCM) - The generator battery control module (GBCM) - The HVAC control module - The hybrid control module (HCM), w/HP2 - The inflatable restraint sensing and diagnostic module (SDM) - The instrument panel cluster (IPC) - The memory seat module (MSM), w/AN3 - The passenger door module (PDM) - The powertrain/engine control module (PCM/ECM) - The radio - The rear seat audio (RSA) controller, w/UK6 - The rear seat entertainment (RSE) assembly w/U42 - The rear wheel steering control module (RWSCM), w/NYS - The remote playback device - CD player (CDX), w/U1S - The transfer case shift control module (TCSCM), w/NP1/NP8 - The transmission control module (TCM), w/M74 The class 2 serial data line allows a scan tool to communicate with these modules for testing purposes, checking for DTCs, and to activate/enable/disable functions. These class 2 serial data circuits are bussed together via 2 splice packs: SP205-Located behind the instrument panel (I/P) near the headlamp switch connector. - SP207-Located in the I/P harness. HIGH SPEED GMLAN SERIAL DATA LINE (PHT) The data link connector (DLC) allows a scan tool to communicate with the high speed GMLAN serial data circuit through the CANdi module. The Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Service Precautions > Page 7999 serial data is transmitted on two twisted wires that allow speed up to 500 Kbps. The twisted pair is terminated with two 120-ohm resistors, one is internal to the engine control module (ECM) and the other is internal to the energy storage control module (ESCM). The resistors are used to reduce noise on the high speed GMLAN bus during normal vehicle operation. The high speed GMLAN is a differential bus. The high speed GMLAN serial data bus (+) and high speed GMLAN serial data (-) are driven to opposite extremes from a rest or idle level. The idle level which is approximately 2.5 volts is considered a recessive transmitted data and is interpreted as a logic 1. Driving the lines to their extremes adds 1 volt to high speed GMLAN serial data bus (+) and subtracts 1 volt from high speed GMLAN serial data bus (-) wire. This dominant state is interpreted as a logic 0. GMLAN network management supports selective start up and is based on virtual networks. A virtual network is a collection of signals started in response to a vehicle event. The starting of a virtual network signifies that a particular aspect of the vehicles's functionality has been requested. A virtual network is supported by virtual devices which represents a collection of signals owned by a single physical device. So, any physical device can have one or more virtual devices. The signal supervision is the process of determining whether an expected signal is being received or not. Fail softing is the ability to substitute a signal with a default value or a default algorithm, in the absence of a valid signal. Some messages are also interpreted as a "heartbeat" of a virtual device. If such a signal is lost, the application will set a no communication code against the respective virtual device. This code is mapped as a code against the physical device. Note that a loss of serial data DTC does not normally represent a failure of the module that set it. The powertrain control module (PCM) and hybrid control module (HCM) are functionally communicating on both class 2 and high speed GMLAN data links. However the diagnostic communication of the above modules with the scan tool is performed on class 2 data link only. All DTCs set by the high speed GMLAN modules, including HCM, are reported by the PCM on class 2. Data displaying, output controls and programming of the control modules connected to high speed GMLAN only, is performed through high speed GMLAN link. The GMLAN serial data communications circuit is in a linear topology. The following modules are connected to the link, in order from DLC to the end of the linear configuration: The energy storage control module (ESCM) - The starter/generator control module (SGCM) - The electro-hydraulic power steering (EHPS) - The hybrid control module (HCM) - The powertrain control module (PCM) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview Information Bus: Initial Inspection and Diagnostic Overview DIAGNOSTIC STARTING POINT - DATA COMMUNICATIONS Begin the system diagnosis with Diagnostic System Check - Vehicle. The Diagnostic System Check - Vehicle will provide the following information: - The identification of the control modules which are not communicating. - The identification of any stored diagnostic trouble codes (DTCs) and their status. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle The use of the Diagnostic System Check - Vehicle will identify the correct procedures to begin vehicle diagnosis. These must be performed before system DTC or symptom diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview > Page 8002 Information Bus: Symptom Related Diagnostic Procedures A Symptoms - Data Communications SYMPTOMS - DATA COMMUNICATIONS IMPORTANT: The following steps must be completed before using the symptom tables. 1. Perform the Diagnostic System Check - Vehicle, before using the symptom tables in order to verify that all of the following are true: - There are no DTCs set. - The control modules can communicate via the serial data links. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check - Vehicle 2. Review the system operation in order to familiarize yourself with the system functions. Refer to: - Data Link Communications Description and Operation - Body Control System Description and Operation Visual/Physical Inspection Inspect for aftermarket devices which could affect the operation of the systems. - Inspect the easily accessible or visible system components for obvious damage or conditions which could cause the symptom. Intermittent Faulty electrical connections or wiring may be the cause of intermittent conditions. Refer to Testing for Intermittent Conditions and Poor Connections. See: Testing and Inspection/Component Tests and General Diagnostics Symptom List Refer to a symptom diagnostic procedure from the following list in order to diagnose the symptom: Scan Tool Does Not Power Up - Scan Tool Does Not Communicate with Class 2 Device - Scan Tool Does Not Communicate with High Speed GMLAN Device (Diesel) Scan Tool Does Not Communicate with High Speed GMLAN Device (HP2) Scan Tool Does Not Communicate with Class 2 Device SCAN TOOL DOES NOT COMMUNICATE WITH CLASS 2 DEVICE CIRCUIT DESCRIPTION Modules connected to the class 2 serial data circuit monitor for serial data communications during normal vehicle operation. Operating information and commands are exchanged among the modules. Connecting a scan tool to the data link connector (DLC) allows communication with the modules for diagnostic purposes. DIAGNOSTIC AIDS The engine will not start when there is a total loss of class 2 serial data communication while the ignition is OFF. The following conditions will cause a total loss of class 2 serial data communication: A class 2 serial data circuit shorted to ground. - A class 2 serial data circuit shorted to voltage. - An internal condition within a module or connector on the class 2 serial data circuit, that causes a short to voltage or ground to the class 2 serial data circuit. TEST DESCRIPTION Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview > Page 8003 Step 1 - Step 11 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview > Page 8004 Step 12 - Step 19 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview > Page 8005 Step 20 - Step 27 The numbers below refer to the step numbers on the diagnostic table. 2. A partial malfunction in the class 2 serial data circuit uses a different procedure from a total malfunction of the class 2 serial data circuit. The following modules communicate on the class 2 serial data circuit: The audio amplifier (AMP), w/UQ7 and Y91 - The body control module (BCM) - The communication interface module (OnStar(R)), w/UE1 - The digital radio receiver (DRR), w/U2K - The driver door module (DDM) - The electronic brake control module (EBCM) - The generator battery control module (GBCM) - The HVAC control module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview > Page 8006 - The hybrid control module (HCM), w/HP2 - The inflatable restraint sensing and diagnostic module (SDM) - The instrument panel cluster (IPC) - The memory seat module (MSM), w/AN3 - The passenger door module (PDM) - The powertrain/engine control module (PCM/ECM) - The radio - The rear seat audio (RSA) controller, w/UK6 - The rear seat entertainment (RSE) assembly w/U42 - The rear wheel steering control module (RWSCM), w/NYS - The remote playback device - CD player (CDX), w/U1S - The transfer case shift control module (TCSCM), w/NP1/NP8 - The transmission control module (TCM), w/M74 3. The following DTCs may be retrieved with a history status, but are not the cause of the present condition. - U1300 - U1301 - U1305 6. A state of health DTC with a history status may be present along with a U1000 or U1255 code having a current status. This indicates that the malfunction occurred when the ignition was ON. 7. Data link connector terminals 2 and 5 provide the connection to the class 2 serial data circuit and the signal ground circuit respectively. 10. A poor connection at DLC terminal of the splice pack SP205 would cause this condition but will not set a DTC. 11. An open or a short in the class 2 serial data circuit between the DLC and splice pack SP205 will prevent the scan tool from communicating with any module. This condition will not set a DTC. 13. This test isolates the BCM class 2 serial data circuits. 16. The BCM detects that the ignition is ON and sends the appropriate power mode message to the other modules. Therefore, the BCM must remain connected to the DLC for any other module to communicate with the scan tool. This test isolates the splice pack SP207 serial data circuits. 21. This test isolates the rest of the splice pack SP205 serial data circuits. 25. If there are no current DTCs that begin with a "U", the communication malfunction has been repaired. 26. The communication malfunction may have prevented diagnosis of the customer complaint. Scan Tool Does Not Power Up SCAN TOOL DOES NOT POWER UP CIRCUIT DESCRIPTION The data link connector (DLC) is a standardized 16 cavity connector. Connector design and location is dictated by an industry wide standard, and is required to provide the following: Scan tool power battery positive voltage at terminal 16 - Scan tool power ground at terminal 4 - Common signal ground at terminal 5 The scan tool will power up with the ignition OFF. Some modules however, will not communicate unless the ignition is ON and the power mode master (PMM) module sends the appropriate power mode message. TEST DESCRIPTION Step 1 - Step 4 The number below refers to the step number on the diagnostic table. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Information Bus > Component Information > Testing and Inspection > Initial Inspection and Diagnostic Overview > Page 8007 4. If the battery positive voltage and ground circuits of the DLC are functioning properly, the malfunction must be due to the scan tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Diagnosis MALFUNCTION INDICATOR LAMP (MIL) DIAGNOSIS DIAGNOSTIC INSTRUCTIONS - Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. See: Testing and Inspection/Initial Inspection and Diagnostic Overview/Diagnostic System Check Vehicle - Review Strategy Based Diagnosis for an overview of the diagnostic approach. - Diagnostic Procedure Instructions provides an overview of each diagnostic category. CIRCUIT/SYSTEM DESCRIPTION The malfunction indicator lamp (MIL) is located on the instrument panel cluster (IPC). The MIL informs the driver that an emission system fault has occurred and that the engine control system requires service. The engine control module (ECM) performs a self test for the MIL lamp and its circuitry by commanding the MIL ON and OFF every time the engine is started. The ECM monitors the MIL control circuit for conditions that are incorrect for the commanded states of the MIL. Ignition voltage is supplied to the malfunction indicator lamp (MIL). The engine control module (ECM) turns the MIL ON by grounding the MIL control circuit. CIRCUIT/SYSTEM VERIFICATION The MIL should turn ON and OFF when commanded with a scan tool. CIRCUIT/SYSTEM TESTING 1. Ignition OFF, disconnect the harness connector at the instrument panel cluster (IPC). 2. Ignition ON, verify that a test lamp illuminates between the ignition circuit and ground. - If the test lamp does not illuminate, test the ignition circuit for a short to ground or an open/high resistance. If the circuit tests normal and the ignition circuit fuse is open, replace the IPC. 3. Connect a test lamp between the control circuit and the ignition circuit. 4. Command the MIL On and OFF with a scan tool. The test lamp should turn ON and OFF when changing between the commanded states. - If the test lamp is always ON, test the control circuit for a short to ground. If the circuit tests normal, replace the ECM. - If the test lamp is always OFF, test the control circuit for a short to voltage or an open/high resistance. If the circuit tests normal, replace the ECM. 5. If all circuits test normal, replace the IPC. REPAIR INSTRUCTIONS Perform the Diagnostic Repair Verification after completing the diagnostic procedure. See: Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/Verification Tests and Procedures Control Module References for ECM and IPC replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 8012 Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Always On MALFUNCTION INDICATOR LAMP (MIL) ALWAYS ON CIRCUIT DESCRIPTION Voltage is supplied directly to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. MIL OPERATION The MIL is located on the instrument panel cluster (IPC). MIL FUNCTION - The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. - The MIL illuminates during a bulb test and a system test. - A DTC will be stored if a MIL is requested by the diagnostic. MIL ILLUMINATION - The MIL will illuminate with ignition switch ON and the engine not running. - The MIL will turn OFF when the engine is started. - The MIL will remain ON if the self-diagnostic system has detected a malfunction. - The MIL may turn OFF if the malfunction is not present. - If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. - If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. DIAGNOSTIC AIDS If the problem is intermittent, refer to Testing for Intermittent Conditions and Poor Connections. See: Testing and Inspection/Component Tests and General Diagnostics TEST DESCRIPTION Step 1 - Step 7 The number below refers to the step number on the diagnostic table. 2. This step determines if the condition is with the MIL control circuit or the PCM. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 8013 Malfunction Indicator Lamp: Testing and Inspection Malfunction Indicator Lamp (MIL) Inoperative MALFUNCTION INDICATOR LAMP (MIL) INOPERATIVE CIRCUIT DESCRIPTION Voltage is supplied directly to the malfunction indicator lamp (MIL). The powertrain control module (PCM) turns the MIL ON by grounding the MIL control circuit. There should be a steady MIL with the ignition ON and the engine OFF. MIL OPERATION The MIL is located on the instrument panel cluster (IPC). MIL FUNCTION - The MIL informs the driver that a malfunction has occurred and the vehicle should be taken in for service as soon as possible. - The MIL illuminates during a bulb test and a system test. - A DTC will be stored if a MIL is requested by the PCM. MIL ILLUMINATION - The MIL will illuminate with ignition switch ON and the engine not running. - The MIL will turn OFF when the engine is started. - The MIL will remain ON if the self-diagnostic system has detected a malfunction. - The MIL may turn OFF if the malfunction is not present. - If the MIL is illuminated and then the engine stalls, the MIL will remain illuminated so long as the ignition switch is ON. - If the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition switch is cycled OFF, then ON. TEST DESCRIPTION Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 8014 Step 1 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Malfunction Indicator Lamp > Component Information > Testing and Inspection > Malfunction Indicator Lamp (MIL) Diagnosis > Page 8015 Step 14 - Step 16 The number below refers to the step number on the diagnostic table. 4. This step tests for a short to voltage on the MIL control circuit. With the fuse removed there should be no voltage on the MIL control circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations Top of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 8019 Manifold Absolute Pressure (MAP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 8020 Manifold Pressure/Vacuum Sensor: Service and Repair MANIFOLD ABSOLUTE PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the engine sight shield. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector (1). 3. Remove the MAP sensor (1). INSTALLATION PROCEDURE IMPORTANT: Lightly coat the MAP sensor seal with clean engine oil before installing the sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 8021 1. Install the MAP sensor (1). 2. Connect the MAP sensor electrical connector (1). 3. Install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 8033 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 8039 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON Transmission Mode Switch: All Technical Service Bulletins A/T Controls - DTC P1825/P182E or P1915/MIL ON INFORMATION Bulletin No.: 08-07-30-020E Date: March 03, 2010 Subject: Diagnostic Information for MIL Illuminated with DTC P1825, P182E or P1915 Found Current or as History Code in TCM, No PRNDL Display, Potential No Engine Crank Models: 2006-2009 Cadillac XLR-V 2006-2010 Cadillac STS-V 2007-2009 Cadillac SRX, XLR 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, STS 2008-2010 Cadillac CTS 2009-2010 Cadillac CTS-V 2006-2010 Chevrolet Corvette 2007-2010 Chevrolet Silverado 2008-2010 Chevrolet Suburban 2009-2010 Chevrolet Avalanche, Tahoe 2010 Chevrolet Camaro, Express 2007-2010 GMC Sierra, Yukon Denali, Yukon XL Denali 2008-2010 GMC Yukon XL 2009-2010 GMC Yukon 2010 GMC Savana 2008-2009 Pontiac G8 2008-2009 HUMMER H2 with 6L50 RPO MYB, 6L80 RPO MYC or 6L90 RPO MYD Automatic Transmission Supercede: This bulletin is being revised to remove the contact information in Step 4 under HISTORY DTC heading and update the models and model years. Please discard Corporate Bulletin Number 08-07-30-020D (Section 07 - Transmission). The following diagnostic information will aid the technician if the MIL is illuminated with DTC P1825, P182E or P1915. The DTC may be found current or as a history code in the TCM along with a no PRNDL display and the potential for no engine crank. 1. Use the Tech 2(R) to capture and record Freeze Frame/Failure Data for all DTCs set. Review the data to determine: - Vehicle speed, commanded gear, transmission temperature, throttle position, transmission ratio, transmission input and output speed sensor RPM when DTC set (use to attempt to duplicate failure) - IMS A/B/C/P and IMS state 2. Using the Tech 2(R), navigate to transmission data and scroll down to IMS. With the ignition ON and the engine OFF, observe the IMS A/B/C/P switch states and IMS states for each shift lever detent position. The chart following this list shows the correct states. 3. If all IMS readings are normal, monitor the PNP status in the engine data list during DTC setting to isolate a possible open or short to ground on the dedicated PNP signal between the TEHCM and the ECM. 4. If the vehicle is a 2009 CTS, STS or SRX, proceed to Step 5 in the History DTC section below before continuing with any additional evaluations. 5. If all IMS and PNP readings are normal, the condition is intermittent in nature and determination of the defective component will be made based on freeze frame data and previous repair history or warranty data. Proceed to History DTC below. If the readings are not as specified above, the fault is still active. Proceed to the Active DTC section below to determine which component(s) is defective. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 8045 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 8046 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 8047 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 8053 HISTORY DTC If all readings are normal per Step 2 above, capture and record Freeze Frame/Failure Data, clear DTCs and attempt to duplicate the fail conditions. 1. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of "HLLL" and the IMS state of "Neutral/Drive 6", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM or low value, Engine Torque >30 Nm. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Determine if the shift lever can be hung-up between Neutral and Drive 6. If so, there may be excessive drag in the system. - Move the shift lever through each detent position, ensuring positive detent feel. If any concern is noted, remove the transmission oil pan and repeat the shift lever movement. Ensure that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. If the vehicle has been returned to the dealer with this Freeze Frame bit codes after repairs, contact the person(s) below in Step 4. 2. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHLH" and IMS state of "Blank", complete the following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS >0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 3. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of "HHHL" and IMS state of "Invalid", complete the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 8054 following: Important Typical Freeze Frame operating conditions: ISS >500 RPM, OSS =0 RPM, Vehicle Speed >0 MPH - Replace the Internal Mode Switch (IMS) if the Vehicle Build Date is prior to March 31, 2007. If not, continue with this bulletin. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 4. If the DTC does not reset and original freeze frame data reports an IMS A/B/C/P code of LLLH, LLHL, LHLL or PNP Switch is P/N in all gears, failure is a short to ground condition and is most likely in the Control Solenoid (with body and TCM) Valve Assembly (TEHCM), complete the following: - Obtain the following data and contact the PQC as the Control Solenoid (with body and TCM) Valve Assembly (TEHCM) is currently on restriction. The PQC will engage engineering for additional diagnostic support. - Capture or record freeze frame or fail records if a DTC is set. - Document the diagnostics completed leading to the decision to replace the control solenoid valve and transmission control module. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. - Update the TCM calibration file to the latest released on TIS2WEB. - After completing the above steps, test drive the vehicle, moving the shifter through all detent positions. If no issues are found, ensure all DTC codes are cleared from history and return the vehicle to the customer. 5. If the DTC does not reset and the original freeze frame data reports an IMS A/B/C/P code of LLLH and the vehicle is a 2009 CTS, STS or SRX, the condition is most likely caused by an incorrectly adjusted shift linkage. Important Typical Freeze Frame operating conditions: ISS and OSS both =0 RPM or ISS and OSS both >0 RPM and/or vehicle is in some drive gear (transmission gear ratio matches one of the forward gear ratios). - Using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. - Perform the Shift Control Linkage Adjustment as detailed in SI. - After adjustment, using a Tech 2(R), pull backward firmly/hard on the shifter to verify that the IMS A/B/C/P code remains at the correct HLLH reading. If it toggles to LLLH or LLLL, the linkage is not adjusted properly. Repeat the adjustment. - If no shifter adjustment issues are found, return to Step 4. ACTIVE DTC/FAULT ACTIVE If the fault is still active per Step 2 above, or after a test drive, continue with component tests defined below: 1. Ensure proper system performance: - Inspect the shift cable for incorrect routing, kinks, severe bends and/or a damaged or twisted rubber boot at the transmission end of the cable. - Check and ensure proper cable adjustment. - Remove the transmission oil pan and repeat the shift lever movement, ensuring that the detent spring roller moves to the bottom of the valley on the detent plate for each shift lever position. Inspect the detent spring roller and ensure it is centered on the detent plate. The spring arms should not be rubbing on either the IMS arm or detent plate. 2. Disconnect the IMS connector at the Control Solenoid (w/body and TCM) Valve Assembly (TEHCM). With the Tech 2(R) connected and the ignition ON and engine OFF, the Tech 2(R) should report all IMS states A/B/C/P as high (H) and the PNP Switch should display "In Gear". - If any of the A/B/C/P circuits displays low (L), the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If the PNP Switch Circuit (Tech 2(R) Engine data) displays "Park/Neutral", a short exists in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal pin 3 (refer to Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Other Service Bulletins for Oil Pressure Sensor: > 08-07-30-020E > Mar > 10 > A/T Controls - DTC P1825/P182E or P1915/MIL ON > Page 8055 Automatic Transmission Inline 16-Way Connector End View in SI) and the valve body assembly. If continuity exists, a short to ground is present in the TEHCM and it should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. If there is no continuity, the problem is outside the transmission. Important The bad bit should be consistent with the bad bit identified in Step 2. 3. Connect a 3-amp fused jumper wire between the common pin (Pin A) and pins B, C, D & F in the TEHCM IMS connector (refer to Automatic Transmission Internal Connector End Views in SI). As each circuit (B, C, D & F) is grounded with ignition ON, engine OFF, the Tech 2(R) should display low (L) for the IMS bit. - If any of the A/B/C/P circuits displays high (H) when grounded, the TEHCM is faulty and should be replaced. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. - If Pin F in the PNP Switch Circuit (Tech 2(R) Engine data) displays "In Gear" when grounded, an open exist in the TEHCM or the wiring connecting it to the ECM. Disconnect the transmission pass-through connector. Check for continuity between the pass-through P/N Signal Pin 3 (refer to Automatic Transmission Inline 16-Way Connector End View in SI) and TEHCM IMS connection Pin F (refer to Automatic Transmission Internal Connector End Views in SI). If there is continuity, the problem is outside the transmission. If there is no continuity, replace the TEHCM. If the Vehicle Build Date is prior to March 31, 2007, also replace the IMS. Important The bad bit should be consistent with the bad bit identified in Step 2. 4. If the two tests above indicate correct TEHCM operation and the condition still exists, the IMS is faulty and should be replaced. Important There is no calibration update for vehicles equipped with a 6L90 RPO MYD transmission or 2008 model year vehicles. These calibrations were updated before production began. 5. Update the TCM calibration file to the latest released on TIS2WEB. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 8056 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 8057 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Locations Heated Oxygen Sensors (HO2S) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8063 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8064 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8065 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8066 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8067 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8068 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8069 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8070 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8071 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8072 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8073 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8074 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8075 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8076 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8077 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8078 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8079 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8080 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8081 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8082 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8083 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8084 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8085 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8086 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8087 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8088 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8089 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8090 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8091 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8092 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8093 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8094 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8095 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8096 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8097 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8098 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8099 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8100 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8101 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8102 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8103 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8104 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8105 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8106 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8107 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8108 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8109 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8110 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8111 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8112 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8113 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8114 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8115 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8116 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8117 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8118 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8119 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8120 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8121 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8122 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8123 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8124 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8125 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8126 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8127 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8128 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8129 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8130 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8131 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8132 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8133 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8134 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8135 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8136 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8137 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8138 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8139 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8140 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8141 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8142 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8143 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8144 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8145 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8146 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8147 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8148 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8149 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8150 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8151 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8152 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8153 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8154 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8155 Oxygen Sensor: Connector Views Heated Oxygen Sensor (HO2S) Bank 1 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8156 Heated Oxygen Sensor (HO2S) Bank 1 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8157 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8158 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice > Page 8161 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If necessary, unbolt the front propeller shaft from the front differential. Refer to Front Propeller Shaft Replacement. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. Remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (1). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (1). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8164 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (1). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (1). 5. Install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If necessary, bolt the front propeller shaft to the front differential. Refer to Front Propeller Shaft Replacement. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8165 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If equipped, disconnect the fuel composition sensor electrical connector. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a fuel composition sensor, remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (2). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (2). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8166 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (2). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (2). 5. If equipped with a fuel composition sensor, install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If equipped, connect the fuel composition sensor electrical connector. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8167 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. 3. Remove the heated oxygen sensor (HO2S) from the clips NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8168 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S to the clips 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8169 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 3. Remove the heated oxygen sensor (HO2S) connector clip from the frame. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 8170 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S connector clip to the frame. 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: Customer Interest Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: Customer Interest Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 8184 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Body Control Module: All Technical Service Bulletins Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module Body Control Module: All Technical Service Bulletins Body Controls - Unable To Reprogram Body Control Module INFORMATION Bulletin No.: 09-08-47-001A Date: June 14, 2010 Subject: Unable to Reprogram Body Control Module (BCM), BCM Reprogramming Did Not Complete - Revised Reprogramming Instructions Models: 2006-2010 Buick Lucerne 2006-2010 Cadillac DTS 2007-2010 Cadillac Escalade, Escalade ESV, Escalade EXT, SRX 2008-2010 Cadillac CTS 2010 Cadillac CTS Wagon 2010 Chevrolet Camaro 2006-2007 Chevrolet Monte Carlo 2006-2010 Chevrolet Impala 2007-2010 Chevrolet Avalanche, Equinox, Silverado, Suburban, Tahoe 2008-2010 Chevrolet Express 2009-2010 Chevrolet Traverse 2007-2010 GMC Acadia, Sierra, Yukon, Yukon XL, Yukon Denali, Yukon Denali XL 2008-2010 GMC Savana 2010 GMC Terrain 2007-2009 Pontiac Torrent 2008-2009 Pontiac G8 2008-2009 HUMMER H2 2007-2009 Saturn OUTLOOK 2008-2009 Saturn VUE Refer to GMVIS Supercede: This bulletin is being revised to update the models and the model years. Please discard Corporate Bulletin Number 09-08-47-001 (Section 08 - Body and Accessories). Some technicians may experience an unsuccessful body control module (BCM) reprogramming event, when choosing the Reprogram ECU selection on the Service Programming System (SPS). The technician may also notice that when attempting to reprogram the BCM again after this incident has occurred, the BCM may not complete the programming event. This condition may be caused by the following: - A reprogramming event that was interrupted due to a lack of communication between the vehicle and the TIS2WEB terminal. - The vehicle experienced low system voltage during the reprogramming event. Important Do not replace the BCM for this condition. SPS Programming Process Selection Perform this procedure first. 1. If reprogramming has failed during the initial reprogramming event, back out of the SPS application completely. 2. Re-select SPS from the TIS2WEB terminal application. 3. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 4. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-47-001A > Jun > 10 > Body Controls - Unable To Reprogram Body Control Module > Page 8194 During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. BCM Still Fails to Reprogram If the BCM still fails to reprogram perform this procedure: 1. Turn OFF the ignition, and remove the key. 2. Remove the fuses that power up the following modules/components for a minimum of 2 minutes: - BCM - EBCM - ECM - IS LPS (located in the left IP fusebox) - TCM 3. Open and close the driver door. Allow enough time for the retained accessory power (RAP) to turn OFF. 4. Reinstall the fuses. 5. When selecting the Programming Process , choose Replace and Program ECU , even though a new BCM is NOT being installed. 6. Reprogram the BCM using the Service Programming System (SPS) with the latest calibration available on TIS2WEB. Refer to the SPS procedures in SI. When using a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. When using a Tech 2(R) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 Volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 Body Control Module: All Technical Service Bulletins Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 TECHNICAL Bulletin No.: 06-06-03-013D Date: September 30, 2009 Subject: Intermittent Low Battery Voltage, Engine Will Not Crank, Engine Cranks But Will Not Start, Charging System Light On, Service Battery Charging System Message Displayed, Headlamp Flicker or Dimming, DTC B1516 Set (Reprogram BCM) Models: 2007 Cadillac Escalade Models 2007 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007 GMC Sierra, Yukon Models 1500 and 2500 Series Vehicles Only Assembly Plants Breakpoint for Changed Calibration from February 5, 2007 through February 9, 2007 Supercede: This bulletin is being revised to add additional symptoms. Please discard Corporate Bulletin Number 06-06-03-013C (Section 06 - Engine/Propulsion System). Condition Some customers may comment of one or more of the following conditions: - Charging system light on. - Service battery charging system message displayed. - Intermittent low battery voltage. - Vehicle will not crank. - Vehicle cranks but will not start. - Diagnostic Trouble Code (DTC) B1516 - Battery Current Sensor Performance Signal Invalid. - Headlamp flicker or dimming. Cause This condition may be caused by the Body Control Module (BCM) calibrations that create a lower battery state of charge than intended in low electrical power usage modes. Correction Important Verify that the 12-volt battery has a battery charge of 12 to 16 volts. The battery must be able to maintain a charge during programming. Only use approved Midtronics 165-PCS charger or equivalent to maintain proper battery voltage during programming. The J2534 MDI will reprogram the modules in less time than the Tech 2(R) scan tool. A revised calibration has been developed to address these conditions. Technicians are to reprogram the BCM using the latest software available on TIS2WEB. Refer to the Body Control Module Programming and Setup procedure in SI. Warranty Information For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-03-013D > Sep > 09 > Electrical - Low Battery Voltage/Warning Lamp/ DTC B1516 > Page 8199 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation Heat Shield: All Technical Service Bulletins Exhaust - Muffler Heat Shield Buzz During Operation TECHNICAL Bulletin No.: 07-06-05-001I Date: March 22, 2011 Subject: V8 Engines - Muffler Heat Shield Buzz During Vehicle Operation (Perform Repair as Outlined) or Exhaust Pinging/Popping/Snapping Noise During Cool Down, at Idle, or After Vehicle is Shut Off (Normal Characteristic - No Repair Required) Models: 2007-2011 Cadillac Escalade, Escalade Hybrid, Escalade ESV, Escalade EXT 2007-2011 Chevrolet Avalanche, Silverado, Suburban, Tahoe, Tahoe Hybrid 2007-2011 GMC Sierra, Sierra Denali, Yukon, Yukon Hybrid, Yukon XL, Yukon Denali, Yukon Denali XL Equipped with the following V8 Engines: - 4.8L (RPO LY2, L20) - 5.3L (RPOs LC9, LH6, LMG, LY5) - 6.0L (RPOs LFA, LY6, LZ1, L96) - 6.2L (RPOs L9H, L92, L94) Please Refer to GWM/IVH Supercede: This bulletin is being revised to update the Condition, Cause and Correction information. Please discard Corporate Bulletin Number 07-06-05-001H (Section 06 Engine/Propulsion System). Condition 1 Some customers may comment on a pinging/popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause 1 Exhaust Pinging/Popping/Snapping As the exhaust system cools, the muffler shell and muffler internals contract at different rates. Pinging/popping/snapping noise from the exhaust system during cool down is a normal condition. Correction 1 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Exhaust Pinging/Popping/Snapping Noise (Normal) This condition is normal to the muffler design and does not indicate poor quality or part failure. No repairs are necessary for this condition. Replacing the muffler heat shield straps will NOT eliminate this noise. A new muffler may sound quiet for this condition, but as it ages may again produce this same condition. Condition 2 Some customers may also comment on a buzz noise coming from the muffler during vehicle operation. Cause 2 Muffler Heat Shield Buzz If the muffler heat shield straps are loose, the heat shield may be free to buzz during vehicle operation. Correction 2 DO NOT REPLACE THE EXHAUST SYSTEM COMPONENTS. Muffler Heat Shield Buzz (Perform Repair) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 8205 Confirm the origin of the buzz by shimming (use metal shims) the straps tight and rerunning the vehicle. If the buzz concern is gone, then it is caused by the loose shield. Using the following procedure, install new straps to secure the heat shield to the muffler. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 2. Mark the position of the heat shield (1) and straps (2) on the muffler shell. 3. Cut and remove the heat shield straps using tin snips along the muffler shell seam (1), and remove the shield from the muffler. 4. Position the heat shield to the muffler and install new heat shield straps on the muffler shell in the positions marked prior to removal. Important Do Not position the strap screw heads directly across from the propeller shaft. Ensure the strap heads are positioned below the midpoint of the muffler. 5. Position the strap screw heads (1) on the inboard side of the muffler. Ensure that the strap screw heads (1) are below the midpoint of the muffler. Tighten Tighten the straps to 4 Nm (35‹›lb‹›in). 6. Cut off the excess strap material and ensure that the ends (2) are flat against the muffler. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 8206 Warranty Information For vehicles with Exhaust Pinging/Popping/Snapping Noise, NO repairs are necessary as it is a normal condition. For vehicles repaired for a muffler buzz, use the labor operation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling Heat Shield: All Technical Service Bulletins Exhaust System - Popping/Snapping Noise When Hot/Idling Bulletin No.: 03-06-05-008D Date: March 05, 2007 TECHNICAL Subject: Exhaust Popping/Snapping Noise When Vehicle is Hot, at Idle, or Immediately After Vehicle is Shut Off (Replace Muffler Heat Shield) Models: 2002-2006 Cadillac Escalade, Escalade EXT 2003-2006 Cadillac Escalade ESV 2002-2006 Chevrolet Avalanche, Suburban, Tahoe, Silverado, Silverado HD 2007 Chevrolet Silverado Classic, Silverado HD Classic 2002-2006 GMC Sierra, Sierra HD , Yukon, Yukon Denali, Yukon Denali XL 2007 GMC Sierra Classic, Sierra HD Classic 2003-2006 HUMMER H2 with 4.8L, 5.3L, 6.0L or 8.1L Gasoline Engine (VINs V, B, T, Z, N, V, G - RPOs LR4, L33, LM7, L59, LQ9, LQ4, L18) Supercede: This bulletin is being revised to add the 2006 and 2007 (Classic Only) model years and the 5.3L (L33) engine. Please discard Corporate Bulletin Number 03-06-05-008C (Section 06 Engine/Propulsion System). Condition Some customers may comment on a popping/snapping noise from underneath the vehicle at idle or immediately after the vehicle is shut off. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The noise may be intermittent depending on the outside temperature and or temperature of the exhaust system at the time of testing. Cause As the exhaust system warms and cools, the muffler and the muffler heat shield expand and contract at different rates and may cause a popping and/or snapping noise. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The customer should be made aware that this service procedure is designed to reduce but not eliminate all exhaust system popping and snapping during cool down. Correction Follow the service procedure below to correct this condition. Some popping/snapping noise from the exhaust system during cool down is a normal condition. The customer should be made aware that this service procedure is designed to reduce but not eliminate all exhaust system popping and snapping during cool down. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in General Information. In order to avoid being burned, do not service the exhaust system while it is still hot. Service the system when it is cool. Always wear protective goggles and gloves when removing exhaust parts as falling rust and sharp edges could result in serious personal injury. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8211 Remove the nuts securing the muffler to the catalytic converter. On 6.0L and 8.1L equipped vehicles only, loosen the exhaust pipe clamp. Do not use oil base lubricants on the rubber exhaust hangers. Apply a soapy solution to the exhaust pipe hanger rods in order to ease the removal of the exhaust hangers. Pry the exhaust hangers free from the exhaust pipe hanger rods. It is not necessary to remove the muffler from the vehicle to replace the muffler heat shield. Reposition the muffler to gain access to the muffler heat shield. Use extreme caution not to damage the muffler when removing the heat shield from the muffler. Using an air-powered hack saw blade, or equivalent, cut off the existing muffler heat shield just as the heat shield rises off of the muffler. See the illustration above. Remove the heat shield from the muffler. Hammer flush the remaining heat shield to the muffler. The new heat shield should not come in contact with the remaining muffler heat shield. The new heat shield should not come in contact with the horizontal lock seam on the muffler. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8212 Install the new heat shield (see parts list below) onto the muffler as shown above. Install three straps, P/N 10391259, so that the strap screw head will be located on top of the muffler. Tighten Tighten the strap screw to 4 N.m (35 lb in). Cut off the excess strap material and bend the strap over the strap screw head as indicated above. Remove the exhaust pipe clamp. ONLY 6.0L and 8.1L equipped vehicles require a new exhaust pipe clamp, P/N 15103174. On 6.0L and 8.1L equipped vehicles only, install a new exhaust pipe clamp, P/N 15103174, on the exhaust pipe. Reposition the muffler in the correct position. Slide the muffler forward into position, aligning the studs with the rear of the catalytic converter. Install the nuts securing the muffler to the catalytic converter, but DO NOT tighten at this time. Apply a soapy solution to the following areas in order to ease the installation of the hangers. The inner diameter of the exhaust pipe hanger The exhaust pipe hanger rod Press the exhaust pipe hangers over the exhaust pipe hanger rods. Tighten Tighten the muffler nuts by hand until each contacts the metal flange. Tighten the muffler nuts to 45 N.m (33 lb ft). On 6.0L and 8.1L equipped vehicles only, tighten the exhaust clamp to 50 N.m (36 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8213 Lower the vehicle. Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8214 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 8220 Confirm the origin of the buzz by shimming (use metal shims) the straps tight and rerunning the vehicle. If the buzz concern is gone, then it is caused by the loose shield. Using the following procedure, install new straps to secure the heat shield to the muffler. 1. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 2. Mark the position of the heat shield (1) and straps (2) on the muffler shell. 3. Cut and remove the heat shield straps using tin snips along the muffler shell seam (1), and remove the shield from the muffler. 4. Position the heat shield to the muffler and install new heat shield straps on the muffler shell in the positions marked prior to removal. Important Do Not position the strap screw heads directly across from the propeller shaft. Ensure the strap heads are positioned below the midpoint of the muffler. 5. Position the strap screw heads (1) on the inboard side of the muffler. Ensure that the strap screw heads (1) are below the midpoint of the muffler. Tighten Tighten the straps to 4 Nm (35‹›lb‹›in). 6. Cut off the excess strap material and ensure that the ends (2) are flat against the muffler. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 07-06-05-001I > Mar > 11 > Exhaust - Muffler Heat Shield Buzz During Operation > Page 8221 Warranty Information For vehicles with Exhaust Pinging/Popping/Snapping Noise, NO repairs are necessary as it is a normal condition. For vehicles repaired for a muffler buzz, use the labor operation. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8226 Remove the nuts securing the muffler to the catalytic converter. On 6.0L and 8.1L equipped vehicles only, loosen the exhaust pipe clamp. Do not use oil base lubricants on the rubber exhaust hangers. Apply a soapy solution to the exhaust pipe hanger rods in order to ease the removal of the exhaust hangers. Pry the exhaust hangers free from the exhaust pipe hanger rods. It is not necessary to remove the muffler from the vehicle to replace the muffler heat shield. Reposition the muffler to gain access to the muffler heat shield. Use extreme caution not to damage the muffler when removing the heat shield from the muffler. Using an air-powered hack saw blade, or equivalent, cut off the existing muffler heat shield just as the heat shield rises off of the muffler. See the illustration above. Remove the heat shield from the muffler. Hammer flush the remaining heat shield to the muffler. The new heat shield should not come in contact with the remaining muffler heat shield. The new heat shield should not come in contact with the horizontal lock seam on the muffler. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8227 Install the new heat shield (see parts list below) onto the muffler as shown above. Install three straps, P/N 10391259, so that the strap screw head will be located on top of the muffler. Tighten Tighten the strap screw to 4 N.m (35 lb in). Cut off the excess strap material and bend the strap over the strap screw head as indicated above. Remove the exhaust pipe clamp. ONLY 6.0L and 8.1L equipped vehicles require a new exhaust pipe clamp, P/N 15103174. On 6.0L and 8.1L equipped vehicles only, install a new exhaust pipe clamp, P/N 15103174, on the exhaust pipe. Reposition the muffler in the correct position. Slide the muffler forward into position, aligning the studs with the rear of the catalytic converter. Install the nuts securing the muffler to the catalytic converter, but DO NOT tighten at this time. Apply a soapy solution to the following areas in order to ease the installation of the hangers. The inner diameter of the exhaust pipe hanger The exhaust pipe hanger rod Press the exhaust pipe hangers over the exhaust pipe hanger rods. Tighten Tighten the muffler nuts by hand until each contacts the metal flange. Tighten the muffler nuts to 45 N.m (33 lb ft). On 6.0L and 8.1L equipped vehicles only, tighten the exhaust clamp to 50 N.m (36 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8228 Lower the vehicle. Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Body Control Module: > 03-06-05-008D > Mar > 07 > Exhaust System - Popping/Snapping Noise When Hot/Idling > Page 8229 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8232 Body Control Module: Diagrams Body Control Module (BCM) - C2 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8233 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8234 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8235 Body Control Module: Diagrams Body Control Module (BCM) - C4 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8236 Body Control Module (BCM) - C4 (Pin B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8237 Body Control Module: Diagrams Body Control Module (BCM) - C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8238 Body Control Module (BCM) - C2 (Pin A1 To B9) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8239 Body Control Module (BCM) - C2 (Pin B10 To B12) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8240 Body Control Module (BCM) - C3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8241 Body Control Module (BCM) - C4 (Pin A1 To B10) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8242 Body Control Module (BCM) - C4 (Pin B12) Body Control Module (BCM) - C5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Body Control Module (BCM) - C1 > Page 8243 Body Control Module (BCM) - C6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 8244 Body Control Module: Service and Repair BODY CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. CAUTION: Refer to Battery Disconnect Caution. Disconnect the negative battery cables. 2. Remove the knee bolster. 3. Disconnect the brown connector. 4. Disconnect all other connectors (1). 5. Remove the body control module (BCM) from the sliding bracket. INSTALLATION PROCEDURE 1. Slide the BCM onto the bracket. 2. Connect all the connectors (1) except the brown connector. 3. Connect the brown connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Body Control Module > Component Information > Diagrams > Page 8245 4. Install the knee bolster. 5. Connect the negative battery cables. 6. Reprogram the BCM. Refer to Body Control Module Programming and Setup. 7. Perform the Passlock Learn Procedure. Refer to Programming Theft Deterrent System Components. 8. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Electronic Throttle Control Module > Component Information > Locations Throttle Actuator Control (TAC) Module Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 Throttle Actuator Control (TAC) Module C1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Throttle Actuator Control (TAC) Module C1 > Page 8251 Throttle Actuator Control (TAC) Module C2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 8252 Electronic Throttle Control Module: Service and Repair ELECTRONIC THROTTLE ACTUATOR CONTROL MODULE REPLACEMENT REMOVAL PROCEDURE 1. Disconnect the instrument panel (I/P) harness electrical connector (2). 2. Release the red connector position assurance (CPA) retainer. 3. Disconnect the engine wiring harness electrical connector (1). 4. Remove the throttle actuator control (TAC) module nuts. 5. Remove the TAC module. INSTALLATION PROCEDURE 1. Install the TAC module. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Electronic Throttle Control Module > Component Information > Diagrams > Page 8253 NOTE: Refer to Fastener Notice. 2. Install the TAC module nuts. Tighten the nuts to 9 N.m (80 lb in). 3. Connect the engine wiring harness electrical connector (1). 4. Install the red CPA retainer. 5. Connect the I/P harness electrical connector (2). 6. Refer to Control Module References for programming and setup information. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: Customer Interest Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: Customer Interest Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Customer Interest: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 8266 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-06-04-054B > Nov > 10 > Engine Controls - Aftermarket Accessory Usage Engine Control Module: All Technical Service Bulletins Engine Controls - Aftermarket Accessory Usage INFORMATION Bulletin No.: 04-06-04-054B Date: November 18, 2010 Subject: Info - Non-GM Parts and Accessories (Aftermarket) Models: 2011 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add model years and update to the new U.S. Fixed Operation Manager (FOM) and Canada Warranty Manager (WM) names. Please discard Corporate Bulletin Number 04-06-04-054A (Section 06 - Engine/Propulsion System). The recent rise and expansion of companies selling non-GM parts and accessories has made it necessary to issue this reminder to dealers regarding GM's policy on the use and installation of these aftermarket components. When a dealer is performing a repair under the New Vehicle Limited Warranty, they are required to use only genuine GM or GM-approved parts and accessories. This applies to all warranty repairs, special policy repairs or any repairs paid for by GM. Parts and accessories advertised as being "the same" as parts manufactured by GM, but not sold through GM, do not qualify for use in warranty repairs, special policy repairs or any repairs paid for by GM. During a warranty repair, if a GM original equipment part is not available through GM Customer Care and Aftersales (GM CC&A;), ACDelco(R) distributors, other GM dealers or approved sources, the dealer is to obtain comparable, non-GM parts and clearly indicate, in detail, on the repair order the circumstances surrounding why non-GM parts were used. The dealer must give customers written notice, prior to the sale or service, that such parts or accessories are not marketed or warranted by General Motors. It should also be noted that dealers modifying new vehicles and installing equipment, parts and accessories obtained from sources not authorized by GM are responsible for complying with the National Traffic and Motor Vehicle Safety Act. Certain non-approved parts or assemblies, installed by the dealer or its agent not authorized by GM, may result in a change to the vehicle's design characteristics and may affect the vehicle's ability to conform to federal law. Dealers must fully understand that non-GM approved parts may not have been validated, tested or certified for use. This puts the dealer at risk for potential liability in the event of a part or vehicle failure. If a GM part failure occurs as the result of the installation or use of a non-GM approved part, the warranty will not be honored. A good example of non-authorized modification of vehicles is the result of an ever increasing supply of aftermarket devices available to the customer, which claim to increase the horsepower and torque of the Duramax(TM) Diesel Engines. These include the addition of, but are not limited to one or more of the following modifications: - Propane injection - Nitrous oxide injection - Additional modules (black boxes) that connect to the vehicle wiring systems - Revised engine calibrations downloaded for the engine control module - Calibration modules which connect to the vehicle diagnostic connector - Modification to the engine turbocharger waste gate Although the installation of these devices, or modification of vehicle components, can increase engine horsepower and torque, they may also negatively affect the engine emissions, reliability and/or durability. In addition, other powertrain components, such as transmissions, universal joints, drive shafts, and front/rear axle components, can be stressed beyond design safety limits by the installation of these devices. General Motors does not support or endorse the use of devices or modifications that, when installed, increase the engine horsepower and torque. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Refer to the latest version of Bulletin 09-06-04-026 (V8 Gas Engines) or 06-06-01-007 (Duramax(TM) Diesel Engines) for more information on dealer requirements for calibration verification. These same policies apply as they relate to the use of non-GM accessories. Damage or failure from the use or installation of a non-GM accessory will not be covered under warranty. Failure resulting from the alteration or modification of the vehicle, including the cutting, welding or disconnecting of the vehicle's original equipment parts and components will void the warranty. Additionally, dealers will NOT be reimbursed or compensated by GM in the event of any legal inquiry at either the local, state or federal level that Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-06-04-054B > Nov > 10 > Engine Controls - Aftermarket Accessory Usage > Page 8272 results from the alteration or modification of a vehicle using non-GM approved parts or accessories. Dealers should be especially cautious of accessory companies that claim the installation of their product will not void the factory warranty. Many times these companies have even given direction on how to quickly disassemble the accessory in an attempt to preclude the manufacturer from finding out that is has been installed. Any suspect repairs should be reviewed by the Fixed Operations Manager (FOM), and in Canada by the Warranty Manager (WM) for appropriate repair direction. If it is decided that a goodwill repair is to be made on the vehicle, even with the installation of such non-GM approved components, the customer is to be made aware of General Motors position on this issue and is to sign the appropriate goodwill documentation required by General Motors. It is imperative for dealers to understand that by installing such devices, they are jeopardizing not only the warranty coverage, but also the performance and reliability of the customer's vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026C Date: August 13, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2011 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to the latest version of Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine , transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 8277 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. Note All pictures must be sent as a.jpg file. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 8278 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026C > Aug > 10 > Engine/Transmission - Aftermarket Calibrations > Page 8279 Note All pictures must be sent as a.jpg file. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations Engine Control Module: All Technical Service Bulletins Engine/Transmission - Aftermarket Calibrations INFORMATION Bulletin No.: 09-06-04-026B Date: April 07, 2010 Subject: Identifying Non-GM (Aftermarket) Engine and Transmission Calibrations for V8 Gas Engines Using Tech 2(R) or Global Diagnostic System (GDS) Models: 2006-2010 GM Passenger Cars and Light Duty Trucks (Excluding Saab 9-7X) 2006-2009 HUMMER H2 2006-2010 HUMMER H3 Equipped with V8 Gas Powered Engines Only Attention: This bulletin applies to V8 gas powered engines ONLY. For Duramax(TM) diesel powered engines, refer to Corporate Bulletin Number 08-06-04-006G. Supercede: This bulletin is being revised to add the 2010 model year and information about retrieving calibrations on a Global A vehicle. Please discard Corporate Bulletin Number 09-06-04-026A (Section 06 - Engine/Propulsion System). General Motors is identifying an increasing number of engine, transmission and catalytic converter part failures that are the result of non-GM (aftermarket) engine and transmission control calibrations being used. When alteration to the GM-released engine or transmission control calibrations occurs, it subjects powertrain and driveline components (engine, transmission, transfer case, driveshaft and rear axle) to stresses that were not tested by General Motors. It is because of these unknown stresses, and the potential to alter reliability, durability and emissions performance, that GM has adopted a policy that prevents any UNAUTHORIZED dealer warranty claim submissions to any remaining warranty coverage, to the powertrain and driveline components whenever the presence of a non-GM (aftermarket) calibration is confirmed - even if the non-GM control module calibration is subsequently removed. Warranty coverage is based on the equipment and calibrations that were released on the vehicle at time of sale, or subsequently updated by GM. That's because GM testing and validation matches the calibration to a host of criteria that is essential to assure reliability, durability and emissions performance over the life of the warranty coverage and beyond. Stresses resulting from calibrations different from those tested and released by GM can damage or weaken components, leading to poor performance and or shortened life. Additionally, non-GM (aftermarket) issued engine control modifications often do not meet the same emissions performance standards as GM issued calibrations. Depending on state statutes, individuals who install engine control module calibrations that put the vehicle outside the parameters of emissions certification standards may be subject to fines and/or penalties. This bulletin outlines a procedure to identify the presence of non-GM (aftermarket) calibrations. GM recommends performing this check whenever a hard part failure is seen on internal engine or transmission components, or before an engine assembly or transmission assembly is being replaced under warranty. It is also recommended that the engine calibration verification procedure be performed whenever diagnostics indicate that catalytic converter replacement is indicated. The PQC has a process to confirm the ECM/PCM calibration is GM issued. The PQC will require a picture of the engine calibration verification screen, as outlined in this bulletin, before authorizing any V8 gas powered engine replacement. If a non-GM calibration is found and verification has taken place through GM, the remaining powertrain and driveline warranty will be blocked and notated in GMVIS and the dealership will be notified. This block prevents any UNAUTHORIZED warranty claim submission. 1. Connect the Tech 2(R) to the vehicle. 2. Go to: Diagnostics and build the vehicle. 3. Select: Powertrain. 4. Select: Engine. 5. *Select: Engine Control Module or PCM. 6. *Select: Module ID Information or I/M Information System if the Module ID Information selection is not available. 7. *If "I/M information System" was selected, it may be necessary to select "Vehicle Information" in order to display the calibration information. ‹› If the CVN information is displayed as "N/A", it will be necessary to contact the TCSC to obtain the CVN information. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 8284 8. Take a CLEAR digital picture of the Tech 2(R) Vehicle Information screen showing the engine Calibration IDs and Verification Numbers as shown above. Retain the printout information and the Tech 2(R) screen photograph with the repair order. 9. E-mail a copy of the picture to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 10. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 11. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Tech 2(R) Displaying All Zeroes for the Verification Numbers on the Calibration ID and Verification Number Screen If the Tech 2(R) that you are using displays all zeroes for the Verification Numbers as shown, then perform the following steps: 1. Update the Tech 2(R) with the latest software from TIS2WEB. 2. Turn OFF the ignition for 90 seconds. 3. Connect the Tech 2(R) to the vehicle. 4. Turn ON the ignition, and build the vehicle. Observe the Tech 2(R) Calibration ID and Verification Number screen for proper operation. ‹› If the Tech 2(R) screen still does not display properly, then turn OFF the ignition for 90 seconds again. Turn ON the ignition and observe the same screen for proper operation. Retrieving Calibrations From a Global A Vehicle This information applies to the 2010 Camaro and is typical of the procedure that will be used on Global A vehicles. 1. Turn OFF the ignition. 2. Connect the MDI to the Data Link Connector (DLC) of the vehicle. Note Use the USB port to make the following MDI connection: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 8285 3. Connect the MDI to a PC or laptop that has been downloaded with the GDS application from TIS2WEB. Note At least one Diagnostic Package must be installed on the PC to perform diagnostics. If GDS was just installed, select: Add New Diagnostic Package and then select: a Diagnostic Package to download. 4. Click: On the GDS icon on the PC. 5. The Login Page will appear. 6. Select: A User. 7. The ID Screen will appear. 8. Select: The serial number of the MDI being used. 9. Select: Connect. 10. Verify that the system status is ready by observing for a flashing PC light icon on the MDI. 11. Select: Make, Model and Model Year, in order to build the vehicle. 12. Click: Upload VIN, to allow the VIN to be reported to the PC. 13. At: The Verification step, turn ON the ignition, with the engine OFF. 14. Select: Next Action. 15. The Home Page will appear. 16. Select: Next. 17. The Diagnostic Screen will appear. Note Due to vehicle build, software and RPO variations, GDS may ask for additional information in Step 18. 18. Select: Engine ID, if prompted. 19. Select: Module Diagnostics. 20. Select: ECM. 21. Select: ID Information. 22. The Diagnostics page will appear. Typical View of GDS Calibration History Screen Note GDS is capable of displaying up to 10 Calibration History events. 23. Select: Calibration History from the drop down menu in order to display the following items on the screen: - Calibration History Buffer - Number of Calibration History Events Stored - Calibration Part Number History - Calibration Verification Number History 24. Select: Screenshot. 25. Name and save the file in an appropriate folder. 26. Select : Print, and retain a copy of the screenshot with the repair order. 27. E-mail a copy of the screenshot to [email protected]. In the subject line of the e-mail include the phrase "V8 Cal" as well as the complete VIN and Dealer BAC. In the body of the e-mail, include the VIN, mileage, R.O. number and BAC. Include a brief description of the customer concern and cause of the concern. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-06-04-026B > Apr > 10 > Engine/Transmission - Aftermarket Calibrations > Page 8286 Note The dealer will receive an e-mail reply after the calibrations have been validated. The e-mail reply will advise the dealer if the calibrations are OEM. 28. Allow two hours for the PQC to verify the calibrations and set up the case details. ‹› If the PQC determines that the calibrations ARE aftermarket calibrations, DO NOT contact GM Technical Assistance to discuss warranty concerns on the aftermarket calibrations. ALL questions and concerns about warranty should be directed to the dealers Fixed Operations Manager (FOM), (Warranty Manager (WM) in Canada). 29. You may call the PQC two hours after submitting the e-mail for authorization to replace the assembly. This will provide them time to receive, review and set up a case on the request. Please be prepared to provide all the usual documentation that is normally required when requesting an assembly authorization from the PQC. Warranty Information - The Dealership Service Management must be involved in any situation that would justify the use of labor operation Z1111. - Notify the Fixed Operations Manager (FOM) (Warranty Manager (WM) in Canada) of the situation. - All claims will have to be routed to the FOM (WM in Canada) for approval. - Please refer to Corporate Bulletin Number 09-00-89-016, Labor Operation Z1111 - Suspected Tampering or Vehicle Modifications for important information. For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 09-08-68-001 > Nov > 09 > Engine Controls - Cruise Control Turns Off When Operated Engine Control Module: All Technical Service Bulletins Engine Controls - Cruise Control Turns Off When Operated TECHNICAL Bulletin No.: 09-08-68-001 Date: November 13, 2009 Subject: Cruise Control Turns Off During Operation (Reprogram ECM) Models: 2008-2009 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2009 Chevrolet Silverado 2008-2009 Chevrolet Avalanche, Suburban, Tahoe 2007-2009 GMC Sierra 2008-2009 GMC Yukon, Yukon Denali, Yukon XL, Yukon Denali XL 2008-2009 HUMMER H2 Condition On rare occasions, some customers may comment that the cruise control turned off. This typically occurs during operation and while pulling up and releasing both driver door window switches or activating the heated windshield washer fluid system in cold weather conditions with a battery charge below 80%. Cause Cruise control command cancellation is caused by a voltage spike that occurs when the driver door window switches are released or when the heated washer fluid system is activated. Correction A revised calibration has been developed to address this condition. Technicians are to reprogram the ECM with the latest calibrations available. This new service calibration is available on TIS2WEB using the Service Programming System (SPS). Refer to the SPS procedures in SI. SPS may require the technician to select the calibration from the ECM calibration screen. Note This calibration update should only be used when this loss of cruise control condition is experienced. When using a Tech 2(R) or a multiple diagnostic interface (MDI) for reprogramming, ensure that it is updated with the latest software version. During programming, the battery voltage must be maintained within the proper range of 12-15 volts. Only use the approved Midtronics(R) PSC 550 Battery Maintainer (SPS Programming Support Tool EL-49642) or equivalent during programming. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set Engine Control Module: All Technical Service Bulletins Engine Controls - MIL ON/Misfire/Misfire DTC's Set Bulletin No.: 06-06-04-046 Date: September 12, 2006 INFORMATION Subject: Information on Engine Misfire MIL/SES Light Illuminated or Flashing DTC P0300, P0301, P0302, P0303, P0304, P0305, P0306, P0307, P0308, P0420 or P0430 Models: 1999-2007 Cadillac, Chevrolet, GMC Full-Size Pickup and/or Utility Trucks with 4.8L, 5.3L, 5.7L, 6.0L or 6.2L VORTEC GEN III, GEN IV, V-8 Engine (VINs V, C, T, Z, B, 3, M, 0, J, R, U, N, Y, K, 8 - RPOs LR4, LY2, LM7, L59, L33, LC9, LH6, LMG, LY5, L31, LQ4, LQ9, L76, LY6, L92) with Active Fuel Management(TM) and E85 Flex Fuel If you encounter vehicles that exhibit the above conditions, refer to SI for the appropriate DTC(s) set. If no trouble is found, the cause may be due to an ECM ground terminal that has corroded with rust over time. Inspect the main engine wiring harness ground terminal (G103) for this condition. The wire terminal (G103) attaches either to the front or to the rear of the right side cylinder head, depending on the model year of the Full Size Pickup and/or Utility Trucks. If the ECM ground terminal has been found to be corroded, then follow the service procedure outlined in this bulletin to correct the corrosion issue. Remove either the nut or bolt securing the main engine wiring harness ground terminal (G103) to the right cylinder head. Refer to the above illustration to determine where the ground is located on the vehicle (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 06-06-04-046 > Sep > 06 > Engine Controls - MIL ON/Misfire/Misfire DTC's Set > Page 8295 Remove all rust from the ground terminal, the cylinder head and the retaining nut or bolt. Position the main engine wiring harness ground terminal and install the nut or bolt. Tighten: Tighten the retaining nut or bolt to 16 N.m (12 lb ft). Apply some type of electrical moisture sealant to protect the harness terminal from further corrosion. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Staining/Pitting/Corrosion INFORMATION Bulletin No.: 00-03-10-002F Date: April 21, 2011 Subject: Chemical Staining, Pitting, Corrosion and/or Spotted Appearance of Chromed Aluminum Wheels Models: 2012 and Prior GM Cars and Trucks Supercede: This bulletin is being revised to update model years, suggest additional restorative products and add additional corrosion information. Please discard Corporate Bulletin Number 00-03-10-002E (Section 03 - Suspension). Important You may give a copy of this bulletin to the customer. What is Chemical Staining of Chrome Wheels? Figure 1 Chemical staining in most cases results from acid based cleaners (refer to Figure 1 for an example). These stains are frequently milky, black, or greenish in appearance. They result from using cleaning solutions that contain acids on chrome wheels. Soap and water is usually sufficient to clean wheels. If the customer insists on using a wheel cleaner they should only use one that specifically states that it is safe for chromed wheels and does not contain anything in the following list. (Dealers should also survey any products they use during prep or normal cleaning of stock units for these chemicals.) - Ammonium Bifluoride (fluoride source for dissolution of chrome) - Hydrofluoric Acid (directly dissolves chrome) - Hydrochloric Acid (directly dissolves chrome) - Sodium Dodecylbenzenesulfonic Acid - Sulfamic Acid - Phosphoric Acid - Hydroxyacetic Acid Notice Many wheel cleaner instructions advise to take care to avoid contact with painted surfaces. Most customers think of painted surfaces as the fenders, quarter panels and other exterior sheet metal. Many vehicles have painted brake calipers. Acidic wheel cleaners may craze, crack, or discolor the paint on the brake calipers. Damage from wheel cleaners is not covered under the vehicle new car warranty. Soap and water applied with a soft brush is usually all that is required to clean the calipers. Whenever any wheel cleaner is used, it must be THOROUGHLY rinsed off of the wheel with clean, clear water. Special care must be taken to rinse under the hub cap, balance weights, wheel nuts, lug nut caps, between the wheel cladding and off the back side of the wheel. Wheels returned to the Warranty Parts Center (WPC) that exhibit damage from wheel cleaners most often have the damage around and under the wheel weight where the cleaner was incompletely flushed away. Notice Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 8301 Do not use cleaning solutions that contain hydrofluoric, oxalic and most other acids on chrome wheels (or any wheels). If the customer is unsure of the chemical make-up of a particular wheel cleaner, it should be avoided. For wheels showing signs of milky staining from acidic cleaners, refer to Customer Assistance and Instructions below. Warranty of Stained Chrome Wheels Stained wheels are not warrantable. Most acid based cleaners will permanently stain chrome wheels. Follow-up with dealers has confirmed that such cleaners were used on wheels that were returned to the Warranty Parts Center (WPC). Any stained wheels received by the WPC will be charged back to the dealership. To assist the customer, refer to Customer Assistance and Instructions below. Pitting or Spotted Appearance of Chrome Wheels Figure 2 A second type or staining or finish disturbance may result from road chemicals, such as calcium chloride used for dust control of unpaved roads. The staining will look like small pitting (refer to Figure 2). This staining will usually be on the leading edges of each wheel spoke, but may be uniformly distributed. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Important Road chemicals, such as calcium chloride used for dust control of unpaved roads, can also stain chrome wheels. The staining will look like small pitting. This staining will usually be on the leading edges of each wheel spoke. This is explained by the vehicle traveling in the forward direction while being splashed by the road chemical. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Warranty of Pitted or Spotted Chrome Wheels Wheels returned with pitting or spotting as a result of road chemicals may be replaced one time. Damage resulting from contact with these applied road chemicals is corrosive to the wheels finish and may cause damage if the wheels are not kept clean. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean if they are operating the vehicle in an area that applies calcium chloride or other dust controlling chemicals! "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). "Stardust" Corrosion of Chrome Wheels Figure 3 A third type of finish disturbance results from prolonged exposure to brake dust and resultant penetration of brake dust through the chrome. As brakes are applied hot particles of brake material are thrown off and tend to be forced through the leading edge of the wheel spoke windows by airflow. These Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 8302 hot particles embed themselves in the chrome layer and create a small pit. If the material is allowed to sit on the wheel while it is exposed to moisture or salt, it will corrode the wheel beneath the chrome leaving a pit or small blister in the chrome. Heavy brake dust build-up should be removed from wheels by using GM Chrome Cleaner and Polish, P/N 1050173 (in Canada use 10953013). For moderate cleaning, light brake dust build-up or water spots use GM Swirl Remover Polish, P/N 12377965 (in Canada, use Meguiars Plast-X(TM) Clear Plastic Cleaner and Polish #G12310C**). After cleaning, the wheel should be waxed using GM Cleaner Wax, P/N 12377966 (in Canada, use Meguiars Cleaner Wax #M0616C**), which will help protect the wheel from brake dust and reduce adhesion of any brake dust that gets on the wheel surface. For general maintenance cleaning, PEEK Metal Polish† may be used. It will clean and shine the chrome and leave behind a wax coating that may help protect the finish. Warranty of Stardust Corroded Chrome Wheels Wheels returned with pitting or spotting as a result of neglect and brake dust build-up may be replaced one time. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean and free of prolonged exposure to brake dust build-up. "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). Customer Assistance and Instructions GM has looked for ways customers may improve the appearance of wheels damaged by acidic cleaners. The following product and procedure has been found to dramatically improve the appearance of stained wheels. For wheels that have milky stains caused by acidic cleaners try the following: Notice THE 3M CHROME AND METAL POLISH REQUIRED FOR THIS PROCEDURE IS AN EXTREMELY AGGRESSIVE POLISH/CLEANER. THE WHEELS MUST BE CLEANED BEFORE APPLICATION TO AVOID SCRATCHING THE WHEEL SURFACE. THIS PRODUCT WILL REDUCE THE THICKNESS OF THE CHROME PLATING ON THE WHEEL AND IF USED INCORRECTLY OR EXCESSIVELY MAY REMOVE THE CHROME PLATING ALL TOGETHER, EXPOSING A LESS BRIGHT AND BRASSY COLORED SUB-LAYER. FOLLOW INSTRUCTIONS EXACTLY. 1. Wash the wheels with vigorously with soap and water. This step will clean and may reduce wheel staining. Flood all areas of the wheel with water to rinse. 2. Dry the wheels completely. Notice Begin with a small section of the wheel and with light pressure buff off polish and examine results. ONLY apply and rub with sufficient force and time to remove enough staining that you are satisfied with the results. Some wheels may be stained to the extent that you may only achieve a 50% improvement while others may be able to be restored to the original lustre. IN ALL CASES, only apply until the results are satisfactory. 3. Apply 3M Chrome and Metal Polish #39527* with a clean terry cloth towel. As you apply the polish, the staining will be diminished. 4. When dry, buff off the polish with a clean portion of the towel. 5. Repeat application of the 3M Chrome and Metal Polish until satisfied with the results. If continued applications fail to improve the appearance further discontinue use. This procedure will improve the appearance of the wheels and may, with repeated applications, restore the finish dramatically. For wheels that exhibit spotting from road chemicals the above procedure may marginally improve the condition but will not restore the finish or remove the pitting. In this type of staining the wheel finish has actually been removed in spots and no manner of cleaning will restore the finish. †*We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 8303 *This product is currently available from 3M. To obtain information for your local retail location please call 3M at 1-888-364-3577. **This product is currently available from Meguiars (Canada). To obtain information for your local retail location please call Meguiars at 1-800-347-5700 or at www.meguiarscanada.com. ^ This product is currently available from Tri-Peek International. To obtain information for your local retail location please call Tri-Peek at 1-877-615-4272 or at www.tripeek.com. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap Wheels: All Technical Service Bulletins Tires/Wheels - Rattle Noise from Wheel Or Hub Cap TECHNICAL Bulletin No.: 07-03-10-012D Date: April 12, 2011 Subject: Rattle Noise from Wheel or Hub Cap While Driving, Loose Wheel Nut Caps or Wheel Nut Caps May Not Tighten on Wheel Nuts (Inspect/Replace Wheel Nut Caps As Necessary) Models: 2007-2012 Chevrolet Express, Silverado, Suburban 1500, 2500 and 3500 Series 2007-2012 GMC Savana, Sierra, Yukon XL 1500, 2500 and 3500 Series with 8 Lug Wheel Nut Center Caps (RPOs NX7, NZ7, PY0, PY2, PY9, P03, P25, QB5, QC1, QR5, Q9A) Supercede: This bulletin is being revised to update the model year information. Please discard Corporate Bulletin Number 07-03-10-012C (Section 03 - Suspension). Condition Some customers may comment on a rattle noise from the wheel or hub cap while driving. Other customers may comment on loose wheel nut caps or caps that may not tighten on the wheel nuts. Cause Depending on the generation of the wheel caps, the issue may be overtorqued wheel nut caps or may be caused by the lack of internal threads inside the wheel nut caps. The wheel nut cap (1) is correctly threaded. The wheel nut cap (2) shows the insufficient threads. Correction Important The wheel nut caps are serviced separately from the center wheel hub cap for most hub caps. Refer to the GM electronic parts catalog (EPC) for details. Inspect each wheel nut cap and replace as necessary using the steps below. 1. Remove the wheel hub cap from the vehicle. 2. Place the front of the wheel hub cap down on a protected clean work bench being careful not to scratch or damage the hub cap surface. 3. Inspect all the wheel nut caps, marking any bad wheel nut caps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap > Page 8308 Tip The bad wheel nut cap can be removed by placing a drift or punch inside the center of the nut cap and using a hammer to tap the wheel nut cap out of the hub cap. 4. From inside the hub cap, apply direct pressure to one side of the wheel nut cap rim (1). The wheel nut cap will tip down and pop out of the wheel hub cap hole when enough pressure is applied. Repeat this procedure for any additional wheel nut caps that need to be replaced. 5. Flip the hub cap over on the work bench. The emblem side should be up. Tip A 22 mm (7/8 in) socket placed over the wheel nut cap may be used along with a hammer to tap the new wheel nut cap back into the hub cap hole. 6. Install the new wheel nut cap into the existing hub cap hole by applying direct pressure to the front center of the wheel nut cap. 7. Install the wheel hub cap onto the vehicle and tighten the wheel nut caps. 8. Repeat this entire procedure for each additional hub cap. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels Wheels: All Technical Service Bulletins Wheels/Tires - Refinishing Aluminum Wheels INFORMATION Bulletin No.: 99-08-51-007E Date: March 17, 2011 Subject: Refinishing Aluminum Wheels Models: 2012 and Prior GM Passenger Cars and Trucks Supercede: This bulletin is being revised to add additional model years. Please discard Corporate Bulletin Number 99-08-51-007D (Section 08 - Body and Accessories). This bulletin updates General Motor's position on refinishing aluminum wheels. GM does not endorse any repairs that involve welding, bending, straightening or re-machining. Only cosmetic refinishing of the wheel's coatings, using recommended procedures, is allowed. Evaluating Damage In evaluating damage, it is the GM Dealer's responsibility to inspect the wheel for corrosion, scrapes, gouges, etc. The Dealer must insure that such damage is not deeper than what can be sanded or polished off. The wheel must be inspected for cracks. If cracks are found, discard the wheel. Any wheels with bent rim flanges must not be repaired or refinished. Wheels that have been refinished by an outside company must be returned to the same vehicle. The Dealer must record the wheel ID stamp or the cast date on the wheel in order to assure this requirement. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. Aluminum Wheel Refinishing Recommendations - Chrome-plated aluminum wheels Re-plating these wheels is not recommended. - Polished aluminum wheels These wheels have a polyester or acrylic clearcoat on them. If the clearcoat is damaged, refinishing is possible. However, the required refinishing process cannot be performed in the dealer environment. Refer to Refinisher's Responsibility - Outside Company later in this bulletin. - Painted aluminum wheels These wheels are painted using a primer, color coat, and clearcoat procedure. If the paint is damaged, refinishing is possible. As with polished wheels, all original coatings must be removed first. Media blasting is recommended. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for the re-painting of this type of wheel. - Bright, machined aluminum wheels These wheels have a polyester or acrylic clearcoat on them. In some cases, the recessed "pocket" areas of the wheel may be painted. Surface refinishing is possible. The wheel must be totally stripped by media blasting or other suitable means. The wheel should be resurfaced by using a sanding process rather than a machining process. This allows the least amount of material to be removed. Important Do not use any re-machining process that removes aluminum. This could affect the dimensions and function of the wheel. Painting is an option to re-clearcoating polished and bright machined aluminum wheels. Paint will better mask any surface imperfections and is somewhat more durable than clearcoat alone. GM recommends using Corsican SILVER WAEQ9283 for a fine "aluminum-like" look or Sparkle SILVER WA9967 for a very bright look. As an option, the body color may also be used. When using any of the painting options, it is recommended that all four wheels be refinished in order to maintain color uniformity. Refer to GM Aluminum Refinishing Bulletin #53-17-03A for specific procedures and product recommendations. Refinisher's Responsibility - Outside Company Important Some outside companies are offering wheel refinishing services. Such refinished wheels will be permanently marked by the refinisher and are warranted by the refinisher. Any process that re-machines or otherwise re-manufactures the wheel should not be used. A refinisher's responsibility includes inspecting for cracks using the Zyglo system or the equivalent. Any cracked wheels must not be refinished. No welding, hammering or reforming of any kind is allowed. The wheel ID must be recorded and follow the wheel throughout the process in order to assure that the same wheel is returned. A plastic media blast may be used for clean up of the wheel. Hand and/or lathe sanding of the machined surface and the wheel window is allowed. Material removal, though, must be kept to a minimum. Re-machining of the wheel is not allowed. Paint and/or clear coat must not be present on the following surfaces: the nut chamfers, the wheel mounting surfaces and the wheel pilot hole. The refinisher must permanently ID stamp the wheel and warrant the painted/clearcoated surfaces for a minimum of one year or the remainder of the new vehicle warranty, whichever is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels > Page 8313 longer. Important Whenever a wheel is refinished, the mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. When re-mounting a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions Wheels: All Technical Service Bulletins Wheels - Changing Procedures/Precautions INFORMATION Bulletin No.: 06-03-10-010A Date: June 09, 2010 Subject: Information on Proper Wheel Changing Procedures and Cautions Models: 2011 and Prior GM Passenger Cars and Trucks 2010 and Prior HUMMER Models 2005-2009 Saab 9-7X 2005-2009 Saturn Vehicles Attention: Complete wheel changing instructions for each vehicle line can be found under Tire and Wheel Removal and Installation in Service Information (SI). This bulletin is intended to quickly review and reinforce simple but vital procedures to reduce the possibility of achieving low torque during wheel installation. Always refer to SI for wheel lug nut torque specifications and complete jacking instructions for safe wheel changing. Supercede: This bulletin is being revised to include the 2011 model year and update the available special tool list. Please discard Corporate Bulletin Number 06-03-10-010 (Section 03 Suspension). Frequency of Wheel Changes - Marketplace Driven Just a few years ago, the increasing longevity of tires along with greater resistance to punctures had greatly reduced the number of times wheels were removed to basically required tire rotation intervals. Today with the booming business in accessory wheels/special application tires (such as winter tires), consumers are having tire/wheel assemblies removed - replaced - or installed more than ever. With this increased activity, it opens up more of a chance for error on the part of the technician. This bulletin will review a few of the common concerns and mistakes to make yourself aware of. Proper Servicing Starts With the Right Tools The following tools have been made available to assist in proper wheel and tire removal and installation. - J 41013 Rotor Resurfacing Kit (or equivalent) - J 42450-A Wheel Hub Resurfacing Kit (or equivalent) Corroded Surfaces One area of concern is corrosion on the mating surfaces of the wheel to the hub on the vehicle. Excessive corrosion, dirt, rust or debris built up on these surfaces can mimic a properly tightened wheel in the service stall. Once the vehicle is driven, the debris may loosen, grind up or be washed away from water splash. This action may result in clearance at the mating surface of the wheel and an under-torqued condition. Caution Before installing a wheel, remove any buildup on the wheel mounting surface and brake drum or brake disc mounting surface. Installing wheels with poor metal-to-metal contact at the mounting surfaces can cause wheel nuts to loosen. This may cause a wheel to come off when the vehicle is moving, possibly resulting in a loss of control or personal injury. Whenever you remove the tire/wheel assemblies, you must inspect the mating surfaces. If corrosion is found, you should remove the debris with a die grinder equipped with a fine sanding pad, wire brush or cleaning disc. Just remove enough material to assure a clean, smooth mating surface. The J 41013 (or equivalent) can be used to clean the following surfaces: - The hub mounting surface - The brake rotor mounting surface - The wheel mounting surface Use the J 42450-A (or equivalent) to clean around the base of the studs and the hub. Lubricants, Grease and Fluids Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 8318 Some customers may use penetrating oils, grease or other lubricants on wheel studs to aid in removal or installation. Always use a suitable cleaner/solvent to remove these lubricants prior to installing the wheel and tire assemblies. Lubricants left on the wheel studs may cause improper readings of wheel nut torque. Always install wheels to clean, dry wheel studs ONLY. Notice Lubricants left on the wheel studs or vertical mounting surfaces between the wheel and the rotor or drum may cause the wheel to work itself loose after the vehicle is driven. Always install wheels to clean, dry wheel studs and surfaces ONLY. Beginning with 2011 model year vehicles, put a light coating of grease, GM P/N 1051344 (in Canada, P/N 9930370), on the inner surface of the wheel pilot hole to prevent wheel seizure to the axle or bearing hub. Wheel Stud and Lug Nut Damage Always inspect the wheel studs and lug nuts for signs of damage from crossthreading or abuse. You should never have to force wheel nuts down the stud. Lug nuts that are damaged may not retain properly, yet give the impression of fully tightening. Always inspect and replace any component suspected of damage. Tip Always start wheel nuts by hand! Be certain that all wheel nut threads have been engaged BEFORE tightening the nut. Important If the vehicle has directional tread tires, verify the directional arrow on the outboard side of the tire is pointing in the direction of forward rotation. Wheel Nut Tightening and Torque Improper wheel nut tightening can lead to brake pulsation and rotor damage. In order to avoid additional brake repairs, evenly tighten the wheel nuts to the proper torque specification as shown for each vehicle in SI. Always observe the proper wheel nut tightening sequence as shown below in order to avoid trapping the wheel on the wheel stud threads or clamping the wheel slightly off center resulting in vibration. The Most Important Service You Provide While the above information is well known, and wheel removal so common, technicians run the risk of becoming complacent on this very important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 8319 service operation. A simple distraction or time constraint that rushes the job may result in personal injury if the greatest of care is not exercised. Make it a habit to double check your work and to always side with caution when installing wheels. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) Wheels: All Technical Service Bulletins Wheels/Tires - Tire Radial Force Variation (RFV) INFORMATION Bulletin No.: 00-03-10-006F Date: May 04, 2010 Subject: Information on Tire Radial Force Variation (RFV) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X 2000-2005 Saturn L Series 2003-2007 Saturn ION Supercede: This bulletin is being revised to considerably expand the available information on Radial Force Variation (RFV) and should be reviewed in whole. Please discard Corporate Bulletin Number 00-03-10-006E (Section 03 - Suspension). Important - Before measuring tires on equipment such as the Hunter GSP9700, the vehicle MUST be driven a minimum of 16 km (10 mi) to ensure removal of any flat-spotting. Refer to Corporate Bulletin Number 03-03-10-007E - Tire/Wheel Characteristics of GM Original Equipment Tires. - Equipment such as the Hunter GSP9700 MUST be calibrated prior to measuring tire/wheel assemblies for each vehicle. The purpose of this bulletin is to provide guidance to GM dealers when using tire force variation measurement equipment, such as the Hunter GSP9700. This type of equipment can be a valuable tool in diagnosing vehicle ride concerns. The most common ride concern involving tire radial force variation is highway speed shake on smooth roads. Tire related smooth road highway speed shake can be caused by three conditions: imbalance, out of round and tire force variation. These three conditions are not necessarily related. All three conditions must be addressed. Imbalance is normally addressed first, because it is the simpler of the three to correct. Off-vehicle, two plane dynamic wheel balancers are readily available and can accurately correct any imbalance. Balancer calibration and maintenance, proper attachment of the wheel to the balancer, and proper balance weights, are all factors required for a quality balance. However, a perfectly balanced tire/wheel assembly can still be "oval shaped" and cause a vibration. Before balancing, perform the following procedures. Tire and Wheel Diagnosis 1. Set the tire pressure to the placard values. 2. With the vehicle raised, ensure the wheels are centered on the hub by loosening all wheel nuts and hand-tightening all nuts first by hand while shaking the wheel, then torque to specifications using a torque wrench, NOT a torque stick. 3. Visually inspect the tires and the wheels. Inspect for evidence of the following conditions and correct as necessary: - Missing balance weights - Bent rim flange - Irregular tire wear - Incomplete bead seating - Tire irregularities (including pressure settings) - Mud/ice build-up in wheel - Stones in the tire tread - Remove any aftermarket wheels and/or tires and restore vehicle to original condition prior to diagnosing a smooth road shake condition. 4. Road test the vehicle using the Electronic Vibration Analyzer (EVA) essential tool. Drive for a sufficient distance on a known, smooth road surface to duplicate the condition. Determine if the vehicle is sensitive to brake apply. If the brakes are applied lightly and the pulsation felt in the steering wheel increases, refer to the Brakes section of the service manual that deals with brake-induced pulsation. If you can start to hear the vibration as a low boom noise (in addition to feeling it), but cannot see it, the vehicle likely has a first order (one pulse per propshaft revolution) driveline vibration. Driveline first order vibrations are high enough in frequency that most humans can start to hear them at highway speeds, but are too high to be able to be easily seen. These issues can be caused by driveline imbalance or misalignment. If the vehicle exhibits this low boom and the booming pulses in-and-out on a regular basis (like a throbbing), chances are good that the vehicle could have driveline vibration. This type Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 8324 of vibration is normally felt more in the "seat of the pants" than the steering wheel. 5. Next, record the Hertz (Hz) reading as displayed by the EVA onto the tire data worksheet found at the end of this bulletin. This should be done after a tire break-in period of at least 16 km (10 mi) at 72 km/h (45 mph) or greater, in order to eliminate any possible tire flat-spotting. This reading confirms what the vehicle vibration frequency is prior to vehicle service and documents the amount of improvement occurring as the result of the various steps taken to repair. Completing the Steering Wheel Shake Worksheet below is required. A copy of the completed worksheet must be saved with the R.O. and a copy included with any parts returned to the Warranty Parts Center for analysis. A reading of 35 to 50 Hz typically indicates a first order propshaft vibration. If this is the situation, refer to Corporate Bulletin Number 08-07-30-044D. Generally, a reading between 10 and 20 Hz indicates a tire/wheel vibration and if this is the reading obtained, continue using this bulletin. If the tire 1st order vibration goes away and stays away during this evaluation, the cause is likely tire flat-spotting. Tire flat-spotting vibration may come and go at any speed over 72 km/h (45 mph) during the first 10 minutes of operation, if vibration continues after 10 minutes of driving at speeds greater than 72 km/h (45 mph), tire flat-spotting can be ruled out as the cause for vibration. 6. If flat-spotting is the cause, provide the explanation that this has occurred due to the vehicle being parked for long periods of time and that the nature of the tire is to take a set. Refer to Corporate Bulletin Number 03-03-10-007E: Information on Tire/Wheel Characteristics (Vibration, Balance, Shake, Flat Spotting) of GM Original Equipment Tires. 7. If the road test indicates a shake/vibration exists, check the imbalance of each tire/wheel assembly on a known, calibrated, off-car dynamic balancer.Make sure the mounting surface of the wheel and the surface of the balancer are absolutely clean and free of debris. Be sure to chose the proper cone/collet for the wheel, and always use the pilot bore for centering. Never center the wheel using the hub-cap bore since it is not a precision machined surface. If any assembly calls for more than 1/4 ounce on either rim flange, remove all balance weights and rebalance to as close to zero as possible. If you can see the vibration (along with feeling it) in the steering wheel (driving straight without your hands on the wheel), it is very likely to be a tire/wheel first order (one pulse per revolution) disturbance. First order disturbances can be caused by imbalance as well as non-uniformities in tires, wheels or hubs. This first order frequency is too low for a human to hear, but if the amplitude is high enough, it can be seen. If a vibration or shake still exists after balancing, any out of round conditions, of the wheel, and force variation conditions of the tire, must be addressed. Equipment such as the Hunter GSP9700 can address both (it is also a wheel balancer). Tire radial force vibration (RFV) can be defined as the amount of stiffness variation the tire will produce in one revolution under a constant load. Radial force variation is what the vehicle feels because the load (weight) of the vehicle is always on the tires. Although free runout of tires (not under load) is not always a good indicator of a smooth ride, it is critical that total tire/wheel assembly runout be within specification. Equipment such as the Hunter GSP9700 loads the tire, similar to on the vehicle, and measures radial force variation of the tire/wheel assembly. Note that the wheel is affecting the tire's RFV measurement at this point. To isolate the wheel, its runout must be measured. This can be easily done on the Hunter, without the need to set up dial indicators. If the wheel meets the runout specification, the tire's RFV can then be addressed. After measuring the tire/wheel assembly under load, and the wheel alone, the machine then calculates (predicts) the radial force variation of the tire. However, because this is a prediction that can include mounting inaccuracies, and the load wheel is much smaller in diameter than used in tire production, this type of service equipment should NOT be used to audit new tires. Rather, it should be used as a service diagnostic tool to minimize radial force variation of the tire/wheel assembly. Equipment such as the Hunter GSP9700 does an excellent job of measuring wheel runout, and of finding the low point of the wheel (for runout) and the high point of the tire (for radial force variation). This allows the tire to be matched mounted to the wheel for lowest tire/wheel assembly force variation. The machine will simplify this process into easy steps. The following assembly radial force variation numbers should be used as a guide: When measuring RFV and match mounting tires perform the following steps. Measuring Wheel Runout and Assembly Radial Force Variation Important The completed worksheet at the end of this bulletin must be attached to the hard copy of the repair order. - Measure radial force variation and radial runout. - If a road force/balancing machine is used, record the radial force variation (RFV) on the worksheet at the end of this bulletin. It may be of benefit to have the lowest RFV assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires onto the subject vehicle. - If a runout/balancing machine is used, record the radial runout of the tire/wheel assemblies on the worksheet at the end of this bulletin. If one or more of the tire/wheel assemblies are more than.040 in (1.02 mm), match mount the tire to the wheel to get below.040 in (1.02 mm). For sensitive customers, readings of 0.030 inch (0.76 mm) or less are preferable, it may also be of benefit to have the lowest runout assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 8325 onto the subject vehicle. - After match mounting, the tire/wheel assembly must be rebalanced. If match mounting tires to in-spec wheels produces assembly values higher than these, tire replacement may be necessary. Replacing tires at lower values will probably mean good tires are being condemned. Because tires can sometimes become temporarily flat-spotted, which will affect force variation, it is important that the vehicle be driven at least 16 km (10 mi) prior to measuring. Tire pressure must also be adjusted to the usage pressure on the vehicle's tire placard prior to measuring. Most GM vehicles will tolerate radial force variation up to these levels. However, some vehicles are more sensitive, and may require lower levels. Also, there are other tire parameters that equipment such as the Hunter GSP9700 cannot measure that may be a factor. In such cases, TAC should be contacted for further instructions. Important - When mounting a GM wheel to a wheel balancer/force variation machine, always use the wheel's center pilot hole. This is the primary centering mechanism on all GM wheels; the bolt holes are secondary. Usually a back cone method to the machine should be used. For added accuracy and repeatability, a flange plate should be used to clamp the wheel onto the cone and machine. This system is offered by all balancer manufacturers in GM's dealer program. - Any type of service equipment that removes tread rubber by grinding, buffing or truing is NOT recommended, and may void the tire warranty. However, tires may have been ground by the tire company as part of their tire manufacturing process. This is a legitimate procedure. Steering Wheel Shake Worksheet When diagnosing vibration concerns, use the following worksheet in conjunction with the appropriate Vibration Analysis-Road testing procedure in the Vibration Correction sub-section in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 8326 Refer to the appropriate section of SI for specifications and repair procedures that are related to the vibration concern. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels Wheels: All Technical Service Bulletins Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels TECHNICAL Bulletin No.: 05-03-10-003F Date: April 27, 2010 Subject: Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks (Including Saturn) 2010 and Prior HUMMER H2, H3 2009 and Prior Saab 9-7X with Cast Aluminum Wheels Supercede: This bulletin is being revised to update the model years and the bulletin reference information. Please discard Corporate Bulletin Number 05-03-10-003E (Section 03 - Suspension). Condition Some customers may comment on a low tire pressure condition. Diagnosis of the low tire pressure condition indicates an air leak through the cast aluminum wheel. Cause Porosity in the cast aluminum wheel may be the cause. Notice This bulletin specifically addresses issues related to the wheel casting that may result in an air leak. For issues related to corrosion of the wheel in service, please refer to Corporate Bulletin Number 08-03-10-006C - Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat). Correction 1. Remove the tire and wheel assembly from the vehicle. Refer to the appropriate service procedure in SI. 2. Locate the leaking area by inflating the tire to 276 kPa (40 psi) and dipping the tire/wheel assembly in a water bath, or use a spray bottle with soap and water to locate the specific leak location. Important - If the porosity leak is located in the bead area of the aluminum rim (where the tire meets the rim), the wheel should be replaced. - If two or more leaks are located on one wheel, the wheel should be replaced. 3. If air bubbles are observed, mark the location. - If the leak location is on the tire/rubber area, refer to Corporate Bulletin Number 04-03-10-001F Tire Puncture Repair Procedures for All Cars and Light Duty Trucks. - If the leak is located on the aluminum wheel area, continue with the next step. 4. Inscribe a mark on the tire at the valve stem in order to indicate the orientation of the tire to the wheel. 5. Dismount the tire from the wheel. Refer to Tire Mounting and Dismounting. 6. Remove the tire pressure sensor. Refer to Tire Pressure Sensor removal procedure in SI. 7. Scuff the INSIDE rim surface at the leak area with #80 grit paper and clean the area with general purpose cleaner, such as 3M(R) General Purpose Adhesive Cleaner, P/N 08984, or equivalent. 8. Apply a 3 mm (0.12 in) thick layer of Silicone - Adhesive/Sealant, P/N 12378478 (in Canada, use 88900041), or equivalent, to the leak area. 9. Allow for the adhesive/sealant to dry. Notice Caution must be used when mounting the tire so as not to damage the sealer. Damaging the repair area may result in an air leak. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels > Page 8331 10. Align the inscribed mark on the tire with the valve stem on the wheel. 11. Reinstall the Tire Pressure Sensor. Refer to Tire Pressure Sensor installation procedure in SI. 12. Mount the tire on the wheel. Refer to Tire Mounting and Dismounting. 13. Pressurize the tire to 276 kPa (40 psi) and inspect for leaks. 14. Adjust tire pressure to meet the placard specification. 15. Balance the tire/wheel assembly. Refer to Tire and Wheel Assembly Balancing - Off-Vehicle. 16. Install the tire and wheel assembly onto the vehicle. Refer to the appropriate service procedure in SI. Parts Information Warranty Information (excluding Saab U.S. Models) Important The Silicone - Adhesive/Sealant comes in a case quantity of six. ONLY charge warranty one tube of adhesive/sealant per wheel repair. For vehicles repaired under warranty, use: One leak repair per wheel. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON Wheels: All Technical Service Bulletins Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON TECHNICAL Bulletin No.: 08-03-10-006C Date: April 27, 2010 Subject: Tire Slowly Goes Flat, Tire Air Loss, Low Tire Pressure Warning Light Illuminated, Aluminum Wheel Bead Seat Corrosion (Clean and Resurface Wheel Bead Seat) Models: 2000-2011 GM Passenger Cars and Light Duty Trucks (including Saturn) 2003-2009 HUMMER H2 2006-2010 HUMMER H3 2005-2009 Saab 9-7X Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 08-03-10-006B (Section 03 - Suspension). Condition Some customers may comment on a tire that slowly loses air pressure over a period of days or weeks. Cause Abrasive elements in the environment may intrude between the tire and wheel at the bead seat. There is always some relative motion between the tire and wheel (when the vehicle is driven) and this motion may cause the abrasive particles to wear the wheel and tire materials. As the wear continues, there may also be intrusion at the tire/wheel interface by corrosive media from the environment. Eventually a path for air develops and a 'slow' leak may ensue. This corrosion may appear on the inboard or outboard bead seating surface of the wheel. This corrosion will not be visible until the tire is dismounted from the wheel. Notice This bulletin specifically addresses issues related to wheel bead seat corrosion that may result in an air leak. For issues related to porosity of the wheel casting that may result in an air leak, please refer to Corporate Bulletin Number 05-03-10-006F - Low Tire Pressure, Leaking Cast Aluminum Wheels (Repair with Adhesive Sealant) Correction In most cases, this type of air loss can be corrected by following the procedure below. Important DO NOT replace a wheel for slow air loss unless you have evaluated and/or tried to repair the wheel with the procedure below. Notice The repair is no longer advised or applicable for chromed aluminum wheels. 1. Remove the wheel and tire assembly for diagnosis. Refer to Tire and Wheel Removal and Installation in SI. 2. After a water dunk tank leak test, if you determine the source of the air leak to be around the bead seat of the wheel, dismount the tire to examine the bead seat. Shown below is a typical area of bead seat corrosion.Typical Location of Bead Seat Corrosion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 8336 Important Other forms of slow air leaks are possible. If the body of the tire, valve stem and wheel flange show no signs of air seepage, refer to Corporate Bulletin Number 05-03-10-003D for additional information on possible wheel porosity issues. 3. Bead seat corrosion is identified by what appears like blistering of the wheel finish, causing a rough or uneven surface that is difficult for the tire to maintain a proper seal on. Below is a close-up photo of bead seat corrosion on an aluminum wheel that was sufficient to cause slow air loss. Close-Up of Bead Seat Corrosion 4. If corrosion is found on the wheel bead seat, measure the affected area as shown below. - For vehicles with 32,186 km (20,000 mi) or less, the total allowable combined linear area of repairable corrosion is 100 mm (4 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. - For vehicles that have exceeded 32,186 km (20,000 mi), the total allowable combined linear area of repairable corrosion is 200 mm (8 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. 5. In order to correct the wheel leak, use a clean-up (fine cut) sanding disc or biscuit to remove the corrosion and any flaking paint. You should remove the corrosion back far enough until you reach material that is stable and firmly bonded to the wheel. Try to taper the edge of any flaking paint as best you can in order to avoid sharp edges that may increase the chance of a leak reoccurring. The photo below shows an acceptable repaired surface. Notice Corrosion that extends up the lip of the wheel, where after the clean-up process it would be visible with the tire mounted, is only acceptable on the inboard flange. The inboard flange is not visible with the wheel assembly in the mounted position. If any loose coatings or corrosion extend to the visible surfaces on the FACE of the wheel, that wheel must be replaced. Important Remove ONLY the material required to eliminate the corrosion from the bead seating surface. DO NOT remove excessive amounts of material. ALWAYS keep the sealing surface as smooth and level as possible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 8337 Acceptably Prepared (Cleaned-Up) Wheel Surface 6. Once the corrosion has been eliminated, you should coat the repaired area with a commercially available tire sealant such as Patch Brand Bead Sealant or equivalent. Commercially available bead sealants are black rubber-like coatings that will permanently fill and seal the resurfaced bead seat. At 21°C (70°F) ambient temperature, this sealant will set-up sufficiently for tire mounting in about 10 minutes.Coated and Sealed Bead Seat 7. Remount the tire and install the repaired wheel and tire assembly. Refer to Tire and Wheel Removal and Installation in SI. Parts Information Patch Brand Bead Sealer is available from Myers Tires at 1-800-998-9897 or on the web at www.myerstiresupply.com. The one-quart size can of sealer will repair about 20 wheels. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 8338 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 04-03-10-012B > Feb > 08 > Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Wheels: All Technical Service Bulletins Wheels - Chrome Wheel Brake Dust Accumulation/Pitting Bulletin No.: 04-03-10-012B Date: February 01, 2008 INFORMATION Subject: Pitting and Brake Dust on Chrome wheels Models: 2008 and Prior GM Passenger Cars and Trucks (including Saturn) 2008 and Prior HUMMER H2, H3 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 04-03-10-012A (Section 03 - Suspension). Analysis of Returned Wheels Chrome wheels returned under the New Vehicle Limited Warranty for pitting concerns have recently been evaluated. This condition is usually most severe in the vent (or window) area of the front wheels. This "pitting" may actually be brake dust that has been allowed to accumulate on the wheel. The longer this accumulation builds up, the more difficult it is to remove. Cleaning the Wheels In all cases, the returned wheels could be cleaned to their original condition using GM Vehicle Care Cleaner Wax, P/N 12377966 (in Canada, P/N 10952905). When using this product, you should confine your treatment to the areas of the wheel that show evidence of the brake dust build-up. This product is only for use on chromed steel or chromed aluminum wheels. Parts Information Warranty Information Wheel replacement for this condition is NOT applicable under the terms of the New Vehicle Limited Warranty. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM Wheels: All Technical Service Bulletins Wheels/Tires - 20 Inch Wheels Available From GM Bulletin No.: 03-03-10-006F Date: September 27, 2006 INFORMATION Subject: 20" Wheels Available Through GM Accessories Models: 1999-2007 Chevrolet Silverado 1500 Series Only (Classic) 1999-2007 GMC Sierra 1500 Series Only (Classic) Excludes 1999-2000 Vehicles with 4.3L Engine (VIN W - RPO L35) Excludes Vehicles with Quadrasteer (RPO NYS) Excludes Parallel Hybrid Truck (RPO HP2) Excludes 2001-2004 Vehicles with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8347 Refer to the Model Application Chart shown to verify usage. Supercede: This bulletin is being revised to include 2007 model year and calibration information. Please discard Corporate Bulletin Number 03-03-10-006E (Section 03 - Suspension). Tires GM has designed 20" wheels based on the Goodyear Eagle LS and LS2 P275/55R20 tire. The Goodyear Eagle LS tire has a Tire Performance Criteria spec # 1235 and the LS2 has a Tire Performance Criteria spec # 1245. These tires have been designed to GM's specific Tire Performance Criteria. GM's Tire Performance Criteria specifications meet or exceed all Federal safety guidelines. When mounting the tires, rubber lubricant, P/N 12345884 (in Canada, P/N 5728223), MUST be used. The vehicle should not be driven aggressively (hard acceleration or braking) for at least 6-8 hours after tire mounting to allow the lube to dry. Failure to do so may cause the tire to slip on the rim. This condition will affect wheel balance which could result in a vibration. Spare Tire A P265/75R16 or P265/70R17 tire should be used as a spare. Re-use the vehicle's original spare wheel to mount the spare tire. The spare tire should be used to drive the vehicle to a tire repair/replacement facility and is not intended for extended driving conditions. Tire Changers Dealers must have the correct level of tire changing equipment to perform tire changing services. GM requirements and recommendations for servicing glamour wheels are as follows: ^ Rim Clamp design ^ Runflat capable (preferred) ^ Side mounted bead breaking to reduce stress on the wheel and tire ^ No metal contact to the wheel at the clamping jaws Protective devices to prevent damage during mounting and dismounting operations Regulated air pressure to protect user and wheel assembly. Approved lubricant (P/N 12345884 [in Canada, P/N 5728223]) to avoid wheel slip and damage to the wheel For further information regarding equipment meeting the requirements for this program, call 1-800-GM-TOOLS. Balancing MC style coated weights are recommended and will provide the best balancing of the tire-wheel assembly. If stick-on weights are used, be sure to follow the manufacturers recommended installation procedure (SI Document ID # 664222) making sure the surface is clean and dry. Using the incorrect type of weights will result in improper fit, and such weights may fall off the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8348 Balancing of the tire and wheel assembly must be performed on a computerized balancer, capable of static and dynamic wheel balance modes. Assemblies should be balanced to within 1/4 ounce on either rim flange. Proper cones and adapters should be used, free of nicks and burrs to ensure proper balancing. Center Cap Install the center cap onto the wheel after the tire has been mounted and balanced, but BEFORE the assembly is installed onto the vehicle. The preferred method for center cap installation is to push in by hand. As an alternate, use a nonmetallic object to push the center cap into place. Attempting to "hammer-on" the caps may result in damage to the cap. Wheel (Lug) Nuts ALUMINUM WHEELS REQUIRE SPECIAL WHEEL NUTS. Each wheel nut should be torqued in the appropriate torque sequence (refer to graphic) and to 190 N.m (140 lb ft). The torque should be re-checked after the first 160 km (100 mi). To help protect the wheels from theft, a wheel lock kit is also available. Incorrect wheel nuts or improperly tightened wheel nuts can cause the wheel to become loose and even come off. This could lead to an accident. Be sure to use the correct wheel nuts. Wheel Nut Caps Install the wheel nut caps after tightening the wheel nuts. Install the wheel nut caps finger tight, plus 1/2 turn. Jounce Bumper This modification is required on all 2WD vehicles EXCEPT the following: Excludes: 2006-2007 2WD Extended Cab - Short Box (model C15553) 2006-2007 2WD Crew Cab - Short Box with Enhanced Trailering (RPO NHT) (model C15543) 2006-2007 2WD Extended Cab - Standard Box with Enhanced Trailering (RPO NHT) (model C15753) It will be required to replace the existing front suspension spring/jounce bumper with Jounce Bumper kit, P/N 12499481. The following procedure should be followed: Raise and support the vehicle. Remove the nut from the spring bumper stud. Remove the spring bumper. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8349 Install a new spring bumper assembly for 2WD 1500 Series Only with 20" wheels. Reuse the nut from the original bumper. Install the nut to the spring bumper stud. Tighten Tighten the nut to 30 N.m (22 lb ft). Remove the safety stands. Lower the vehicle. Knee Bolster Deflector This modification is required for the following vehicles and ONLY applies to Extended Cab Long Box (K15953) Pickup models: 1999-2005 Chevrolet Silverado and GMC Sierra (1500 Series Only): 2005 Vehicles Built in Pontiac (VIN Code E) prior to VIN Breakpoint 5E100134 2005 Vehicles Built in Oshawa (VIN Code 1) prior to VIN Breakpoint 51113131 2005 Vehicles Built in Ft. Wayne (VIN Code Z) prior to VIN Breakpoint 5Z126605 The following procedure should be followed: Apply the parking brake to prevent the vehicle from moving. Remove the fuse panel cover. Remove the I/P cluster trim plate bezel. Remove the knee bolster. Remove the 2 mm (0.078 in) thick knee bolster deflector. Install the 1.5 mm (0.059 in) thick knee bolster deflector, P/N 12499966. A detailed instruction sheet will be provided with the service part. Re-Programming Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8350 It will be necessary to reprogram the PCM for speedometer accuracy. Contact Techline to obtain a VCI number. Then refer to the table for the appropriate calibration part number based on the model year and axle ratio. Calibration Information Documentation Make a copy of the "Accessory Wheel and Tire Information Form" included in this bulletin. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8351 Provide all information required on the form. Make a copy of the completed form for the customer to keep in the vehicle along with their Owner's Manual. File the original completed form in the Dealership's Vehicle Service History folder. Because this is not a warranty repair, dealers will incur a charge to obtain a VCI number. A VCI number will only be available for the following models: 1999-2007 Chevrolet Silverado and GMC Sierra (1500 Series Only) EXCLUDES 1999-2000 vehicles equipped with 4.3L engine (RPO L35) EXCLUDES vehicles equipped with Quadrasteer (RPO NYS) EXCLUDES Parallel Hybrid Truck (RPO HP2) EXCLUDES 2001-2004 vehicles equipped with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Refer to the Model Application Chart to in the beginning of this bulletin to verify usage. Calibrations are not available for 1999 and 2000 model year vehicles with 3.08 axle. Calibrations are not available for 1999 and 2000 model year vehicles equipped with 4.3L engine (RPO L35). If original equipment tires/wheels are reinstalled, it will be necessary to reset the programming of the PCM and the ABS module to the original specifications. Labels After installing the recommended P275/55R20 tires, place the provided label on the vehicle. The label should be located on the doorjamb, near the original tire label, and should not cover up the original tire label. Be sure that the surface is clean and dry. The surface temperature should not be less than 21°C (70°F). The label is provided as a guide for tire inflation pressures and information relevant to occupant/cargo capacities. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8352 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8353 Parts Information Warranty Information Wheels All GM Accessories sold and permanently installed on a GM vehicle PRIOR to new vehicle delivery will be covered under the provisions of the New Vehicle Limited Warranty. For the U.S., in the event GM Accessories are installed AFTER the New Vehicle Delivery, or are replaced under the New Vehicle Warranty, they will be covered (parts and labor) for the balance of the vehicle warranty, but in no event less than 12 months/12,000 miles. This coverage is only effective for GM Accessories permanently installed by a GM dealer or a GM approved ADI (Accessory Distributor/Installer). For Canada, in the event GM Accessories are installed AFTER the New Vehicle Delivery, they will be covered (parts and labor) for the balance of the vehicle warranty, or up to 12 months/Unlimited kilometers depending on month installed. For replacement after the new vehicle warranty expires, but within the 12 months/unlimited kilometers coverage, refer to claim type "B" guidelines. GM Accessories sold over-the-counter, or those not requiring installation, will continue to receive the standard GM Dealer Parts Warranty of 12 months from the date of purchase (parts only). Tires Any approved tire installed on a GM Vehicle PRIOR to delivery will be covered under the provisions of the New Vehicle Limited Warranty. Tires are covered against defects in material and workmanship. Tires are warranted for defects "without" prorated charge for tread mileage. Subsequent replacements under this warranty will continue to be covered for the remainder of the New Vehicle Limited Warranty. Any approved tire installed on a GM Vehicle PRIOR to delivery may continue to be warranted on a prorated basis by the tire manufacturer once the New Vehicle Limited Warranty expires. Any approved tire installed AFTER delivery will be covered under the provisions of the tire manufacturer warranty. USA dealers should refer to GM Warranty Administration Bulletin 00-03-10-003I and GM Parts Process / Policy Bulletin IB03-001 for more information. Canadian dealers should refer to GM Warranty Administration Bulletin 01-03-10-003B. GM Warranty Claims Processing Only GM dealerships have the ability to file warranty claims for GM Parts and Accessories. Therefore, any warranty claims filed against such parts must be handled by the servicing GM dealership. This includes those parts purchased from a GM-approved ADI (Accessory Distributor / Installer). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8354 ACCESSORY WHEEL AND TIRE INFORMATION FORM You have just modified your vehicle by installing an "Accessory Package" which includes Wheels and Tires. This form contains important information about your accessory installation. In an effort to provide superior service to you, our customer, we ask that you please present this form to your Servicing Dealer when removing or installing wheels and tires on your vehicle. This form contains important information necessary to service your vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 8360 Do not use cleaning solutions that contain hydrofluoric, oxalic and most other acids on chrome wheels (or any wheels). If the customer is unsure of the chemical make-up of a particular wheel cleaner, it should be avoided. For wheels showing signs of milky staining from acidic cleaners, refer to Customer Assistance and Instructions below. Warranty of Stained Chrome Wheels Stained wheels are not warrantable. Most acid based cleaners will permanently stain chrome wheels. Follow-up with dealers has confirmed that such cleaners were used on wheels that were returned to the Warranty Parts Center (WPC). Any stained wheels received by the WPC will be charged back to the dealership. To assist the customer, refer to Customer Assistance and Instructions below. Pitting or Spotted Appearance of Chrome Wheels Figure 2 A second type or staining or finish disturbance may result from road chemicals, such as calcium chloride used for dust control of unpaved roads. The staining will look like small pitting (refer to Figure 2). This staining will usually be on the leading edges of each wheel spoke, but may be uniformly distributed. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Important Road chemicals, such as calcium chloride used for dust control of unpaved roads, can also stain chrome wheels. The staining will look like small pitting. This staining will usually be on the leading edges of each wheel spoke. This is explained by the vehicle traveling in the forward direction while being splashed by the road chemical. If a vehicle must be operated under such conditions, the chrome wheels should be washed with mild soap and water and thoroughly rinsed as soon as conveniently possible. Warranty of Pitted or Spotted Chrome Wheels Wheels returned with pitting or spotting as a result of road chemicals may be replaced one time. Damage resulting from contact with these applied road chemicals is corrosive to the wheels finish and may cause damage if the wheels are not kept clean. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean if they are operating the vehicle in an area that applies calcium chloride or other dust controlling chemicals! "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). "Stardust" Corrosion of Chrome Wheels Figure 3 A third type of finish disturbance results from prolonged exposure to brake dust and resultant penetration of brake dust through the chrome. As brakes are applied hot particles of brake material are thrown off and tend to be forced through the leading edge of the wheel spoke windows by airflow. These Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 8361 hot particles embed themselves in the chrome layer and create a small pit. If the material is allowed to sit on the wheel while it is exposed to moisture or salt, it will corrode the wheel beneath the chrome leaving a pit or small blister in the chrome. Heavy brake dust build-up should be removed from wheels by using GM Chrome Cleaner and Polish, P/N 1050173 (in Canada use 10953013). For moderate cleaning, light brake dust build-up or water spots use GM Swirl Remover Polish, P/N 12377965 (in Canada, use Meguiars Plast-X(TM) Clear Plastic Cleaner and Polish #G12310C**). After cleaning, the wheel should be waxed using GM Cleaner Wax, P/N 12377966 (in Canada, use Meguiars Cleaner Wax #M0616C**), which will help protect the wheel from brake dust and reduce adhesion of any brake dust that gets on the wheel surface. For general maintenance cleaning, PEEK Metal Polish† may be used. It will clean and shine the chrome and leave behind a wax coating that may help protect the finish. Warranty of Stardust Corroded Chrome Wheels Wheels returned with pitting or spotting as a result of neglect and brake dust build-up may be replaced one time. Important Notify the customer that this is a one time replacement. Please stress to the customer the vital importance of keeping the wheels clean and free of prolonged exposure to brake dust build-up. "GM of Canada" dealers require prior approval by the District Manager - Customer Care and Service Process (DM-CCSP). Customer Assistance and Instructions GM has looked for ways customers may improve the appearance of wheels damaged by acidic cleaners. The following product and procedure has been found to dramatically improve the appearance of stained wheels. For wheels that have milky stains caused by acidic cleaners try the following: Notice THE 3M CHROME AND METAL POLISH REQUIRED FOR THIS PROCEDURE IS AN EXTREMELY AGGRESSIVE POLISH/CLEANER. THE WHEELS MUST BE CLEANED BEFORE APPLICATION TO AVOID SCRATCHING THE WHEEL SURFACE. THIS PRODUCT WILL REDUCE THE THICKNESS OF THE CHROME PLATING ON THE WHEEL AND IF USED INCORRECTLY OR EXCESSIVELY MAY REMOVE THE CHROME PLATING ALL TOGETHER, EXPOSING A LESS BRIGHT AND BRASSY COLORED SUB-LAYER. FOLLOW INSTRUCTIONS EXACTLY. 1. Wash the wheels with vigorously with soap and water. This step will clean and may reduce wheel staining. Flood all areas of the wheel with water to rinse. 2. Dry the wheels completely. Notice Begin with a small section of the wheel and with light pressure buff off polish and examine results. ONLY apply and rub with sufficient force and time to remove enough staining that you are satisfied with the results. Some wheels may be stained to the extent that you may only achieve a 50% improvement while others may be able to be restored to the original lustre. IN ALL CASES, only apply until the results are satisfactory. 3. Apply 3M Chrome and Metal Polish #39527* with a clean terry cloth towel. As you apply the polish, the staining will be diminished. 4. When dry, buff off the polish with a clean portion of the towel. 5. Repeat application of the 3M Chrome and Metal Polish until satisfied with the results. If continued applications fail to improve the appearance further discontinue use. This procedure will improve the appearance of the wheels and may, with repeated applications, restore the finish dramatically. For wheels that exhibit spotting from road chemicals the above procedure may marginally improve the condition but will not restore the finish or remove the pitting. In this type of staining the wheel finish has actually been removed in spots and no manner of cleaning will restore the finish. †*We believe this source and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for or assume any responsibility for the products or material from this firm or for any such items that may be available from other sources. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-002F > Apr > 11 > Wheels - Chrome Wheel Staining/Pitting/Corrosion > Page 8362 *This product is currently available from 3M. To obtain information for your local retail location please call 3M at 1-888-364-3577. **This product is currently available from Meguiars (Canada). To obtain information for your local retail location please call Meguiars at 1-800-347-5700 or at www.meguiarscanada.com. ^ This product is currently available from Tri-Peek International. To obtain information for your local retail location please call Tri-Peek at 1-877-615-4272 or at www.tripeek.com. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 07-03-10-012D > Apr > 11 > Tires/Wheels - Rattle Noise from Wheel Or Hub Cap > Page 8367 Tip The bad wheel nut cap can be removed by placing a drift or punch inside the center of the nut cap and using a hammer to tap the wheel nut cap out of the hub cap. 4. From inside the hub cap, apply direct pressure to one side of the wheel nut cap rim (1). The wheel nut cap will tip down and pop out of the wheel hub cap hole when enough pressure is applied. Repeat this procedure for any additional wheel nut caps that need to be replaced. 5. Flip the hub cap over on the work bench. The emblem side should be up. Tip A 22 mm (7/8 in) socket placed over the wheel nut cap may be used along with a hammer to tap the new wheel nut cap back into the hub cap hole. 6. Install the new wheel nut cap into the existing hub cap hole by applying direct pressure to the front center of the wheel nut cap. 7. Install the wheel hub cap onto the vehicle and tighten the wheel nut caps. 8. Repeat this entire procedure for each additional hub cap. Parts Information Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 99-08-51-007E > Mar > 11 > Wheels/Tires - Refinishing Aluminum Wheels > Page 8372 longer. Important Whenever a wheel is refinished, the mounting surface and the wheel nut contact surfaces must not be painted or clearcoated. Coating these surfaces could affect the wheel nut torque. When re-mounting a tire on an aluminum wheel, coated balance weights must be used in order to reduce the chance of future cosmetic damage. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 8377 Some customers may use penetrating oils, grease or other lubricants on wheel studs to aid in removal or installation. Always use a suitable cleaner/solvent to remove these lubricants prior to installing the wheel and tire assemblies. Lubricants left on the wheel studs may cause improper readings of wheel nut torque. Always install wheels to clean, dry wheel studs ONLY. Notice Lubricants left on the wheel studs or vertical mounting surfaces between the wheel and the rotor or drum may cause the wheel to work itself loose after the vehicle is driven. Always install wheels to clean, dry wheel studs and surfaces ONLY. Beginning with 2011 model year vehicles, put a light coating of grease, GM P/N 1051344 (in Canada, P/N 9930370), on the inner surface of the wheel pilot hole to prevent wheel seizure to the axle or bearing hub. Wheel Stud and Lug Nut Damage Always inspect the wheel studs and lug nuts for signs of damage from crossthreading or abuse. You should never have to force wheel nuts down the stud. Lug nuts that are damaged may not retain properly, yet give the impression of fully tightening. Always inspect and replace any component suspected of damage. Tip Always start wheel nuts by hand! Be certain that all wheel nut threads have been engaged BEFORE tightening the nut. Important If the vehicle has directional tread tires, verify the directional arrow on the outboard side of the tire is pointing in the direction of forward rotation. Wheel Nut Tightening and Torque Improper wheel nut tightening can lead to brake pulsation and rotor damage. In order to avoid additional brake repairs, evenly tighten the wheel nuts to the proper torque specification as shown for each vehicle in SI. Always observe the proper wheel nut tightening sequence as shown below in order to avoid trapping the wheel on the wheel stud threads or clamping the wheel slightly off center resulting in vibration. The Most Important Service You Provide While the above information is well known, and wheel removal so common, technicians run the risk of becoming complacent on this very important Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 06-03-10-010A > Jun > 10 > Wheels - Changing Procedures/Precautions > Page 8378 service operation. A simple distraction or time constraint that rushes the job may result in personal injury if the greatest of care is not exercised. Make it a habit to double check your work and to always side with caution when installing wheels. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 8383 of vibration is normally felt more in the "seat of the pants" than the steering wheel. 5. Next, record the Hertz (Hz) reading as displayed by the EVA onto the tire data worksheet found at the end of this bulletin. This should be done after a tire break-in period of at least 16 km (10 mi) at 72 km/h (45 mph) or greater, in order to eliminate any possible tire flat-spotting. This reading confirms what the vehicle vibration frequency is prior to vehicle service and documents the amount of improvement occurring as the result of the various steps taken to repair. Completing the Steering Wheel Shake Worksheet below is required. A copy of the completed worksheet must be saved with the R.O. and a copy included with any parts returned to the Warranty Parts Center for analysis. A reading of 35 to 50 Hz typically indicates a first order propshaft vibration. If this is the situation, refer to Corporate Bulletin Number 08-07-30-044D. Generally, a reading between 10 and 20 Hz indicates a tire/wheel vibration and if this is the reading obtained, continue using this bulletin. If the tire 1st order vibration goes away and stays away during this evaluation, the cause is likely tire flat-spotting. Tire flat-spotting vibration may come and go at any speed over 72 km/h (45 mph) during the first 10 minutes of operation, if vibration continues after 10 minutes of driving at speeds greater than 72 km/h (45 mph), tire flat-spotting can be ruled out as the cause for vibration. 6. If flat-spotting is the cause, provide the explanation that this has occurred due to the vehicle being parked for long periods of time and that the nature of the tire is to take a set. Refer to Corporate Bulletin Number 03-03-10-007E: Information on Tire/Wheel Characteristics (Vibration, Balance, Shake, Flat Spotting) of GM Original Equipment Tires. 7. If the road test indicates a shake/vibration exists, check the imbalance of each tire/wheel assembly on a known, calibrated, off-car dynamic balancer.Make sure the mounting surface of the wheel and the surface of the balancer are absolutely clean and free of debris. Be sure to chose the proper cone/collet for the wheel, and always use the pilot bore for centering. Never center the wheel using the hub-cap bore since it is not a precision machined surface. If any assembly calls for more than 1/4 ounce on either rim flange, remove all balance weights and rebalance to as close to zero as possible. If you can see the vibration (along with feeling it) in the steering wheel (driving straight without your hands on the wheel), it is very likely to be a tire/wheel first order (one pulse per revolution) disturbance. First order disturbances can be caused by imbalance as well as non-uniformities in tires, wheels or hubs. This first order frequency is too low for a human to hear, but if the amplitude is high enough, it can be seen. If a vibration or shake still exists after balancing, any out of round conditions, of the wheel, and force variation conditions of the tire, must be addressed. Equipment such as the Hunter GSP9700 can address both (it is also a wheel balancer). Tire radial force vibration (RFV) can be defined as the amount of stiffness variation the tire will produce in one revolution under a constant load. Radial force variation is what the vehicle feels because the load (weight) of the vehicle is always on the tires. Although free runout of tires (not under load) is not always a good indicator of a smooth ride, it is critical that total tire/wheel assembly runout be within specification. Equipment such as the Hunter GSP9700 loads the tire, similar to on the vehicle, and measures radial force variation of the tire/wheel assembly. Note that the wheel is affecting the tire's RFV measurement at this point. To isolate the wheel, its runout must be measured. This can be easily done on the Hunter, without the need to set up dial indicators. If the wheel meets the runout specification, the tire's RFV can then be addressed. After measuring the tire/wheel assembly under load, and the wheel alone, the machine then calculates (predicts) the radial force variation of the tire. However, because this is a prediction that can include mounting inaccuracies, and the load wheel is much smaller in diameter than used in tire production, this type of service equipment should NOT be used to audit new tires. Rather, it should be used as a service diagnostic tool to minimize radial force variation of the tire/wheel assembly. Equipment such as the Hunter GSP9700 does an excellent job of measuring wheel runout, and of finding the low point of the wheel (for runout) and the high point of the tire (for radial force variation). This allows the tire to be matched mounted to the wheel for lowest tire/wheel assembly force variation. The machine will simplify this process into easy steps. The following assembly radial force variation numbers should be used as a guide: When measuring RFV and match mounting tires perform the following steps. Measuring Wheel Runout and Assembly Radial Force Variation Important The completed worksheet at the end of this bulletin must be attached to the hard copy of the repair order. - Measure radial force variation and radial runout. - If a road force/balancing machine is used, record the radial force variation (RFV) on the worksheet at the end of this bulletin. It may be of benefit to have the lowest RFV assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires onto the subject vehicle. - If a runout/balancing machine is used, record the radial runout of the tire/wheel assemblies on the worksheet at the end of this bulletin. If one or more of the tire/wheel assemblies are more than.040 in (1.02 mm), match mount the tire to the wheel to get below.040 in (1.02 mm). For sensitive customers, readings of 0.030 inch (0.76 mm) or less are preferable, it may also be of benefit to have the lowest runout assembly to the front left corner. If the machine is not available and the EVA data suggests there is an issue, swap the tire and wheel assemblies from the front to the back. Re-check on the EVA and if the problem still exists, test another vehicle to find tires that do not exhibit the same frequency and swap those tires Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 8384 onto the subject vehicle. - After match mounting, the tire/wheel assembly must be rebalanced. If match mounting tires to in-spec wheels produces assembly values higher than these, tire replacement may be necessary. Replacing tires at lower values will probably mean good tires are being condemned. Because tires can sometimes become temporarily flat-spotted, which will affect force variation, it is important that the vehicle be driven at least 16 km (10 mi) prior to measuring. Tire pressure must also be adjusted to the usage pressure on the vehicle's tire placard prior to measuring. Most GM vehicles will tolerate radial force variation up to these levels. However, some vehicles are more sensitive, and may require lower levels. Also, there are other tire parameters that equipment such as the Hunter GSP9700 cannot measure that may be a factor. In such cases, TAC should be contacted for further instructions. Important - When mounting a GM wheel to a wheel balancer/force variation machine, always use the wheel's center pilot hole. This is the primary centering mechanism on all GM wheels; the bolt holes are secondary. Usually a back cone method to the machine should be used. For added accuracy and repeatability, a flange plate should be used to clamp the wheel onto the cone and machine. This system is offered by all balancer manufacturers in GM's dealer program. - Any type of service equipment that removes tread rubber by grinding, buffing or truing is NOT recommended, and may void the tire warranty. However, tires may have been ground by the tire company as part of their tire manufacturing process. This is a legitimate procedure. Steering Wheel Shake Worksheet When diagnosing vibration concerns, use the following worksheet in conjunction with the appropriate Vibration Analysis-Road testing procedure in the Vibration Correction sub-section in SI. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 00-03-10-006F > May > 10 > Wheels/Tires - Tire Radial Force Variation (RFV) > Page 8385 Refer to the appropriate section of SI for specifications and repair procedures that are related to the vibration concern. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 05-03-10-003F > Apr > 10 > Tires/Wheels - Low Tire/Leaking Cast Aluminum Wheels > Page 8390 10. Align the inscribed mark on the tire with the valve stem on the wheel. 11. Reinstall the Tire Pressure Sensor. Refer to Tire Pressure Sensor installation procedure in SI. 12. Mount the tire on the wheel. Refer to Tire Mounting and Dismounting. 13. Pressurize the tire to 276 kPa (40 psi) and inspect for leaks. 14. Adjust tire pressure to meet the placard specification. 15. Balance the tire/wheel assembly. Refer to Tire and Wheel Assembly Balancing - Off-Vehicle. 16. Install the tire and wheel assembly onto the vehicle. Refer to the appropriate service procedure in SI. Parts Information Warranty Information (excluding Saab U.S. Models) Important The Silicone - Adhesive/Sealant comes in a case quantity of six. ONLY charge warranty one tube of adhesive/sealant per wheel repair. For vehicles repaired under warranty, use: One leak repair per wheel. Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 8395 Important Other forms of slow air leaks are possible. If the body of the tire, valve stem and wheel flange show no signs of air seepage, refer to Corporate Bulletin Number 05-03-10-003D for additional information on possible wheel porosity issues. 3. Bead seat corrosion is identified by what appears like blistering of the wheel finish, causing a rough or uneven surface that is difficult for the tire to maintain a proper seal on. Below is a close-up photo of bead seat corrosion on an aluminum wheel that was sufficient to cause slow air loss. Close-Up of Bead Seat Corrosion 4. If corrosion is found on the wheel bead seat, measure the affected area as shown below. - For vehicles with 32,186 km (20,000 mi) or less, the total allowable combined linear area of repairable corrosion is 100 mm (4 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. - For vehicles that have exceeded 32,186 km (20,000 mi), the total allowable combined linear area of repairable corrosion is 200 mm (8 in) or less. If the total area(s) of corrosion exceed these dimensions, the wheel should be replaced. 5. In order to correct the wheel leak, use a clean-up (fine cut) sanding disc or biscuit to remove the corrosion and any flaking paint. You should remove the corrosion back far enough until you reach material that is stable and firmly bonded to the wheel. Try to taper the edge of any flaking paint as best you can in order to avoid sharp edges that may increase the chance of a leak reoccurring. The photo below shows an acceptable repaired surface. Notice Corrosion that extends up the lip of the wheel, where after the clean-up process it would be visible with the tire mounted, is only acceptable on the inboard flange. The inboard flange is not visible with the wheel assembly in the mounted position. If any loose coatings or corrosion extend to the visible surfaces on the FACE of the wheel, that wheel must be replaced. Important Remove ONLY the material required to eliminate the corrosion from the bead seating surface. DO NOT remove excessive amounts of material. ALWAYS keep the sealing surface as smooth and level as possible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 8396 Acceptably Prepared (Cleaned-Up) Wheel Surface 6. Once the corrosion has been eliminated, you should coat the repaired area with a commercially available tire sealant such as Patch Brand Bead Sealant or equivalent. Commercially available bead sealants are black rubber-like coatings that will permanently fill and seal the resurfaced bead seat. At 21°C (70°F) ambient temperature, this sealant will set-up sufficiently for tire mounting in about 10 minutes.Coated and Sealed Bead Seat 7. Remount the tire and install the repaired wheel and tire assembly. Refer to Tire and Wheel Removal and Installation in SI. Parts Information Patch Brand Bead Sealer is available from Myers Tires at 1-800-998-9897 or on the web at www.myerstiresupply.com. The one-quart size can of sealer will repair about 20 wheels. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use: Warranty Information (Saab U.S. Models) For vehicles repaired under warranty, use the table above. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 08-03-10-006C > Apr > 10 > Tires/Wheels - Tire Slowly Goes Flat/Warning Light ON > Page 8397 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8406 Refer to the Model Application Chart shown to verify usage. Supercede: This bulletin is being revised to include 2007 model year and calibration information. Please discard Corporate Bulletin Number 03-03-10-006E (Section 03 - Suspension). Tires GM has designed 20" wheels based on the Goodyear Eagle LS and LS2 P275/55R20 tire. The Goodyear Eagle LS tire has a Tire Performance Criteria spec # 1235 and the LS2 has a Tire Performance Criteria spec # 1245. These tires have been designed to GM's specific Tire Performance Criteria. GM's Tire Performance Criteria specifications meet or exceed all Federal safety guidelines. When mounting the tires, rubber lubricant, P/N 12345884 (in Canada, P/N 5728223), MUST be used. The vehicle should not be driven aggressively (hard acceleration or braking) for at least 6-8 hours after tire mounting to allow the lube to dry. Failure to do so may cause the tire to slip on the rim. This condition will affect wheel balance which could result in a vibration. Spare Tire A P265/75R16 or P265/70R17 tire should be used as a spare. Re-use the vehicle's original spare wheel to mount the spare tire. The spare tire should be used to drive the vehicle to a tire repair/replacement facility and is not intended for extended driving conditions. Tire Changers Dealers must have the correct level of tire changing equipment to perform tire changing services. GM requirements and recommendations for servicing glamour wheels are as follows: ^ Rim Clamp design ^ Runflat capable (preferred) ^ Side mounted bead breaking to reduce stress on the wheel and tire ^ No metal contact to the wheel at the clamping jaws Protective devices to prevent damage during mounting and dismounting operations Regulated air pressure to protect user and wheel assembly. Approved lubricant (P/N 12345884 [in Canada, P/N 5728223]) to avoid wheel slip and damage to the wheel For further information regarding equipment meeting the requirements for this program, call 1-800-GM-TOOLS. Balancing MC style coated weights are recommended and will provide the best balancing of the tire-wheel assembly. If stick-on weights are used, be sure to follow the manufacturers recommended installation procedure (SI Document ID # 664222) making sure the surface is clean and dry. Using the incorrect type of weights will result in improper fit, and such weights may fall off the wheel. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8407 Balancing of the tire and wheel assembly must be performed on a computerized balancer, capable of static and dynamic wheel balance modes. Assemblies should be balanced to within 1/4 ounce on either rim flange. Proper cones and adapters should be used, free of nicks and burrs to ensure proper balancing. Center Cap Install the center cap onto the wheel after the tire has been mounted and balanced, but BEFORE the assembly is installed onto the vehicle. The preferred method for center cap installation is to push in by hand. As an alternate, use a nonmetallic object to push the center cap into place. Attempting to "hammer-on" the caps may result in damage to the cap. Wheel (Lug) Nuts ALUMINUM WHEELS REQUIRE SPECIAL WHEEL NUTS. Each wheel nut should be torqued in the appropriate torque sequence (refer to graphic) and to 190 N.m (140 lb ft). The torque should be re-checked after the first 160 km (100 mi). To help protect the wheels from theft, a wheel lock kit is also available. Incorrect wheel nuts or improperly tightened wheel nuts can cause the wheel to become loose and even come off. This could lead to an accident. Be sure to use the correct wheel nuts. Wheel Nut Caps Install the wheel nut caps after tightening the wheel nuts. Install the wheel nut caps finger tight, plus 1/2 turn. Jounce Bumper This modification is required on all 2WD vehicles EXCEPT the following: Excludes: 2006-2007 2WD Extended Cab - Short Box (model C15553) 2006-2007 2WD Crew Cab - Short Box with Enhanced Trailering (RPO NHT) (model C15543) 2006-2007 2WD Extended Cab - Standard Box with Enhanced Trailering (RPO NHT) (model C15753) It will be required to replace the existing front suspension spring/jounce bumper with Jounce Bumper kit, P/N 12499481. The following procedure should be followed: Raise and support the vehicle. Remove the nut from the spring bumper stud. Remove the spring bumper. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8408 Install a new spring bumper assembly for 2WD 1500 Series Only with 20" wheels. Reuse the nut from the original bumper. Install the nut to the spring bumper stud. Tighten Tighten the nut to 30 N.m (22 lb ft). Remove the safety stands. Lower the vehicle. Knee Bolster Deflector This modification is required for the following vehicles and ONLY applies to Extended Cab Long Box (K15953) Pickup models: 1999-2005 Chevrolet Silverado and GMC Sierra (1500 Series Only): 2005 Vehicles Built in Pontiac (VIN Code E) prior to VIN Breakpoint 5E100134 2005 Vehicles Built in Oshawa (VIN Code 1) prior to VIN Breakpoint 51113131 2005 Vehicles Built in Ft. Wayne (VIN Code Z) prior to VIN Breakpoint 5Z126605 The following procedure should be followed: Apply the parking brake to prevent the vehicle from moving. Remove the fuse panel cover. Remove the I/P cluster trim plate bezel. Remove the knee bolster. Remove the 2 mm (0.078 in) thick knee bolster deflector. Install the 1.5 mm (0.059 in) thick knee bolster deflector, P/N 12499966. A detailed instruction sheet will be provided with the service part. Re-Programming Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8409 It will be necessary to reprogram the PCM for speedometer accuracy. Contact Techline to obtain a VCI number. Then refer to the table for the appropriate calibration part number based on the model year and axle ratio. Calibration Information Documentation Make a copy of the "Accessory Wheel and Tire Information Form" included in this bulletin. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8410 Provide all information required on the form. Make a copy of the completed form for the customer to keep in the vehicle along with their Owner's Manual. File the original completed form in the Dealership's Vehicle Service History folder. Because this is not a warranty repair, dealers will incur a charge to obtain a VCI number. A VCI number will only be available for the following models: 1999-2007 Chevrolet Silverado and GMC Sierra (1500 Series Only) EXCLUDES 1999-2000 vehicles equipped with 4.3L engine (RPO L35) EXCLUDES vehicles equipped with Quadrasteer (RPO NYS) EXCLUDES Parallel Hybrid Truck (RPO HP2) EXCLUDES 2001-2004 vehicles equipped with Traction Control (RPO NW7) combined with 3.42 Axle Ratio (RPO GU6) Refer to the Model Application Chart to in the beginning of this bulletin to verify usage. Calibrations are not available for 1999 and 2000 model year vehicles with 3.08 axle. Calibrations are not available for 1999 and 2000 model year vehicles equipped with 4.3L engine (RPO L35). If original equipment tires/wheels are reinstalled, it will be necessary to reset the programming of the PCM and the ABS module to the original specifications. Labels After installing the recommended P275/55R20 tires, place the provided label on the vehicle. The label should be located on the doorjamb, near the original tire label, and should not cover up the original tire label. Be sure that the surface is clean and dry. The surface temperature should not be less than 21°C (70°F). The label is provided as a guide for tire inflation pressures and information relevant to occupant/cargo capacities. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8411 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8412 Parts Information Warranty Information Wheels All GM Accessories sold and permanently installed on a GM vehicle PRIOR to new vehicle delivery will be covered under the provisions of the New Vehicle Limited Warranty. For the U.S., in the event GM Accessories are installed AFTER the New Vehicle Delivery, or are replaced under the New Vehicle Warranty, they will be covered (parts and labor) for the balance of the vehicle warranty, but in no event less than 12 months/12,000 miles. This coverage is only effective for GM Accessories permanently installed by a GM dealer or a GM approved ADI (Accessory Distributor/Installer). For Canada, in the event GM Accessories are installed AFTER the New Vehicle Delivery, they will be covered (parts and labor) for the balance of the vehicle warranty, or up to 12 months/Unlimited kilometers depending on month installed. For replacement after the new vehicle warranty expires, but within the 12 months/unlimited kilometers coverage, refer to claim type "B" guidelines. GM Accessories sold over-the-counter, or those not requiring installation, will continue to receive the standard GM Dealer Parts Warranty of 12 months from the date of purchase (parts only). Tires Any approved tire installed on a GM Vehicle PRIOR to delivery will be covered under the provisions of the New Vehicle Limited Warranty. Tires are covered against defects in material and workmanship. Tires are warranted for defects "without" prorated charge for tread mileage. Subsequent replacements under this warranty will continue to be covered for the remainder of the New Vehicle Limited Warranty. Any approved tire installed on a GM Vehicle PRIOR to delivery may continue to be warranted on a prorated basis by the tire manufacturer once the New Vehicle Limited Warranty expires. Any approved tire installed AFTER delivery will be covered under the provisions of the tire manufacturer warranty. USA dealers should refer to GM Warranty Administration Bulletin 00-03-10-003I and GM Parts Process / Policy Bulletin IB03-001 for more information. Canadian dealers should refer to GM Warranty Administration Bulletin 01-03-10-003B. GM Warranty Claims Processing Only GM dealerships have the ability to file warranty claims for GM Parts and Accessories. Therefore, any warranty claims filed against such parts must be handled by the servicing GM dealership. This includes those parts purchased from a GM-approved ADI (Accessory Distributor / Installer). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > All Other Service Bulletins for Engine Control Module: > 03-03-10-006F > Sep > 06 > Wheels/Tires - 20 Inch Wheels Available From GM > Page 8413 ACCESSORY WHEEL AND TIRE INFORMATION FORM You have just modified your vehicle by installing an "Accessory Package" which includes Wheels and Tires. This form contains important information about your accessory installation. In an effort to provide superior service to you, our customer, we ask that you please present this form to your Servicing Dealer when removing or installing wheels and tires on your vehicle. This form contains important information necessary to service your vehicle. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Technical Service Bulletins > Page 8414 Left Front Of The Engine Compartment Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions Engine Control Module: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8417 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8418 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8419 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8420 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8421 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8422 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8423 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8424 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8425 Engine Control Module: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8426 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8427 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8428 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8429 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8430 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8431 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8432 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8433 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8434 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8435 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8436 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8437 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8438 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8439 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8440 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8441 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8442 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8443 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8444 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8445 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8446 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8447 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8448 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8449 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8450 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8451 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8452 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8453 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8454 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8455 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8456 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8457 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8458 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8459 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8460 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8461 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8462 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8463 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8464 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8465 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8466 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8467 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8468 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8469 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8470 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8471 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8472 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8473 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8474 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8475 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8476 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8477 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8478 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8479 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8480 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8481 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8482 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8483 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8484 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8485 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8486 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8487 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8488 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8489 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8490 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8491 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8492 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8493 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8494 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8495 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8496 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8497 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8498 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8499 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8500 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8501 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8502 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8503 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8504 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8505 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8506 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8507 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8508 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8509 Engine Control Module: Connector Views Powertrain Control Module (PCM) C1 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8510 Powertrain Control Module (PCM) C1 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8511 Powertrain Control Module (PCM) C1 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8512 Powertrain Control Module (PCM) C2 (Part 1) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8513 Powertrain Control Module (PCM) C2 (Part 2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Diagram Information and Instructions > Page 8514 Powertrain Control Module (PCM) C2 (Part 3) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8515 Engine Control Module: Service Precautions Powertrain Control Module and Electrostatic Discharge Notice Notice: Do not touch the connector pins or soldered components on the circuit board in order to prevent possible electrostatic discharge (ESD) damage to the PCM. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8516 Engine Control Module: Description and Operation POWERTRAIN CONTROL MODULE DESCRIPTION POWERTRAIN The powertrain has electronic controls to reduce exhaust emissions while maintaining excellent driveability and fuel economy. The powertrain control module (PCM) is the control center of this system. The PCM monitors numerous engine and vehicle functions. The PCM constantly looks at the information from various sensors and other inputs, and controls the systems that affect vehicle performance and emissions. The PCM also performs the diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. Review the components and wiring diagrams in order to determine which systems are controlled by the PCM. The following are some of the functions that the PCM controls: The engine fueling - The ignition control (IC) - The knock sensor (KS) system - The evaporative emissions (EVAP) system - The secondary air injection (AIR) system (if equipped) - The exhaust gas recirculation (EGR) system - The automatic transmission functions - The generator - The A/C clutch control - The cooling fan control POWERTRAIN CONTROL MODULE FUNCTION The powertrain control module (PCM) constantly looks at the information from various sensors and other inputs and controls systems that affect vehicle performance and emissions. The PCM also performs diagnostic tests on various parts of the system. The PCM can recognize operational problems and alert the driver via the malfunction indicator lamp (MIL). When the PCM detects a malfunction, the PCM stores a diagnostic trouble code (DTC). The problem area is identified by the particular DTC that is set. The control module supplies a buffered voltage to various sensors and switches. The input and output devices in the PCM include analog-to-digital converters, signal buffers, counters, and output drivers. The output drivers are electronic switches that complete a ground or voltage circuit when turned on. Most PCM controlled components are operated via output drivers. The PCM monitors these driver circuits for proper operation and, in most cases, can set a DTC corresponding to the controlled device if a problem is detected. MALFUNCTION INDICATOR LAMP (MIL) OPERATION The malfunction indicator lamp (MIL) is located in the instrument panel cluster. The MIL will display as either SERVICE ENGINE SOON or one of the following symbols when commanded ON: The MIL indicates that an emissions related fault has occurred and vehicle service is required. The following is a list of the modes of operation for the MIL: The MIL illuminates when the ignition is turned ON, with the engine OFF. This is a bulb test to ensure the MIL is able to illuminate. - The MIL turns OFF after the engine is started if a diagnostic fault is not present. - The MIL remains illuminated after the engine is started if the control module detects a fault. A diagnostic trouble code (DTC) is stored any time the control module illuminates the MIL due to an emissions related fault. The MIL turns OFF after three consecutive ignition cycles in which a Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8517 Test Passed has been reported for the diagnostic test that originally caused the MIL to illuminate. - The MIL flashes if the control module detects a misfire condition which could damage the catalytic converter. - When the MIL is illuminated and the engine stalls, the MIL will remain illuminated as long as the ignition is ON. - When the MIL is not illuminated and the engine stalls, the MIL will not illuminate until the ignition is cycled OFF and then ON. TRIP A trip is an interval of time during which the diagnostic test runs. A trip may consist of only a key cycle to power up the powertrain control module (PCM), allow the diagnostic to run, then cycle the key off to power down the PCM. A trip may also involve a PCM power up, meeting specific conditions to run the diagnostic test, then powering down the PCM. The definition of a trip depends upon the diagnostic. Some diagnostic tests run only once per trip (i.e., catalyst monitor) while other tests run continuously during each trip (i.e., misfire). WARM-UP CYCLE The powertrain control module (PCM) uses warm-up cycles to run some diagnostics and to clear any diagnostic trouble codes (DTCs). A warm-up cycle occurs when the engine coolant temperature increases 22°C (40°F) from the start-up temperature. The engine coolant must also achieve a minimum temperature of 71°C (160°F). The PCM counts the number of warm-up cycles in order to clear the malfunction indicator lamp (MIL). The PCM will clear the DTCs when 40 consecutive warm-up cycles occur without a malfunction. DIAGNOSTIC TROUBLE CODES (DTCS) The powertrain control module (PCM) is programmed with test routines that test the operation of the various systems the PCM controls. Some tests monitor internal PCM functions. Many tests are run continuously. Other tests run only under specific conditions, referred to as Conditions for Running the DTC. When the vehicle is operating within the conditions for running a particular test, the PCM monitors certain parameters and determines if the values are within an expected range. The parameters and values considered outside the range of normal operation are listed as Conditions for Setting the DTC. When the Conditions for Setting the DTC occur, the PCM executes the Action Taken When the DTC Sets. Some DTCs alert the driver via the malfunction indicator lamp (MIL) or a message. Other DTCs do not trigger a driver warning, but are stored in memory. The PCM also saves data and input parameters when most DTCs are set. This data is stored in the Freeze Frame and/or Failure Records. The DTCs are categorized by type. The DTC type is determined by the MIL operation and the manner in which the fault data is stored when a particular DTC fails. In some cases there may be exceptions to this structure. Therefore, when diagnosing the system it is important to read the Action Taken When the DTC Sets and the Conditions for Clearing the DTC in the supporting text. There are different types of DTCs and different actions taken when the DTCs set. Refer to Diagnostic Trouble Code (DTC) Type Definitions for a description of the general characteristics of each DTC type. DTC STATUS When the scan tool displays a DTC, the status of the DTC is also displayed. The following DTC statuses are indicated only when they apply to the DTC that is set. Fail This Ign. (Fail This Ignition) Indicates that this DTC failed during the present ignition cycle. Last Test Fail Indicates that this DTC failed the last time the test ran. MIL Request Indicates that this DTC is currently requesting the malfunction indicator lamp (MIL). This selection will report type B DTCs only when they have requested the MIL (failed twice). Test Fail SCC (Test Failed Since Code Clear) Indicates that this DTC that has reported a failure since the last time DTCs were cleared. History Indicates that the DTC is stored in the powertrain control module (PCM) History memory. Type B DTCs will not appear in History until they have requested the MIL (failed twice). History will be displayed for all type A DTCs and type B DTCs (which have requested the MIL) that have failed within the last 40 warm-up cycles. Type C DTCs that have failed within the last 40 warm-up cycles will also appear in History. Not Run SCC (Not Run Since Code Clear) DTCs will be listed in this category if the diagnostic has not run since DTCs were last cleared. This status is not included with the DTC display since the DTC can not be set if the diagnostic has not run. This information is displayed when DTC Info is requested using the scan tool. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8518 Engine Control Module: Testing and Inspection FUEL COMPOSITION DIAGNOSIS SYSTEM DESCRIPTION When an E85 compatible vehicle is built, an engine control module (ECM) or powertrain control module (PCM) replaced, or when the learned alcohol content has been reset with a scan tool the fuel system will need to contain ASTM gasoline with 10 percent or less ethanol content. If the fuel in the fuel system needs to be drained and replaced with ASTM gasoline, the engine will need to run at operating temperature and consume at least 1 liter of fuel before the system will recognize the correct alcohol content. Either ASTM gasoline or ASTM E85 fuel can then be used TEST Step 1 - Step 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8519 Engine Control Module: Service and Repair POWERTRAIN CONTROL MODULE REPLACEMENT Service of the powertrain control module (PCM) should consist of either replacement of the PCM or programming of the electrically erasable programmable read only memory (EEPROM). If the diagnostic procedures call for the PCM to be replaced, the replacement PCM should be checked to ensure that the correct part is being used. If the correct part is being used, remove the faulty PCM and install the new service PCM. NOTE: - Turn the ignition OFF when installing or removing the control module connectors and disconnecting or reconnecting the power to the control module (battery cable, powertrain control module (PCM)/engine control module (ECM)/transaxle control module (TCM) pigtail, control module fuse, jumper cables, etc.) in order to prevent internal control module damage. - Control module damage may result when the metal case contacts battery voltage. DO NOT contact the control module metal case with battery voltage when servicing a control module, using battery booster cables, or when charging the vehicle battery. - In order to prevent any possible electrostatic discharge damage to the control module, do no touch the connector pins or the soldered components on the circuit board. - Remove any debris from around the control module connector surfaces before servicing the control module. Inspect the control module connector gaskets when diagnosing or replacing the control module. Ensure that the gaskets are installed correctly. The gaskets prevent contaminant intrusion into the control module. - The replacement control module must be programmed. IMPORTANT: It is necessary to record the remaining engine oil life. If the replacement module is not programed with the remaining engine oil life, the engine oil life will default to 100 percent. If the replacement module is not programmed with the remaining engine oil life, the engine oil will need to be changed at 5000 km (3,000 mi) from the last engine oil change. Removal Procedure 1. Using a scan tool, retrieve the percentage of remaining engine oil. Record the remaining engine oil life. 2. Disconnect the negative battery cable. 3. If equipped with regular production option (RPO) NYS, remove the harness ground clip from the PCM cover. 4. If equipped with RPO HP2, remove the hybrid control module (HCM). 5. If vehicle is NOT equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8520 6. If vehicle is equipped with RPO HP2, perform the following: 1. Release the PCM cover mounting tabs. 2. Release the PCM cover from the mounting bracket. 3. Remove the PCM cover. 7. Loosen the PCM electrical connector bolts (2). NOTE: Refer to PCM and ESD Notice. - In order to prevent internal damage to the PCM, the ignition must be OFF when disconnecting or reconnecting the PCM connector. 8. Disconnect the PCM electrical connectors. 9. Release the spring latch from the PCM. 10. Release the PCM mounting tabs from the PCM. 11. Remove the PCM. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8521 1. Install the PCM.Ensure that the mounting tabs are engaged. 2. Secure the spring latch to the PCM. 3. Connect the PCM electrical connectors. NOTE: Refer to Fastener Notice. 4. Tighten the PCM electrical connector bolts (2). Tighten the bolts to 8 N.m (71 lb in). 5. If vehicle is equipped with RPO HP2, install the PCM cover. 6. If vehicle is NOT equipped with RPO HP2, install the PCM cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Relays and Modules Computers and Control Systems > Engine Control Module > Component Information > Diagrams > Page 8522 7. If equipped with RPO HP2, install the HCM. 8. If equipped with RPO NYS, install the harness ground clip to the PCM cover. 9. Connect the negative battery cable. 10. If a NEW PCM was installed, program the PCM. Refer to Control Module References. See: Testing and Inspection/Programming and Relearning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 8527 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 8528 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 8529 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Accelerator Pedal Position Sensor > Component Information > Locations > Page 8530 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8536 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8537 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8538 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8539 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8540 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8541 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8542 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8543 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8544 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8545 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8546 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8547 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8548 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8549 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8550 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8551 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8552 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8553 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8554 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8555 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8556 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8557 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8558 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8559 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8560 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8561 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8562 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8563 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8564 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8565 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8566 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8567 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8568 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8569 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8570 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8571 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8572 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8573 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8574 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8575 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8576 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8577 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8578 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8579 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8580 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8581 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8582 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8583 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8584 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8585 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8586 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8587 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8588 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8589 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8590 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8591 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8592 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8593 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8594 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8595 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8596 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8597 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8598 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8599 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8600 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8601 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8602 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8603 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8604 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8605 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8606 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8607 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8608 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8609 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8610 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8611 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8612 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8613 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8614 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8615 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8616 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8617 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8618 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8619 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8620 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8621 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8622 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8623 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8624 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8625 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8626 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8627 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8628 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 8629 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Air Flow Meter/Sensor > Component Information > Diagrams > Page 8630 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Battery Current Sensor > Component Information > Diagrams Battery Current Sensor: Diagrams Engine Electrical Connector End Views Current Sensor (HP2) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8638 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8639 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8640 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8641 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8642 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8643 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8644 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8645 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8646 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8647 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8648 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8649 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8650 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8651 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8652 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8653 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8654 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8655 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8656 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8657 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8658 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8659 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8660 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8661 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8662 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8663 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8664 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8665 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8666 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8667 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8668 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8669 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8670 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8671 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8672 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8673 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8674 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8675 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8676 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8677 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8678 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8679 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8680 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8681 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8682 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8683 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8684 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8685 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8686 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8687 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8688 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8689 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8690 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8691 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8692 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8693 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8694 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8695 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8696 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8697 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8698 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8699 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8700 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8701 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8702 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8703 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8704 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8705 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8706 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8707 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8708 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8709 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8710 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8711 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8712 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8713 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8714 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8715 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8716 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8717 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8718 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8719 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8720 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8721 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8722 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8723 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8724 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8725 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8726 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8727 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8728 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8729 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8730 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Camshaft Position Sensor > Component Information > Diagrams > Page 8731 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Clutch Switch, ECM > Component Information > Diagrams Clutch Switch: Diagrams Engine Electrical Connector End Views Clutch Pedal Position (CPP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): Customer Interest Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8743 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8744 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8745 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Customer Interest for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8746 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps Coolant Temperature Sensor/Switch (For Computer): All Technical Service Bulletins Engine - MIL ON P0116/P1400 Set In Very Cold Temps TECHNICAL Bulletin No.: 10-06-04-008A Date: January 24, 2011 Subject: Malfunction Indicator Lamp (MIL) Illuminated at Very Cold Ambient Temperatures When Using Engine Coolant Heater, DTC P0116 and/or P1400 Set (Relocate Engine Coolant Temperature (ECT) Sensor and Engine Coolant Heater Cord) Models: 2006-2007 Buick Rainier 2009 Buick LaCrosse Super, Allure Super (Canada Only) 2006-2010 Cadillac Escalade 2006-2007 Chevrolet Monte Carlo 2006-2009 Chevrolet Impala SS, TrailBlazer 2006-2010 Chevrolet Avalanche, Express, Silverado Tahoe 2006-2009 GMC Envoy 2006-2010 GMC Savana, Sierra, Yukon 2006-2008 Pontiac Grand Prix 2006-2009 Saab 9-7X Equipped with V8 Engine RPO LC9, LH6, LH8, LH9, L76, LS2, LS4, LFA, LZ1, L92, L94, L9H or L20, L96, LMF, LMG, LY2, LY5, LY6 Please Refer to GMVIS Attention: To properly correct this condition, you must follow both of the procedures to relocate the ECT sensor and the engine coolant heater cord. Supercede: This bulletin is being revised to add cast iron block engine RPOs and to update the Warranty Information coverage period. Please discard Corporate Bulletin Number 10-06-04-008 (Section 06 - Engine/Propulsion System). Condition Some customers may comment that the malfunction indicator lamp (MIL) illuminates after starting the vehicle when they were using the engine coolant heater in very cold ambient temperatures. This usually occurs in a range of -23 to -40°C (-10 to -40°F) or colder. The technician may observe on a scan tool DTC P0116 and/or P1400 set as Current or in History. Cause This condition may be caused by the engine control module (ECM) determining that the ignition OFF time requirement has been met at start-up and interpreting the temperature difference between the engine coolant temperature (ECT) sensor and the intake air temperature (IAT) sensor as being outside of a calibrated range. Correction Important DO NOT replace the ECM for this condition. Relocating the ECT Sensor 1. Turn ON the ignition with the engine OFF. 2. Perform the diagnostic system check - vehicle. Refer to Diagnostic System Check - Vehicle in SI. ‹› If DTC P0116 and/or P1400 are set and the customer WAS using the engine coolant heater, proceed to Step 3. ‹› If DTC P0116 and/or P1400 are set and the customer WAS NOT using the engine coolant heater, refer to Diagnostic Trouble Code (DTC) List - Vehicle in SI. 3. Turn OFF the ignition. Warning To avoid being burned, do not remove the radiator cap or surge tank cap while the engine is hot. The cooling system will release scalding fluid and steam Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8752 under pressure if the radiator cap or the surge tank cap is removed while the engine and radiator are still hot. 4. Remove the surge tank fill cap from the surge tank or the coolant pressure cap from the radiator. 5. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle in SI. 6. Place a clean drain pan under the radiator drain cock or under the lower radiator hose depending on the vehicle. Refer to Cooling System Draining and Filling in SI. 7. Loosen the radiator drain cock if equipped or use J 38185 clamp pliers and reposition the clamp on the lower radiator hose at the radiator. 8. Remove the end of the lower radiator hose from the radiator. 9. Drain the engine coolant sufficiently below the level of the ECT sensor. 10. Close the radiator drain cock or connect the lower radiator hose at the radiator. 11. Use the J 38185 clamp pliers to place the clamp into the original position on the hose. 12. Lower the vehicle. 13. Disconnect the wiring harness connector from the ECT sensor (2). 14. Remove the ECT sensor (1) from the front of the cylinder head. 15. Remove the corresponding size plug at the rear of the OTHER cylinder head. 16. Coat the threads of the ECT sensor with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 17. Install the ECT sensor in the hole of the cylinder head where the plug was removed. Tighten Tighten to 20 Nm (15 lb ft). 18. Coat the threads of the plug with sealer. Use GM P/N 12346004 (Canadian P/N 10953480) or an equivalent. 19. Install the plug in the hole of the cylinder head where the ECT sensor was removed Tighten Tighten to 20 Nm (15 lb ft). Important Leave enough wire attached to the ECT sensor harness connector in order to create manageable splices that are at least 40 mm (1.5 in) away from the other splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8753 20. Extract a portion of the ECT sensor harness wiring and connector from the protective conduit. Cut off the ECT sensor harness connector and wiring. 21. Determine a routing path for the ECT sensor jumper harness wires so that they can be secured TO or WITHIN an existing protective conduit. Note This step is to set up and verify the length of wiring that is required before cutting. 22. Route the ECT sensor jumper wires and then enclose them in their own protective conduit in order to VERIFY the length that is required. 23. Cut the ECT sensor jumper wires to the appropriate length. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 24. Splice the ECT sensor jumper wires to the ORIGINAL ECT HARNESS LOCATION using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. Note Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splice or connector. 25. Splice the ECT sensor jumper wires to the ECT SENSOR HARNESS CONNECTOR using DuraSeal weatherproof splices. Refer to Splicing Copper Wire Using Splice Sleeves in SI. 26. Connect the ECT sensor harness connector to the ECT sensor. 27. Secure the ECT sensor jumper wires that are in their own protective conduit TO or WITHIN the existing harness conduit using tie straps. Important You MUST run the engine at the specified RPM and until it reaches normal operating temperature and then allow it to idle as indicated in SI. The engine MUST then be allowed to cool down in order to top off the coolant level as needed. 28. Fill the cooling system to the proper level. Refer to Cooling System Draining and Filling in SI. 29. Pressure test the cooling system. Refer to Cooling System Leak Testing in SI. 30. Use a scan tool to clear any DTCs. Relocating the Engine Coolant Heater Cord Important For reference, the procedure and graphics that are shown are from a Chevrolet Silverado, but are similar for the other vehicles listed above. 1. Turn OFF the ignition. 2. Ask the customer where they would prefer the extension cord to exit from the engine compartment in order to determine the required extension cord length. 3. Obtain an extension cord with the following features: - 120 volt - 14/3 gauge - 15A capacity - Three prong - Polarized plug and receptacle - Chemical resistant - Grounded terminals - Designed for use in a cold outdoor environment - Outer jacket resistant to deterioration from moisture, abrasion and exposure to sunlight - Maximum length of 2.5-3 m (8-10 ft) 4. Release enough of the clips that retain the engine coolant heater cord to the vehicle to provide the necessary length for repositioning. 5. Apply dielectric grease to the electrical contacts of the heater cord receptacle and the extension cord plug to prevent corrosion. Use GM P/N 12345579 (in Canada, use P/N 10953481) or an equivalent. 6. Connect the heater cord receptacle to the extension cord plug and wipe OFF any excess grease. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8754 7. Wrap electrical tape around the connection as shown. 8. Route the engine coolant heater cord and extension cord behind the alternator and adjacent to the engine coolant crossover pipe as shown. 9. Continue to route the extension cord to the exit location desired by the customer as shown. 10. Review the routing of the coolant heater cord and extension cord to verify that it does not touch any sharp edges that could damage it. 11. Secure the engine coolant heater cord and the extension cord with tie straps as needed. 12. Resecure any of the original clips that retained the engine coolant heater cord to the vehicle that were released to provide length. Part Information The extension cord may be obtained at any of the following outlets: - Lowes* - Home Depot* - Canada: Acklands-Grainger* (www.acklandsgrainger.com), Catalogue Part Number: CWRSJTOW3C14-10 USA: Cords should bear the UL symbol. Canada: Cords should bear the ULc symbol or CSA approval. *We believe these sources and their products to be reliable. There may be additional manufacturers of such products/materials. General Motors does not endorse, indicate any preference for, or assume any responsibility for the products or material from these firms or for any such items that may be available from other sources. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Coolant Temperature Sensor/Switch (For Computer): > 10-06-04-008A > Jan > 11 > Engine - MIL ON P0116/P1400 Set In Very Cold Temps > Page 8755 Warranty Information (excluding Saab Models) For vehicles repaired under the 5 year / 100,000 mile (160,000 km) emission warranty, use: Warranty Information (Saab Models) For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 8756 Temperature Versus Resistance Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 8757 Left Side Of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 8758 Engine Coolant Temperature (ECT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 8759 Coolant Temperature Sensor/Switch (For Computer): Service and Repair ENGINE COOLANT TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. Drain the cooling system to a level below the engine cooling temperature (ECT) sensor. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Disconnect the ECT sensor electrical connector (5). 3. Remove the ECT sensor. INSTALLATION PROCEDURE NOTE: Replacement components must be the correct part number for the application. Components requiring the use of the thread locking compound, lubricants, corrosion inhibitors, or sealants are identified in the service procedure. Some replacement components may come with these coatings already applied. Do not use these coatings on components unless specified. These coatings can affect the final torque, which may affect the operation of the component. Use the correct torque specification when installing components in order to avoid damage. - Use care when handling the coolant sensor. Damage to the coolant sensor will affect the operation of the fuel control system. 1. If installing the old sensor, coat the threads with sealant GM P/N 12346004 (Canadian P/N 10953480) or equivalent. NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Coolant Temperature Sensor/Switch (For Computer) > Component Information > Technical Service Bulletins > Page 8760 2. Install the ECT sensor. Tighten the sensor to 20 N.m (15 lb ft). 3. Connect the ECT sensor electrical connector (5). 4. Refill the cooling. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8765 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8766 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8767 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8768 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8769 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8770 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8771 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8772 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8773 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8774 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8775 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8776 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8777 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8778 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8779 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8780 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8781 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8782 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8783 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8784 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8785 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8786 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8787 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8788 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8789 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8790 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8791 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8792 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8793 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8794 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8795 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8796 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8797 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8798 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8799 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8800 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8801 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8802 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8803 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8804 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8805 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8806 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8807 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8808 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8809 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8810 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8811 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8812 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8813 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8814 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8815 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8816 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8817 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8818 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8819 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8820 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8821 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8822 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8823 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8824 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8825 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8826 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8827 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8828 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8829 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8830 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8831 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8832 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8833 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8834 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8835 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8836 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8837 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8838 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8839 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8840 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8841 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8842 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8843 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8844 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8845 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8846 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8847 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8848 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8849 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8850 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8851 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8852 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8853 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8854 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8855 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8856 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8857 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 8860 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 8861 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Level Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Level Sensor > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 8867 Fuel Level Sensor: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 Fuel Level Sensor: Service and Repair Fuel Sender Assembly Replacement 1 FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 4. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. 7. IMPORTANT: - Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 8870 Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Level Sensor > Component Information > Service and Repair > Fuel Sender Assembly Replacement 1 > Page 8871 Fuel Level Sensor: Service and Repair Fuel Level Sensor Replacement FUEL LEVEL SENSOR REPLACEMENT (4.8L, 5.3L, AND 6.0L ENGINES) REMOVAL PROCEDURE 1. Remove the sending unit. 2. Disconnect the fuel pump electrical connector. 3. Remove the fuel lever sensor electrical connector retaining clip. 4. Disconnect the fuel level sensor electrical connector. 5. Remove the fuel level sensor retaining clip. 6. Remove the fuel level sensor (1). INSTALLATION PROCEDURE 1. Install the fuel level sensor (1). 2. Install the fuel level sensor retaining clip. 3. Connect the fuel level sensor electrical connector. 4. Install the fuel lever sensor electrical connector retaining clip. 5. Connect the fuel pump electrical connector. 6. Install the sending unit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations Fuel Pump And Sender Assembly Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 8875 Fuel Tank Pressure (FTP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Fuel Tank Pressure Sensor > Component Information > Locations > Page 8876 Fuel Tank Pressure Sensor: Service and Repair FUEL TANK PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Using a slight rocking motion, while pulling straight up, remove the fuel tank pressure sensor (1). INSTALLATION PROCEDURE 1. Install the fuel tank pressure sensor (1). 2. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 8880 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 8881 Intake Air Temperature Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Intake Air Temperature Sensor > Component Information > Locations > Page 8882 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8888 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8889 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8890 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8891 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8892 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8893 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8894 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8895 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8896 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8897 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8898 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8899 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8900 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8901 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8902 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8903 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8904 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8905 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8906 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8907 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8908 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8909 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8910 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8911 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8912 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8913 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8914 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8915 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8916 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8917 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8918 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8919 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8920 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8921 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8922 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8923 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8924 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8925 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8926 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8927 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8928 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8929 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8930 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8931 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8932 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8933 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8934 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8935 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8936 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8937 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8938 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8939 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8940 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8941 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8942 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8943 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8944 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8945 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8946 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8947 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8948 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8949 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8950 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8951 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8952 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8953 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8954 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8955 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8956 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8957 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8958 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8959 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8960 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8961 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8962 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8963 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8964 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8965 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8966 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8967 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8968 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8969 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8970 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8971 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8972 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8973 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8974 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8975 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8976 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8977 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8978 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8979 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8980 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 8981 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 8982 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 8983 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Knock Sensor > Component Information > Diagrams > Page 8984 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations Top of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 8988 Manifold Absolute Pressure (MAP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 8989 Manifold Pressure/Vacuum Sensor: Service and Repair MANIFOLD ABSOLUTE PRESSURE SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the engine sight shield. 2. Disconnect the manifold absolute pressure (MAP) sensor electrical connector (1). 3. Remove the MAP sensor (1). INSTALLATION PROCEDURE IMPORTANT: Lightly coat the MAP sensor seal with clean engine oil before installing the sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Manifold Pressure/Vacuum Sensor > Component Information > Locations > Page 8990 1. Install the MAP sensor (1). 2. Connect the MAP sensor electrical connector (1). 3. Install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Level Sensor For ECM > Component Information > Diagrams Oil Level Sensor For ECM: Diagrams Displays and Gages Connector End Views Engine Oil Level Switch - 4.8, 5.3, 6.0L Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: Customer Interest Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Customer Interest for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 9002 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks Oil Pressure Sensor: All Technical Service Bulletins Engine - Low Oil Lamp ON/Oil Leaks TECHNICAL Bulletin No.: 07-06-01-004A Date: November 25, 2008 Subject: All Vortec(R) GEN IV V8 Engines - LY2 LS4 LC9 LH6 LMG LY5 LS2 L76 LY6 L92 LS7, Low Oil Level Indicator Lamp On and/or Engine Oil Leak (Reseal Oil Pressure Sensor) Models Supercede: This bulletin is being updated to include a labor operation number for CTS-V and Corvette models. Please discard Please discard Corporate Bulletin Number 07-06-01-004 (Section 06 Engine/Propulsion System). Condition Some customers may comment on a low oil level indicator lamp on and/or engine oil leak. Upon further investigation, the technician may find that the oil leak is at the oil pressure sensor that is threaded into the valve lifter oil manifold (VLOM) assembly and/or engine valley cover. Correction If the engine oil leak was found to be at the engine oil pressure sensor, then remove the oil pressure sensor and reseal with a pipe sealant with Teflon or equivalent, P/N 12346004 (in Canada, P/N 10953480). Refer to Engine Oil Pressure Sensor and/or Switch Replacement in SI. Parts Information Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Oil Pressure Sensor: > 07-06-01-004A > Nov > 08 > Engine - Low Oil Lamp ON/Oil Leaks > Page 9008 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 9009 Oil Pressure Sensor: Service and Repair Engine Oil Pressure Sensor and/or Switch Replacement Tools Required ^ J 41712 Oil Pressure Switch Socket Removal Procedure 1. If necessary, remove the engine sight shield. Refer to Upper Intake Manifold Sight Shield Replacement (4.8L, 5.3L, and 6.0L (RPO LQ4)) Upper Intake Manifold Sight Shield Replacement (6.0L (RPO LQ9)). 2. Disconnect the oil pressure sensor electrical connector (1). 3. Using J 41712 or equivalent, remove the oil pressure sensor. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oil Pressure Sensor > Component Information > Technical Service Bulletins > Page 9010 1. Apply sealant to the threads of the oil pressure sensor. Refer to Sealers, Adhesives, and Lubricants for the correct part number. Notice: Refer to Fastener Notice in Service Precautions. 2. Using J 41712 or equivalent, install the oil pressure sensor. Tighten the oil pressure sensor to 35 Nm (26 ft. lbs.). 3. Connect the oil pressure sensor electrical connector (1). 4. If necessary, install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Locations Heated Oxygen Sensors (HO2S) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions Oxygen Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9016 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9017 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9018 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9019 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9020 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9021 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9022 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9023 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9024 Oxygen Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9025 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9026 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9027 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9028 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9029 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9030 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9031 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9032 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9033 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9034 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9035 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9036 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9037 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9038 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9039 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9040 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9041 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9042 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9043 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9044 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9045 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9046 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9047 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9048 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9049 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9050 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9051 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9052 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9053 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9054 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9055 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9056 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9057 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9058 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9059 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9060 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9061 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9062 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9063 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9064 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9065 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9066 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9067 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9068 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9069 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9070 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9071 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9072 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9073 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9074 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9075 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9076 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9077 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9078 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9079 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9080 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9081 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9082 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9083 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9084 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9085 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9086 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9087 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9088 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9089 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9090 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9091 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9092 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9093 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9094 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9095 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9096 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9097 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9098 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9099 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9100 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9101 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9102 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9103 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9104 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9105 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9106 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9107 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9108 Oxygen Sensor: Connector Views Heated Oxygen Sensor (HO2S) Bank 1 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9109 Heated Oxygen Sensor (HO2S) Bank 1 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9110 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9111 Heated Oxygen Sensor (HO2S) Bank 2 Sensor 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice Oxygen Sensor: Service Precautions Heated Oxygen and Oxygen Sensor Notice Heated Oxygen and Oxygen Sensor Notice Notice: Do not remove the pigtail from either the heated oxygen sensor (HO2S) or the oxygen sensor (O2S). Removing the pigtail or the connector will affect sensor operation. Handle the oxygen sensor carefully. Do not drop the HO2S. Keep the in-line electrical connector and the louvered end free of grease, dirt, or other contaminants. Do not use cleaning solvents of any type. Do not repair the wiring, connector or terminals. Replace the oxygen sensor if the pigtail wiring, connector, or terminal is damaged. This external clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors, or terminals could result in the obstruction of the air reference and degraded sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: * Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor causing poor performance. * Do not damage the sensor pigtail and harness wires in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. * Ensure the sensor or vehicle lead wires are not bent sharply or kinked. Sharp bends or kinks could block the reference air path through the lead wire. * Do not remove or defeat the oxygen sensor ground wire, where applicable. Vehicles that utilize the ground wired sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will cause poor engine performance. * Ensure that the peripheral seal remains intact on the vehicle harness connector in order to prevent damage due to water intrusion. The engine harness may be repaired using Packard's Crimp and Splice Seals Terminal Repair Kit. Under no circumstances should repairs be soldered since this could result in the air reference being obstructed. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service Precautions > Heated Oxygen and Oxygen Sensor Notice > Page 9114 Oxygen Sensor: Service Precautions Silicon Contamination of Heated Oxygen Sensors Notice Silicon Contamination of Heated Oxygen Sensors Notice Notice: Contamination of the oxygen sensor can result from the use of an inappropriate RTV sealant (not oxygen sensor safe) or excessive engine coolant or oil consumption. Remove the HO2S and visually inspect the portion of the sensor exposed to the exhaust stream in order to check for contamination. If contaminated, the portion of the sensor exposed to the exhaust stream will have a white powdery coating. Silicon contamination causes a high but false HO2S signal voltage (rich exhaust indication). The control module will then reduce the amount of fuel delivered to the engine, causing a severe driveability problem. Eliminate the source of contamination before replacing the oxygen sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If necessary, unbolt the front propeller shaft from the front differential. Refer to Front Propeller Shaft Replacement. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. Remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (1). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (1). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9117 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (1). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (1). 5. Install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If necessary, bolt the front propeller shaft to the front differential. Refer to Front Propeller Shaft Replacement. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9118 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 1 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 1 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. If equipped, disconnect the fuel composition sensor electrical connector. 3. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a fuel composition sensor, remove the heated oxygen sensor (HO2S) electrical connector from the fuel line clip. 5. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector (2). 6. If equipped with a 6.0L engine, disconnect the HO2S electrical connector (2). 7. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9119 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector (2). 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector (2). 5. If equipped with a fuel composition sensor, install the HO2S electrical connector to the fuel line clip. 6. Disconnect the CPA retainer. 7. If equipped, connect the fuel composition sensor electrical connector. 8. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9120 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 1 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 1 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. 3. Remove the heated oxygen sensor (HO2S) from the clips NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9121 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S to the clips 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9122 Oxygen Sensor: Service and Repair Heated Oxygen Sensor Replacement - Bank 2 Sensor 2 HEATED OXYGEN SENSOR REPLACEMENT - BANK 2 SENSOR 2 REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the connector position assurance (CPA) retainer. NOTE: Refer to Heated Oxygen and Oxygen Sensor Notice. 3. Remove the heated oxygen sensor (HO2S) connector clip from the frame. 4. If equipped with a 4.8L or 5.3L engine, disconnect the HO2S electrical connector. 5. If equipped with a 6.0L engine, disconnect the HO2S electrical connector. 6. Remove the HO2S. INSTALLATION PROCEDURE IMPORTANT: A special anti-seize compound is used on the HO2S threads. The compound consists of liquid graphite and glass beads. The graphite tends to burn away, but the glass beads remain, making the sensor easier to remove. New, or service replacement sensors already have the compound applied to the threads. If the sensor is removed from an exhaust component and if for any reason the sensor is to be reinstalled, the threads must have anti-seize compound applied before the reinstallation. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Oxygen Sensor > Component Information > Service and Repair > Heated Oxygen Sensor Replacement - Bank 1 Sensor 1 > Page 9123 1. If reinstalling the old sensor, coat the threads with anti-seize compound GM P/N 12377953, or equivalent. NOTE: Refer to Component Fastener Tightening Notice. 2. Install the HO2S. Tighten the sensor to 42 N.m (31 lb ft). 3. If equipped with a 6.0L engine, connect the HO2S electrical connector. 4. If equipped with a 4.8L or 5.3L engine, connect the HO2S electrical connector. 5. Install the HO2S connector clip to the frame. 6. Disconnect the CPA retainer. 7. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9128 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9129 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9130 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9131 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9132 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9133 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9134 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9135 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9136 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9137 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9138 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9139 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9140 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9141 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9142 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9143 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9144 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9145 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9146 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9147 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9148 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9149 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9150 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9151 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9152 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9153 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9154 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9155 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9156 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9157 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9158 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9159 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9160 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9161 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9162 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9163 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9164 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9165 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9166 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9167 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9168 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9169 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9170 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9171 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9172 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9173 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9174 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9175 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9176 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9177 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9178 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9179 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9180 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9181 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9182 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9183 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9184 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9185 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9186 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9187 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9188 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9189 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9190 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9191 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9192 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9193 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9194 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9195 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9196 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9197 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9198 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9199 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9200 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9201 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9202 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9203 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9204 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9205 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9206 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9207 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9208 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9209 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9210 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9211 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9212 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9213 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9214 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9215 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9216 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9217 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9218 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9219 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70-E 2 - Park/Neutral Position (PNP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range Switch, Wiring Harness Side Transmission Range Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9225 Transmission Position Switch/Sensor: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range (TR) Switch Connector, Wiring Harness Side Transmission Range (TR) Switch Connector, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Adjustments 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the PNP switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the park/neutral position (PNP) switch bolts. 4. With the vehicle in the neutral (N) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine off. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9228 Transmission Position Switch/Sensor: Adjustments 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the shift lever in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the PNP switch bolts. 4. With the vehicle in neutral (N), rotate the PNP switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the manual shaft lever nut. 7. Remove the transmission control lever from the manual shaft. 8. Remove the PNP switch bolts. 9. Remove the PNP switch from the manual shaft. If the PNP switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9231 1. Install the PNP switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a NEW PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. 4. Install J 41364-A onto the PNP switch. Ensure that the two slots on the switch where the manual shaft is inserted are lined up with the lower two tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the transmission control lever to the manual shaft with the nut. Tighten the nut to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9232 8. Connect the PNP switch electrical connector (2). 9. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 10. Lower the vehicle. 11. Check the switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9233 Transmission Position Switch/Sensor: Service and Repair 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the range selector cable end (2) from the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9234 7. Remove the control lever to the manual shaft nut. 8. Remove the control lever from the manual shaft. 9. Remove the PNP switch bolts. 10. Remove the PNP switch from the manual shaft. If the PNP switch does not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the PNP switch to the manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a new PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9235 4. Position the J 41364-A onto the PNP switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate J 41364-A until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove J 41364-A from the PNP switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the control lever to the manual shaft with the nut. 8. Install the manual shaft nut. Tighten the nut to 25 Nm (18 ft. lbs.). 9. Install the range selector cable end (2) to the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9236 10. Connect the PNP switch electrical connector (2). 11. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 12. Lower the vehicle. 13. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9237 Transmission Position Switch/Sensor: Service and Repair Allison - Automatic Transmission Manual Shift Shaft, Detent Lever, and Position Switch Assembly Replacement Removal Procedure 1. Remove the control valve assembly from the transmission. Refer to Control Valve Body Replacement. 2. Important: The detent lever/IMS retaining bolt contains patch lock material on the threads. Do not reuse the retaining bolt. Remove the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit and discard the retaining bolt. 3. Notice: DO NOT mar the transmission case surface around the spherical pin when removing or installing the spherical pin. An unmarred surface is required to maintain the seal between the control valve assembly and the transmission case. Notice: DO NOT twist the spherical pin when removing the pin from the transmission case. Damage to the transmission case can occur. Place a protective plate on the transmission case surface around the spherical pin (3). Remove the spherical pin (3) from the transmission case. 4. Slide the manual shift shaft (5) through the detent lever/IMS assembly (4) and through the manual shift shaft seal. 5. Rotate the detent lever/IMS assembly to disengage the park pawl apply assembly (2). Remove the detent lever/IMS assembly (4). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9238 1. Place the new detent lever/IMS assembly (4) in position in the transmission case. Rotate the detent lever/IMS assembly to engage the park pawl apply assembly (2). Reinstall the manual shift shaft (5) through the manual shift shaft seal and through the detent lever/IMS assembly (4). 2. Notice: Refer to Fastener Notice in Service Precautions. Push the manual shift shaft (5) into the final position in the transmission case. 3. Install the spherical pin (3) into the transmission case that retains the manual shift shaft. 4. Install the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit. Tighten the bolt (1) to 10 Nm (92 inch lbs.). 5. Install the control valve assembly. Refer to Control Valve Body Replacement. 6. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission Vehicle Speed Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Vehicle Speed Sensor Assembly, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission > Page 9243 Vehicle Speed Sensor: Diagrams NV 3500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission > Page 9244 Vehicle Speed Sensor: Diagrams NV 4500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E Automatic Transmission > Page 9245 Vehicle Speed Sensor: Diagrams ZF S6-650 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 Manual Transmission Vehicle Speed Sensor: Service and Repair NV 3500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (1). 3. Remove the VSS and O-ring seal. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 Manual Transmission > Page 9248 1. Coat a NEW O-ring seal with a thin film of Synchro-mesh transmission fluid GM P/N 12345349 (Canadian P/N 10953465), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS and O-ring seal. Tighten the VSS to 16 Nm (12 ft. lbs.). 3. Connect the VSS electrical connector (1). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 Manual Transmission > Page 9249 Vehicle Speed Sensor: Service and Repair NV 4500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (3). 3. Remove the VSS and seal. Installation Procedure 1. Coat the NEW O-ring seal with a thin film of transmission fluid, use GM P/N 12346190 (Canadian P/N 10953477), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS. Tighten the VSS to 16 Nm (12 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 Manual Transmission > Page 9250 3. Connect the VSS electrical connector (3). Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 Manual Transmission > Page 9251 Vehicle Speed Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (2). 3. Remove the VSS bolt (2). 4. Remove the VSS (1). 5. Remove the O-ring seal (3). Installation Procedure 1. Install the O-ring seal (3) onto the VSS (1). 2. Coat the O-ring seal (3) with a thin film of transmission fluid. 3. Install the VSS (1). 4. Notice: Refer to Fastener Notice. Install the VSS bolt (2). Tighten the bolt to 11 Nm (97 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Sensors and Switches Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 Manual Transmission > Page 9252 5. Connect the VSS electrical connector (2). 6. Lower the vehicle. 7. Refill the fluid as required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9257 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9258 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9259 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9260 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9261 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9262 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9263 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9264 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9265 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9266 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9267 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9268 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9269 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9270 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9271 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9272 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9273 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9274 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9275 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9276 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9277 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9278 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9279 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9280 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9281 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9282 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9283 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9284 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9285 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9286 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9287 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9288 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9289 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9290 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9291 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9292 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9293 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9294 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9295 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9296 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9297 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9298 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9299 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9300 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9301 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9302 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9303 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9304 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9305 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9306 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9307 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9308 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9309 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9310 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9311 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9312 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9313 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9314 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9315 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9316 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9317 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9318 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9319 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9320 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9321 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9322 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9323 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9324 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9325 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9326 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9327 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9328 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9329 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9330 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9331 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9332 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9333 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9334 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9335 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9336 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9337 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9338 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9339 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9340 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9341 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9342 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9343 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9344 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9345 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9346 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9347 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9348 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Locations Transmission Position Switch/Sensor: Locations Park Neutral Position (PNP) Switch 1 - Automatic Transmission 4L60-E/4L65-E/4L70-E 2 - Park/Neutral Position (PNP) Switch Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range Switch, Wiring Harness Side Transmission Range Switch, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9354 Transmission Position Switch/Sensor: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Related Connector End Views Transmission Range (TR) Switch Connector, Wiring Harness Side Transmission Range (TR) Switch Connector, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Adjustments 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the PNP switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the transmission range selector in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the park/neutral position (PNP) switch bolts. 4. With the vehicle in the neutral (N) position, rotate the switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine off. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Adjustments > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9357 Transmission Position Switch/Sensor: Adjustments 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Adjustment Important: ^ The following procedure is for vehicles that have not had the park/neutral position (PNP) switch removed or replaced. If the switch has been removed or replaced, refer to Park/Neutral Position Switch Replacement for the proper adjustment procedure. ^ Apply the park brake. ^ The engine must start in the park (P) or neutral (N) positions only. ^ Check the PNP switch for proper operation. If adjustment is required, proceed as follows: 1. Place the shift lever in the neutral (N) position. 2. With an assistant in the drivers seat, raise and suitably support the vehicle. Refer to Vehicle Lifting. 3. Loosen the PNP switch bolts. 4. With the vehicle in neutral (N), rotate the PNP switch while the assistant attempts to start the engine. 5. Following a successful start, turn the engine OFF. 6. Notice: Refer to Fastener Notice. Tighten the PNP switch bolts. Tighten the bolts to 25 Nm (18 ft. lbs.). 7. Lower the vehicle. 8. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. 9. Replace the PNP switch if proper operation can not be achieved. Refer to Park/Neutral Position Switch Replacement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Transmission Position Switch/Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the manual shaft lever nut. 7. Remove the transmission control lever from the manual shaft. 8. Remove the PNP switch bolts. 9. Remove the PNP switch from the manual shaft. If the PNP switch did not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9360 1. Install the PNP switch to the transmission manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the transmission manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a NEW PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. 4. Install J 41364-A onto the PNP switch. Ensure that the two slots on the switch where the manual shaft is inserted are lined up with the lower two tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate the tool until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove the J 41364-A from the switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the transmission control lever to the manual shaft with the nut. Tighten the nut to 25 Nm (18 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9361 8. Connect the PNP switch electrical connector (2). 9. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 10. Lower the vehicle. 11. Check the switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9362 Transmission Position Switch/Sensor: Service and Repair 4L80-E/4L85-E - Automatic Transmission Park/Neutral Position Switch Replacement Tools Required ^ J 41364-A Park Neutral Switch Aligner Removal Procedure 1. Apply the park brake. 2. Shift the transmission into neutral. 3. If equipped with 4-wheel drive (4WD), remove the front propeller shaft. Refer to Front Propeller Shaft Replacement. 4. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Disconnect the park/neutral position (PNP) switch electrical connector (2). 6. Remove the range selector cable end (2) from the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9363 7. Remove the control lever to the manual shaft nut. 8. Remove the control lever from the manual shaft. 9. Remove the PNP switch bolts. 10. Remove the PNP switch from the manual shaft. If the PNP switch does not slide off the manual shaft, file the outer edge of the manual shaft in order to remove any burrs. Installation Procedure 1. Install the PNP switch to the manual shaft by aligning the switch hub flats with the manual shaft flats. 2. Slide the PNP switch onto the manual shaft until the switch mounting bracket contacts the mounting bosses on the transmission. 3. Important: If a new PNP switch is being installed, the switch will come with a positive assurance bracket. The positive assurance bracket aligns the new switch in its proper position for installation and the use of the park neutral switch aligner will not be necessary. Install the PNP switch bolts finger tight. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9364 4. Position the J 41364-A onto the PNP switch. Ensure that the 2 slots on the switch where the manual shaft is inserted are lined up with the lower 2 tabs on the tool. 5. Notice: Refer to Fastener Notice. Rotate J 41364-A until the upper locator pin on the tool is lined up with the slot on the top of the switch. Tighten the bolts to 25 Nm (18 ft. lbs.). 6. Remove J 41364-A from the PNP switch. If installing a new switch, remove the positive assurance bracket at this time. 7. Install the control lever to the manual shaft with the nut. 8. Install the manual shaft nut. Tighten the nut to 25 Nm (18 ft. lbs.). 9. Install the range selector cable end (2) to the range selector lever ball stud (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9365 10. Connect the PNP switch electrical connector (2). 11. If equipped with 4WD, install the front propeller shaft. Refer to Front Propeller Shaft Replacement. 12. Lower the vehicle. 13. Check the PNP switch for proper operation. The engine must start in the park (P) or neutral (N) positions only. If proper operation of the switch can not be obtained, replace the switch. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9366 Transmission Position Switch/Sensor: Service and Repair Allison - Automatic Transmission Manual Shift Shaft, Detent Lever, and Position Switch Assembly Replacement Removal Procedure 1. Remove the control valve assembly from the transmission. Refer to Control Valve Body Replacement. 2. Important: The detent lever/IMS retaining bolt contains patch lock material on the threads. Do not reuse the retaining bolt. Remove the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit and discard the retaining bolt. 3. Notice: DO NOT mar the transmission case surface around the spherical pin when removing or installing the spherical pin. An unmarred surface is required to maintain the seal between the control valve assembly and the transmission case. Notice: DO NOT twist the spherical pin when removing the pin from the transmission case. Damage to the transmission case can occur. Place a protective plate on the transmission case surface around the spherical pin (3). Remove the spherical pin (3) from the transmission case. 4. Slide the manual shift shaft (5) through the detent lever/IMS assembly (4) and through the manual shift shaft seal. 5. Rotate the detent lever/IMS assembly to disengage the park pawl apply assembly (2). Remove the detent lever/IMS assembly (4). Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Transmission Position Switch/Sensor, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9367 1. Place the new detent lever/IMS assembly (4) in position in the transmission case. Rotate the detent lever/IMS assembly to engage the park pawl apply assembly (2). Reinstall the manual shift shaft (5) through the manual shift shaft seal and through the detent lever/IMS assembly (4). 2. Notice: Refer to Fastener Notice in Service Precautions. Push the manual shift shaft (5) into the final position in the transmission case. 3. Install the spherical pin (3) into the transmission case that retains the manual shift shaft. 4. Install the detent lever/IMS retaining bolt (1) using a T27 TORX(r) bit. Tighten the bolt (1) to 10 Nm (92 inch lbs.). 5. Install the control valve assembly. Refer to Control Valve Body Replacement. 6. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Related Connector End Views Vehicle Speed Sensor Assembly, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9372 Vehicle Speed Sensor: Diagrams NV 3500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9373 Vehicle Speed Sensor: Diagrams NV 4500 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 9374 Vehicle Speed Sensor: Diagrams ZF S6-650 - Manual Transmission Manual Transmission Connector End Views Vehicle Speed Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission Vehicle Speed Sensor: Service and Repair NV 3500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (1). 3. Remove the VSS and O-ring seal. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 9377 1. Coat a NEW O-ring seal with a thin film of Synchro-mesh transmission fluid GM P/N 12345349 (Canadian P/N 10953465), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS and O-ring seal. Tighten the VSS to 16 Nm (12 ft. lbs.). 3. Connect the VSS electrical connector (1). 4. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 9378 Vehicle Speed Sensor: Service and Repair NV 4500 - Manual Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (3). 3. Remove the VSS and seal. Installation Procedure 1. Coat the NEW O-ring seal with a thin film of transmission fluid, use GM P/N 12346190 (Canadian P/N 10953477), or equivalent. Notice: Refer to Fastener Notice. 2. Install the VSS. Tighten the VSS to 16 Nm (12 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 9379 3. Connect the VSS electrical connector (3). Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 9380 Vehicle Speed Sensor: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Vehicle Speed Sensor Replacement Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the vehicle speed sensor (VSS) electrical connector (2). 3. Remove the VSS bolt (2). 4. Remove the VSS (1). 5. Remove the O-ring seal (3). Installation Procedure 1. Install the O-ring seal (3) onto the VSS (1). 2. Coat the O-ring seal (3) with a thin film of transmission fluid. 3. Install the VSS (1). 4. Notice: Refer to Fastener Notice. Install the VSS bolt (2). Tighten the bolt to 11 Nm (97 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Computers and Control Systems > Vehicle Speed Sensor > Component Information > Service and Repair > NV 3500 - Manual Transmission > Page 9381 5. Connect the VSS electrical connector (2). 6. Lower the vehicle. 7. Refill the fluid as required. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Catalytic Converter > Component Information > Technical Service Bulletins > Exhaust System - Catalytic Converter Precautions Catalytic Converter: Technical Service Bulletins Exhaust System - Catalytic Converter Precautions Bulletin No.: 06-06-01-010A Date: February 04, 2008 INFORMATION Subject: Information on Close-Coupled Converter and Engine Breakdown or Non-Function Due to Severe Overheat or Lack of Oil Causing Piston(s) Connecting Rod(s) Crankshaft Cylinder(s) and/or Head(s) Camshaft(s) Intake and/or Exhaust Valve(s) Main and/or Rod Bearing(s) Damage Models: 2004-2008 GM Passenger Cars and Trucks with Close-Coupled Catalytic Converters Supercede: This bulletin is being revised to add model years. Please discard Corporate Bulletin Number 06-06-01-010 (Section 06 - Engine/Propulsion System). Certain 2004-2008 General Motors products may be equipped with a new style of catalytic converter technically known as the close-coupled catalytic converter providing quick catalyst warm-up resulting in lower tail pipe emissions earlier in the vehicle operating cycle. If an engine breakdown or non-function were to occur (such as broken intake/exhaust valve or piston) debris may be deposited in the converter through engine exhaust ports. If the engine is non-functioning due to a severe overheat event damage to the ceramic "brick" internal to the catalytic converter may occur. This may result in ceramic debris being drawn into the engine through the cylinder head exhaust ports. If a replacement engine is installed in either of these instances the replacement engine may fail due to the debris being introduced into the combustion chambers when started. When replacing an engine for a breakdown or non-function an inspection of the catalytic converters and ALL transferred components (such as exhaust/ intake manifolds) should be performed. Any debris found should be removed. In cases of engine failure due to severe overheat dealers should also inspect each catalytic converter for signs of melting or cracking of the ceramic "brick". If damage is observed the converter should be replaced. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Catalytic Converter > Component Information > Technical Service Bulletins > Page 9387 Catalytic Converter: Service and Repair Catalytic Converter Replacement (6.0L and 8.1L Engines) Removal Procedure 1. Raise and suitably support the vehicle. Refer to Lifting and Jacking the Vehicle. 2. Support the transmission with a suitable transmission jack. 3. Remove the transmission mount to transmission support nuts. 4. Raise the transmission off of the transmission support. 5. Remove the transmission support crossmember bolts. 6. Remove the transmission support crossmember. 7. Depending on which side is being replaced, perform one of the following steps: ^ Remove the exhaust muffler nuts. ^ Loosen the exhaust pipe clamp. 8. Remove the necessary exhaust system hangers so that the pipes can be separated. 9. Use a jack stand to support the exhaust. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Catalytic Converter > Component Information > Technical Service Bulletins > Page 9388 10. Disconnect the connector position assurance (CPA) retainers. 11. Disconnect the oxygen sensor electrical connectors (1, 2). 12. Loosen the right exhaust manifold pipe nuts. 13. Remove the left exhaust manifold pipe nuts. 14. Using the transmission jack, lower the transmission slightly. 15. Remove the catalytic converter. 16. Slide the catalytic converter hanger out of the exhaust pipe hanger bracket. 17. If equipped with a 6.0L engine, with regular production option (RPO) Y91, remove the catalytic converter. 18. Slide the catalytic converter hanger out of the exhaust pipe hanger bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Catalytic Converter > Component Information > Technical Service Bulletins > Page 9389 19. Remove the oxygen sensors if the catalytic converter is to be replaced. Installation Procedure Notice: Refer to Fastener Notice in Service Precautions. 1. If the catalytic converter was replaced, perform the following: 1. Apply anti-seize compound GM P/N 12377953 or equivalent to the threads of the old oxygen sensors. 2. Install the oxygen sensors. Tighten the sensors to 42 Nm (31 ft. lbs.). 2. If equipped with a 6.0L engine, with RPO Y91, install a NEW exhaust seal to the exhaust manifold. 3. Install the catalytic converter. Slide the catalytic converter hanger into the exhaust pipe hanger bracket. 4. Install a NEW exhaust seal to the exhaust manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Catalytic Converter > Component Information > Technical Service Bulletins > Page 9390 5. Install the catalytic converter. Slide the catalytic converter hanger into the exhaust pipe hanger bracket. 6. Install the left exhaust manifold pipe nuts. 7. Tighten the right exhaust manifold pipe nuts. Tighten the nuts to 50 Nm (39 ft. lbs.). 8. Using the transmission jack, raise the transmission slightly. 9. Connect the oxygen sensor electrical connectors (1, 2). 10. Connect the CPA retainers. 11. Install the exhaust pipe/catalytic converter to the vehicle. 12. Install the exhaust system hangers. 13. Depending on which side is being replaced, perform one of the following steps: ^ Install the exhaust muffler nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). or ^ Install a NEW exhaust pipe clamp. Tighten the clamp to 44 Nm (33 ft. lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Catalytic Converter > Component Information > Technical Service Bulletins > Page 9391 14. Install the transmission support crossmember. 15. Install the transmission support crossmember bolts. Tighten the bolts to 95 Nm (70 ft. lbs.). 16. Lower the transmission onto the transmission support. 17. Install the transmission mount to transmission support nuts. Tighten the nuts to 40 Nm (30 ft. lbs.). 18. Remove the support from the transmission. 19. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > Customer Interest: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Canister Purge Control Valve: Customer Interest Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > Customer Interest: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9401 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > Customer Interest: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9402 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > Customer Interest: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9403 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > Customer Interest: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9404 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Canister Purge Control Valve: All Technical Service Bulletins Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9410 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9411 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9412 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9413 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Control Valve > Component Information > Technical Service Bulletins > All Other Service Bulletins for Canister Purge Control Valve: > 07-08-42-006E > Nov > 10 > Instruments - Bulb Outage Detection Restoration Lamp Out Indicator: All Technical Service Bulletins Instruments - Bulb Outage Detection Restoration INFORMATION Bulletin No.: 07-08-42-006E Date: November 11, 2010 Subject: Information on BCM Calibrations Available to Restore Bulb Outage Detection on Vehicles Produced by a Second Stage Manufacturer, Turn Signals Flash Fast after Factory Box Removed (Upfitter) Models: 2007-2011 Chevrolet Silverado 2007-2011 GMC Sierra Supercede: This bulletin is being revised to add the 2011 model year. Please discard Corporate Bulletin Number 07-08-42-006D (Section 08 - Body and Accessories). The information contained in this bulletin applies to vehicles that are to be completed by a second stage manufacturer (upfitter) and may need to have the Body Control Module (BCM) rear turn signal bulb outage detection capability changed. All production vehicles will be manufactured with one of the following BCM rear turn signal bulb outage detection software options: 1. A standard production vehicle will have BCM software that checks for two bulbs functioning in each rear turn signal bulb circuit. If one or more bulbs are inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 2. Certain 2500 and 3500 models can be ordered with a new option (RPO 9U5) where the BCM checks for one bulb functioning in each rear turn signal bulb circuit. If the bulb goes inoperative, the BCM will "fast flash" the Instrument Panel Cluster (IPC) turn signal indicator as required by Federal Motor Vehicle Safety Standard (FMVSS) 108 and Canada Motor Vehicle Safety Standard (CMVSS) 108. 3. A vehicle built with a pickup box delete or chassis cab option (RPO ZW9) will be produced with a BCM program that has no turn signal bulb outage detection capability (LED compatible). The IPC turn signal indicator will flash at the same rate no matter how many turn signal bulbs are inoperative. In some cases, the upfitter may wish to change the turn signal bulb outage detection capability so that the turn signals work correctly with their upfit or to meet certain requirements. This will require contacting the Techline Customer Support Center (TCSC) to open a case and obtain a Vehicle Configuration Index (VCI) number. Advise the TCSC consultant which turn signal bulb outage detection capability is needed: 1. Factory standard production TWO bulb outage detection. 2. Optional (RPO 9U5) ONE bulb outage detection. NOTE: ONLY AVAILABLE ON CERTAIN 2007-2011 MODEL 2500 AND 3500 VEHICLES. 3. NO bulb outage detection (LED compatible). The BCM can then be reprogrammed with the correct software. Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Solenoid > Component Information > Locations Top of Engine Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Solenoid > Component Information > Locations > Page 9427 Evaporative Emission (EVAP) Canister Purge Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Solenoid > Component Information > Locations > Page 9428 Canister Purge Solenoid: Service and Repair EVAPORATIVE EMISSION CANISTER PURGE SOLENOID VALVE REPLACEMENT REMOVAL PROCEDURE 1. Remove the engine sight shield. 2. Remove the evaporative emission (EVAP) line from the canister purge solenoid, perform the following: 1. Push the large size white retainer portion in. 2. Push down, while pulling up slightly in order the disengage the tube. 3. Disconnect the EVAP canister purge solenoid electrical connector (1). 4. Remove the EVAP canister purge solenoid bolt (2). 5. Remove the EVAP canister purge solenoid (3) and insulator (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Solenoid > Component Information > Locations > Page 9429 INSTALLATION PROCEDURE 1. Install the insulator (1) onto the EVAP canister purge solenoid (3). 2. Install the EVAP canister purge solenoid (3). NOTE: Refer to Fastener Notice. 3. Install the EVAP canister purge solenoid bolt (2). Tighten the bolt to 10.5 N.m (93 lb in). 4. Connect the EVAP canister purge solenoid electrical connector (1). 5. Install the EVAP line to the canister purge solenoid (1). 6. Install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > Customer Interest for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Canister Purge Volume Control Valve: Customer Interest Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > Customer Interest for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9438 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > Customer Interest for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9439 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > Customer Interest for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9440 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > Customer Interest for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9441 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Canister Purge Volume Control Valve: All Technical Service Bulletins Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9447 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9448 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9449 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Canister Purge Volume Control Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Canister Purge Volume Control Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9450 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Evaporative Canister Filter: Customer Interest Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9459 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9460 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9461 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9462 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Evaporative Canister Filter: All Technical Service Bulletins Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9468 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9469 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9470 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Canister Filter > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Canister Filter: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9471 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Evaporative Check Valve: Customer Interest Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9480 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9481 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9482 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > Customer Interest for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9483 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM Evaporative Check Valve: All Technical Service Bulletins Emissions - MIL ON/DTC P0446 Stored In ECM TECHNICAL Bulletin No.: 02-06-04-037I Date: September 16, 2010 Subject: Check Engine Light On, Fuel Tank Hard to Fill, DTCs P0442, P0446, P0455 or P0449 Set (Replace Evaporative Emission (EVAP) Vent Valve Solenoid Assembly and Add/Relocate Filter Box Using Service Kit) Models: 1999-2007 Chevrolet Silverado (Classic) Models 1999-2007 GMC Sierra (Classic) Models 2007-2010 Chevrolet Silverado Models (Including Hybrid) 2007-2010 GMC Sierra Models (Including Hybrid) Supercede: This bulletin is being revised to add the 2010 model year and to include the Hybrid models. Please discard Corporate Bulletin Number 02-06-04-037H (Section 06 - Engine/Propulsion System). Condition Some customers may comment about the check engine light being illuminated. They may also comment that their vehicle is difficult to fill with fuel or when filling, the pump continuously shuts off before the tank is full. When checking the vehicle for DTCs, the ECM may report one or more of the following DTCs set as current or in history: P0442, P0446, P0449 or P0455. Cause The EVAP canister vent solenoid (CVS) valve draws fresh air into the system through a vent. Under certain operating conditions, dirt and dust intrusion into the EVAP CVS fresh air intake/venting system, may result in restricted air flow. Under certain operating conditions, water, if ingested into the EVAP CVS fresh air intake/venting system, may reach the CVS valve causing corrosion in the CVS valve, and may cause restrictions in the fresh air intake path, when the valve is in the closed position. Correction (1999-2007 Classic/Old Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the existing EVAP canister vent valve assembly with a new assembly. This new assembly is a sealed unit that is designed to be vented through a remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. 1999-2003 Model Year (Use Service Kit P/N 19207762) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector, if equipped. 3. Disengage the two vent valve pipe clips securing the pipe to the underbody. Remove the clips from the underbody and discard. 4. Disconnect the vent valve pipe at the EVAP canister. 5. Remove and retain the EVAP canister vent valve bracket mounting bolt. 6. Remove the complete EVAP canister vent valve assembly with bracket attached and discard. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9489 Important The new canister vent valve will be installed in a new location, outside of the frame. 7. Position and secure the new valve assembly to the frame bracket on the outside of the frame using the existing hole and mounting bolt. Tighten Tighten the bracket mounting bolt to 12 Nm (106 lb in). 8. Connect the vent valve pipe to the EVAP canister. 9. Install the two vent valve pipe clips into the existing underbody holes. 10. Connect the EVAP canister vent valve electrical connector, if equipped. 11. Attach bulk 5/8" heater hose to the vent valve port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 12. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 17. Lower the vehicle. 2004-2007 Model Year (Use Service Kit P/N 19152349) 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. 3. Disconnect the canister pipe from the vent valve. 4. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. Discard the old valve. 5. Cut back the existing canister pipe approximately 51 mm (2 in) to remove the quick connect end. Crew Cab Short Box Shown Below, Other Configurations Similar Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9490 Extended Cab Short Box Shown Below, Other Configurations Similar 6. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 7. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 8. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the area above the transmission. 9. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 10. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 11. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 12. Raise the transmission and reinstall the transmission support. 13. Connect the EVAP canister vent valve electrical connector. 14. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 15. Lower the vehicle. Correction (2007-2010 New Style Models) After following the published SI diagnostics and determining that the EVAP canister vent valve is the cause of the MIL light, replace the EVAP canister vent valve assembly and relocate the remote filter box. To ensure correct installation, follow the procedures below. Important DO NOT replace the EVAP canister assembly for this concern unless it fails the leak test. Use Service Kit P/N 19207763 1. Raise the vehicle. Suitably support the vehicle. 2. Disconnect the EVAP canister vent valve electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9491 3. Disconnect the vent valve pipe quick connect from the canister. 4. Either cut the existing valve vent pipe and leave the remaining section of pipe in the vehicle or remove along with the valve. 5. Push in the retainer and remove the existing canister vent valve from the fuel tank clip or mounting bracket. 6. Cut back the existing canister pipe approximately 51 mm (2 in) and retain the pipe for use with new valve. 7. Connect the canister pipe quick connect to the canister. 2500 Crew Cab Short Box Shown Below, Other Configurations Similar 1500 Extended Cab Short Box Shown Below, Other Configurations Similar 8. Install the new canister vent valve solenoid to the fuel tank clip or mounting bracket as shown above. The valve port closest to the electrical connector must point towards the canister. 9. Cut bulk 5/8" heater hose to a length of approximately 76 mm (3 in). Install the hose between the solenoid and the canister pipe and secure using clamps. 10. Attach bulk 5/8" heater hose to the vent port and secure using a clamp. Run a length as needed along the frame rail routing to the passenger side area above the transmission. 11. Cut the hose to determined length and install the supplied filter box. Secure using a clamp. 12. Remove the transmission heat shield, if necessary. 13. Remove the transmission support and lower the transmission assembly as necessary to allow for access to the new filter box location. 14. Secure the filter box to the transmission vent hose just forward of the hose tee-section using a tie strap. DO NOT pinch or restrict the transmission vent hose. The filter box opening should be pointing downward. 15. Raise the transmission and reinstall the transmission support. 16. Reinstall the transmission heat shield. 17. Connect the EVAP canister vent valve electrical connector. 18. Tie strap the hose as needed along the frame rail in order to keep the hose away from pinch-points and heat sources. 19. Lower the vehicle. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Check Valve > Component Information > Technical Service Bulletins > All Technical Service Bulletins for Evaporative Check Valve: > 02-06-04-037I > Sep > 10 > Emissions - MIL ON/DTC P0446 Stored In ECM > Page 9492 Put unused material on the shelf for future use. Warranty Information For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Diagrams Evaporative Emission (EVAP) Canister Vent Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) Canister Vent Valve: Service and Repair Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) EVAPORATIVE EMISSION CANISTER VENT SOLENOID VALVE REPLACEMENT (PICKUP) REMOVAL PROCEDURE IMPORTANT: Clean the evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the fittings in order to avoid possible system contamination. 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Remove the harness clip from the canister vent solenoid (CVS) line. 3. Disconnect the CVS electrical connector. 4. If the vehicle is equipped with a 6 ft box, disconnect the EVAP CVS line from the canister. 5. Remove the CVS clip from the frame crossmember. 6. Push in the retainer and remove the CVS from the fuel tank clip. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9499 7. If the vehicle is equipped with a 8 ft box, disconnect the EVAP CVS line from the canister. 8. Remove the CVS clip from the frame crossmember. 9. Push in the retainer and remove the CVS from the fuel tank clip. 10. If the vehicle is equipped with a 5 ft 8 in box, disconnect the EVAP CVS electrical connector. 11. Disconnect the EVAP CVS line (3) from the canister. 12. Remove the CVS clip (2) from the frame. 13. Remove the CVS bracket bolt (1), if required otherwise push in the retainer and remove the CVS from the bracket. INSTALLATION PROCEDURE NOTE: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9500 1. If the vehicle is equipped with a 5 ft 8 in box, install the CVS bracket bolt (1) if required, otherwise install the CVS to the bracket until the clip engages. Tighten the bolt to 12 N.m (106 lb in). 2. Connect the EVAP CVS line (3) to the canister. 3. Install the CVS clip (2) to the frame. 4. Connect the EVAP CVS electrical connector. 5. If the vehicle is equipped with a 8 ft box, install the CVS to the fuel tank until the clip engages. IMPORTANT: On vehicles equipped with a 8 ft box, the CVS line is routed below the frame crossmember. 6. Install the CVS clip to the frame crossmember. 7. Connect the EVAP CVS line to the canister. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9501 8. If the vehicle is equipped with a 6 ft box, install the CVS to the fuel tank until the clip engages. IMPORTANT: On vehicles equipped with a 6 ft box, the CVS line is routed above the frame crossmember. 9. Install the CVS clip to the frame crossmember. 10. Connect the EVAP CVS line to the canister. 11. Connect the CVS electrical connector. 12. Install the harness clip to the canister vent solenoid (CVS) line. 13. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9502 Canister Vent Valve: Service and Repair Evaporative Emission Canister Vent Solenoid Valve Replacement (1500 Crew Cab) EVAPORATIVE EMISSION CANISTER VENT SOLENOID VALVE REPLACEMENT (1500 CREW CAB) REMOVAL PROCEDURE 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Disconnect the canister vent solenoid (CVS) electrical connector (1). 3. Remove the CVS bracket bolt. 4. Disconnect the CVS line from the evaporative emission (EVAP) canister. 5. Remove the CVS from the vehicle. 6. If necessary, remove the CVS from the CVS bracket. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9503 1. If necessary, install the CVS to the CVS bracket. 2. Install the CVS to the vehicle. Ensure the locator tab is inserted into the frame hole. 3. Connect the CVS line to the canister. NOTE: Refer to Fastener Notice. 4. Install the CVS bracket bolt. Tighten the bolt to 12 N.m (106 lb in). 5. Connect the CVS electrical connector (1). 6. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9504 Canister Vent Valve: Service and Repair Evaporative Emission Canister Vent Solenoid Valve Replacement (Cab/Chassis) Evaporative Emission Canister Vent Solenoid Valve Replacement (Cab/Chassis) REMOVAL PROCEDURE IMPORTANT: Clean all evaporative emission (EVAP) connections and surrounding areas before disconnecting the line in order to avoid possible EVAP system contamination. 1. Disconnect the EVAP canister vent solenoid (CVS) electrical connector (1). 2. Remove the EVAP CVS valve bracket bolt (1). 3. Remove the EVAP CVS line from the clips on the fuel tank. 4. Remove the CVS valve and line. 5. Remove the EVAP CVS valve line from the CVS, if necessary. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emission Control Canister > Canister Vent Valve > Component Information > Service and Repair > Evaporative Emission Canister Vent Solenoid Valve Replacement (Pickup) > Page 9505 1. Install the EVAP CVS valve line to the CVS, if necessary. 2. Install the CVS valve and line. NOTE: Refer to Fastener Notice. 3. Install the EVAP CVS valve bracket bolt (1). Tighten the bolt to 12 N.m (106 lb in). 4. Install the EVAP CVS line to the clips on the fuel tank. 5. Connect the EVAP CVS electrical connector (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) EVAPORATIVE EMISSION HOSES/PIPES REPLACEMENT - CANISTER/FUEL TANK (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean all the evaporative emission (EVAP) line connections and surrounding areas prior to disconnecting the fittings in order to avoid possible fuel/EVAP system contamination. 1. Remove the EVAP canister. 2. Remove the EVAP canister line (1). 3. Remove the EVAP canister purge line (2). 4. Cap the fuel and EVAP lines in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel and EVAP lines. 2. Install the EVAP canister purge line (2). 3. Install the EVAP canister line (1). 4. Install the EVAP canister. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9510 Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Chassis (Cab/Chassis) EVAPORATIVE EMISSION HOSE/PIPE REPLACEMENT - CHASSIS (CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed and pressure balance lines from the front tank. 3. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. 4. Disconnect the fuel feed and pressure balance lines from the rear tank. 5. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9511 6. Remove the rear fuel line bundle clip nuts. 7. Remove the rear fuel line bundle. INSTALLATION PROCEDURE 1. Install the rear fuel line bundle. 2. Install the rear fuel line bundle clip nuts. 3. Remove the caps from the fuel and balance lines at the fuel tank. 4. Connect the fuel feed and pressure balance lines from the rear tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9512 5. Remove the caps from the fuel and balance lines at the fuel tank. 6. Connect the fuel feed and pressure balance lines from the front tank. 7. Install the fuel fill cap. 8. Connect the negative battery cable. 9. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9513 Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Chassis (Pickup) EVAPORATIVE EMISSION HOSE/PIPE REPLACEMENT - CHASSIS (PICKUP) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail in order to avoid possible system contamination. 5. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9514 8. Remove the fuel line clips from the brackets on the transmission. 9. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 10. Disconnect the fuel and EVAP quick connect fittings. 11. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 12. Remove the fuel and EVAP bundle nuts. 13. Remove the fuel and EVAP bundle. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9515 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines at the fuel tank. 4. Connect the fuel and EVAP quick connect fittings. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9516 5. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 6. Install the fuel line clip(s) to the bracket(s) on the transmission. 7. Install the fuel pipe bracket to the bellhousing stud. 8. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 9. Lower the vehicle. 10. Remove the cap from the fuel rail. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9517 11. Connect the fuel feed line (1) at the engine. 12. Connect the EVAP canister purge tube line (2). 13. Install the fuel fill cap. 14. Connect the negative battery cable. 15. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9518 Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Chassis (1500 Crew Cab) EVAPORATIVE EMISSION HOSE/PIPE REPLACEMENT - CHASSIS (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the fittings in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) fitting at the engine. 3. Disconnect the EVAP canister purge tube (2) fitting. 4. Cap the fuel rail and EVAP lines in order to avoid possible system contamination. 5. Raise and support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the heated oxygen (HO2S) sensor connector from the bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9519 9. Remove the fuel line clips from the brackets on the transmission. 10. Remove the fuel line clip from the bracket on the transfer case, if equipped with 4 wheel drive (4WD). 11. Remove the clip from the bracket on the frame. 12. Remove the transfer case harness from the clip bracket. IMPORTANT: The area around the electro-hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled anti-lock brake (ABS) components. 13. Thoroughly wash all contaminants from around the EHCU. 14. Disconnect the chassis electrical harness connectors from the electronic brake control module (EBCM). 15. Disconnect the brake lines from the brake pressure modulator valve (BPMV). 16. Remove the bolts (4) attaching the EHCU bracket to the frame (5). 17. Remove the EHCU (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9520 18. Remove the torsion bar bracket, if equipped with 4WD. 19. Remove the EVAP canister. 20. Disconnect the fuel line at the tank. 21. Cap the fuel and EVAP lines in order to avoid possible system contamination. 22. Remove the fuel/EVAP bundle clip nuts. 23. Remove the fuel/EVAP bundle. INSTALLATION PROCEDURE 1. Install the fuel/EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel/EVAP bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines. 4. Connect the fuel line at the tank. 5. Install the EVAP canister. 6. Install the torsion bar bracket, if equipped with 4WD. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9521 7. Install the EHCU (1). 8. Install the bolts (4) attaching the EHCU bracket to the frame (5). Tighten the bolts to 25 N.m (18 lb ft). 9. Connect the brake lines to the BPMV. Tighten the fittings to 25 N.m (18 lb ft). 10. Connect the chassis electrical harness connectors to the EBCM. 11. Install the transfer case harness to the clip bracket. 12. Install the clip to the bracket on the frame. 13. Install the fuel line clip to the bracket on the transfer case, if equipped with 4WD. 14. Install the fuel line clips to the brackets on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9522 15. Install the HO2S sensor connector to the bracket. 16. Install the fuel pipe bracket to the bellhousing stud. 17. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 18. Lower the vehicle. 19. Remove the caps from the fuel rail and EVAP lines. 20. Connect the EVAP canister purge tube (2) fitting. 21. Connect the fuel feed line (1) fitting at the engine. 22. Install the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9523 Evaporative Emissions Hose: Service and Repair Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) EVAPORATIVE EMISSION HOSES/PIPES REPLACEMENT - CANISTER/FUEL TANK (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean all the evaporative emission (EVAP) line connections and surrounding areas prior to disconnecting the fittings in order to avoid possible fuel/EVAP system contamination. 1. Remove the EVAP canister. 2. Remove the EVAP canister line (1). 3. Remove the EVAP canister purge line (2). 4. Cap the fuel and EVAP lines in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel and EVAP lines. 2. Install the EVAP canister purge line (2). 3. Install the EVAP canister line (1). 4. Install the EVAP canister. Evaporative Emission (EVAP) Hoses/Pipes Replacement - Chassis (Cab/Chassis) EVAPORATIVE EMISSION HOSE/PIPE REPLACEMENT - CHASSIS (CAB/CHASSIS) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9524 REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed and pressure balance lines from the front tank. 3. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. 4. Disconnect the fuel feed and pressure balance lines from the rear tank. 5. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9525 6. Remove the rear fuel line bundle clip nuts. 7. Remove the rear fuel line bundle. INSTALLATION PROCEDURE 1. Install the rear fuel line bundle. 2. Install the rear fuel line bundle clip nuts. 3. Remove the caps from the fuel and balance lines at the fuel tank. 4. Connect the fuel feed and pressure balance lines from the rear tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9526 5. Remove the caps from the fuel and balance lines at the fuel tank. 6. Connect the fuel feed and pressure balance lines from the front tank. 7. Install the fuel fill cap. 8. Connect the negative battery cable. 9. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Evaporative Emission (EVAP) Hoses/Pipes Replacement - Chassis (Pickup) EVAPORATIVE EMISSION HOSE/PIPE REPLACEMENT - CHASSIS (PICKUP) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail in order to avoid possible system contamination. 5. Raise and suitably support the vehicle. Refer to Vehicle Lifting. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9527 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the fuel line clips from the brackets on the transmission. 9. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 10. Disconnect the fuel and EVAP quick connect fittings. 11. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9528 12. Remove the fuel and EVAP bundle nuts. 13. Remove the fuel and EVAP bundle. INSTALLATION PROCEDURE 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle nuts. Tighten the nuts to 12 N.m (106 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9529 3. Remove the caps from the fuel and EVAP lines at the fuel tank. 4. Connect the fuel and EVAP quick connect fittings. 5. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 6. Install the fuel line clip(s) to the bracket(s) on the transmission. 7. Install the fuel pipe bracket to the bellhousing stud. 8. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9530 9. Lower the vehicle. 10. Remove the cap from the fuel rail. 11. Connect the fuel feed line (1) at the engine. 12. Connect the EVAP canister purge tube line (2). 13. Install the fuel fill cap. 14. Connect the negative battery cable. 15. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Evaporative Emission (EVAP) Hoses/Pipes Replacement - Chassis (1500 Crew Cab) EVAPORATIVE EMISSION HOSE/PIPE REPLACEMENT - CHASSIS (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the fittings in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) fitting at the engine. 3. Disconnect the EVAP canister purge tube (2) fitting. 4. Cap the fuel rail and EVAP lines in order to avoid possible system contamination. 5. Raise and support the vehicle. Refer to Vehicle Lifting. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9531 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the heated oxygen (HO2S) sensor connector from the bracket. 9. Remove the fuel line clips from the brackets on the transmission. 10. Remove the fuel line clip from the bracket on the transfer case, if equipped with 4 wheel drive (4WD). 11. Remove the clip from the bracket on the frame. 12. Remove the transfer case harness from the clip bracket. IMPORTANT: The area around the electro-hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled anti-lock brake (ABS) components. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9532 13. Thoroughly wash all contaminants from around the EHCU. 14. Disconnect the chassis electrical harness connectors from the electronic brake control module (EBCM). 15. Disconnect the brake lines from the brake pressure modulator valve (BPMV). 16. Remove the bolts (4) attaching the EHCU bracket to the frame (5). 17. Remove the EHCU (1). 18. Remove the torsion bar bracket, if equipped with 4WD. 19. Remove the EVAP canister. 20. Disconnect the fuel line at the tank. 21. Cap the fuel and EVAP lines in order to avoid possible system contamination. 22. Remove the fuel/EVAP bundle clip nuts. 23. Remove the fuel/EVAP bundle. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9533 1. Install the fuel/EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel/EVAP bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines. 4. Connect the fuel line at the tank. 5. Install the EVAP canister. 6. Install the torsion bar bracket, if equipped with 4WD. 7. Install the EHCU (1). 8. Install the bolts (4) attaching the EHCU bracket to the frame (5). Tighten the bolts to 25 N.m (18 lb ft). 9. Connect the brake lines to the BPMV. Tighten the fittings to 25 N.m (18 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9534 10. Connect the chassis electrical harness connectors to the EBCM. 11. Install the transfer case harness to the clip bracket. 12. Install the clip to the bracket on the frame. 13. Install the fuel line clip to the bracket on the transfer case, if equipped with 4WD. 14. Install the fuel line clips to the brackets on the transmission. 15. Install the HO2S sensor connector to the bracket. 16. Install the fuel pipe bracket to the bellhousing stud. 17. Install the fuel pipe bracket nut. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9535 Tighten the nut to 10 N.m (89 lb in). 18. Lower the vehicle. 19. Remove the caps from the fuel rail and EVAP lines. 20. Connect the EVAP canister purge tube (2) fitting. 21. Connect the fuel feed line (1) fitting at the engine. 22. Install the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Evaporative Emission (EVAP) Hoses/Pipes Replacement - Engine EVAPORATIVE EMISSION HOSES/PIPES REPLACEMENT - ENGINE REMOVAL PROCEDURE IMPORTANT: Clean the evaporative emission (EVAP) line connections and surrounding areas prior to disconnecting the fittings in order to avoid possible system contamination. 1. Remove the engine sight shield. 2. Disconnect the EVAP tube from the EVAP canister purge solenoid (1). 1. Push the large side white retainer portion in. 2. Push down, while pulling up slightly in order to disengage the tube. 3. Disconnect the EVAP tube from the chassis EVAP pipe (2). 1. Push the large side white retainer portion in. 2. Push down, while pulling up slightly in order to disengage the tube. 4. Remove the EVAP tube. 5. Cap the EVAP canister purge solenoid and EVAP chassis pipe in order to prevent possible EVAP system contamination. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9536 1. Remove the caps from the EVAP canister purge solenoid and EVAP chassis pipe. 2. Install the EVAP tube. 3. Connect the EVAP tube to the EVAP chassis pipe (2). 4. Connect the EVAP tube to the EVAP purge solenoid (1). 5. Install the engine sight shield. Evaporative Emission (EVAP) Hoses/Pipes Replacement - Pickup and Cab/Chassis EVAPORATIVE EMISSION SYSTEM HOSES/PIPES REPLACEMENT (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean the evaporative emission (EVAP) pipe connections and surrounding area prior to disconnecting the fittings in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the EVAP purge line (2) from the sending unit and retaining clips. 3. Disconnect and remove the EVAP fuel level vent valve (FLVV) line (3) from the sending unit and retaining clips. 4. Cap the fuel feed and EVAP openings in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Evaporative Emissions System > Evaporative Emissions Hose > Component Information > Service and Repair > Evaporative Emission (EVAP) Hoses/Pipes Replacement - Canister/Fuel Tank (Pickup and Cab/Chassis) > Page 9537 1. Remove the caps from the fuel feed and EVAP lines. 2. Install and connect the EVAP FLVV line (3) line to the sending unit and retaining clips. 3. Install and connect the EVAP purge line (2) to the sending unit and retaining clips. 4. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Positive Crankcase Ventilation > PCV Valve Hose > Component Information > Service and Repair PCV Valve Hose: Service and Repair Crankcase Ventilation Hoses/Pipes Replacement Removal Procedure 1. Remove the engine sight shield. 2. Remove the positive crankcase ventilation (PCV) hose from the intake manifold and valve rocker arm cover. 3. Remove the vent hose from the throttle body and the valve rocker arm cover. 4. Replace the hose as necessary. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Emission Control Systems > Positive Crankcase Ventilation > PCV Valve Hose > Component Information > Service and Repair > Page 9542 1. Install the hose as necessary. 2. Install the vent hose to the throttle body and the valve rocker arm cover. 3. Install the PCV hose to the intake manifold and valve rocker arm cover. 4. Install the engine sight shield. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure > System Information > Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................384-425 kPa (55-62 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure > System Information > Service Precautions > Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure > System Information > Service Precautions > Technician Safety Information > Page 9549 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure > System Information > Service Precautions > Page 9550 Fuel Pressure: Testing and Inspection FUEL SYSTEM DIAGNOSIS SYSTEM DESCRIPTION The control module enables the fuel pump relay when the ignition switch is turned ON. The control module will disable the fuel pump relay within two seconds unless the control module detects ignition reference pulses. The control module continues to enable the fuel pump relay as long as ignition reference pulses are detected. The control module disables the fuel pump relay within two seconds if ignition reference pulses cease to be detected and the ignition remains ON. The Fuel System is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. The fuel tank stores the fuel supply. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pump also supplies fuel to a venturi pump located on the bottom of the fuel sender assembly. The function of the venturi pump is to fill the fuel sender assembly reservoir. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure > System Information > Service Precautions > Page 9551 Step 1 - Step 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure > System Information > Service Precautions > Page 9552 Step 6 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9557 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9558 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9559 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9560 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Idle Speed > System Information > Specifications Idle Speed: Specifications Information not supplied by the manufacturer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 9567 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 9568 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 9569 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 9570 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Cleaner Fresh Air Duct/Hose > Component Information > Service and Repair Air Cleaner Fresh Air Duct/Hose: Service and Repair AIR CLEANER RESONATOR OUTLET DUCT REPLACEMENT REMOVAL PROCEDURE 1. Loosen the clamp and separate the air cleaner outlet duct at the mass air flow (MAF)/intake air temperature (IAT) sensor. 2. Loosen the clamp and separate the air cleaner outlet duct from the throttle body. 3. Remove the radiator inlet hose clamp from the outlet duct. 4. Remove the air cleaner outlet duct. INSTALLATION PROCEDURE 1. Install the air cleaner outlet duct. 2. Install the air cleaner outlet duct to the throttle body. 3. Install the air cleaner outlet duct to MAF/IAT sensor. 4. Install the radiator inlet hose clamp to the outlet duct. NOTE: Refer to Fastener Notice. 5. Tighten the air cleaner outlet duct clamps. Tighten the clamps to 4 N.m (35 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: Customer Interest Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Customer Interest: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 9583 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON Air Filter Element: All Technical Service Bulletins Engine, A/T - Shift/Driveability Concerns/MIL ON Bulletin No.: 04-07-30-013B Date: February 01, 2007 INFORMATION Subject: Automatic Transmission Shift, Engine Driveability Concerns or Service Engine Soon (SES) Light On as a Result of the Use of an Excessively/Over-Oiled Aftermarket, Reusable Air Filter Models: 2007 and Prior GM Cars and Light Duty Trucks 2007 and Prior Saturn Models 2003-2007 HUMMER H2 2006-2007 HUMMER H3 2005-2007 Saab 9-7X Supercede: This bulletin is being revised to add models and model years. Please discard Corporate Bulletin Number 04-07-30-013A (Section 07 - Transmission/Transaxle). The use of an excessively/over-oiled aftermarket, reusable air filter may result in: Service Engine Soon (SES) light on Transmission shift concerns, slipping and damaged clutch(es) or band(s) Engine driveability concerns, poor acceleration from a stop, limited engine RPM range The oil that is used on these air filter elements may be transferred onto the Mass Air Flow (MAF) sensor causing contamination of the sensor. As a result, the Grams per Second (GPS) signal from the MAF may be low and any or all of the concerns listed above may occur. When servicing a vehicle with any of these concerns, be sure to check for the presence of an aftermarket reusable, excessively/over-oiled air filter. The MAF, GPS reading should be compared to a like vehicle with an OEM air box and filter under the same driving conditions to verify the concern. The use of an aftermarket reusable air filter DOES NOT void the vehicle's warranty. If an aftermarket reusable air filter is used, technicians should inspect the MAF sensor element and the air induction hose for contamination of oil prior to making warranty repairs. Transmission or engine driveability concerns (related to the MAF sensor being contaminated with oil) that are the result of the use of an aftermarket reusable, excessively/over-oiled air filter are not considered to be warrantable repair items. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 04-07-30-013B > Feb > 07 > Engine, A/T - Shift/Driveability Concerns/MIL ON > Page 9589 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Other Service Bulletins for Air Filter Element: > 06-04-17-002A > Jan > 07 > Drivetrain - Rear Drive Axle Whine Noise Universal Joint: All Technical Service Bulletins Drivetrain - Rear Drive Axle Whine Noise Bulletin No.: 06-04-17-002A Date: January 12, 2007 TECHNICAL Subject: Rear Drive Axle Whine Noise (Replace Slip Yoke Assembly) Models: 2004-2007 Chevrolet Silverado (Classic) 1500 Series 2WD Crew Cab Models (C15543) 2004-2007 GMC Sierra (Classic) 1500 Series 2WD Crew Cab Models (C15543) Supercede: This bulletin is being revised to include additional model information. Please discard Corporate Bulletin Number 06-04-17-002 (Section 04 - Driveline/Axle). Condition Some customers may comment on a slight axle whine noise heard only at certain speeds, typically on coast conditions between 72-96 km/h (45-60 mph). Cause "Inherent" ring and pinion gear whine. All gear driven units, such as automotive rear axles, produce some level of noise that cannot be eliminated with conventional adjustments and repairs. "Inherent" axle noise can be described as a slight noise heard only at a certain speed (typically between 72-96 km/h (45-60 mph) on most General Motors(R) trucks). The presence of this noise is not indicative of a functional concern with the axle assembly. However, some customers may find that this inherent axle noise is unacceptable. Correction Using the service procedures in SI, replace the propshaft front slip yoke and u-joint with a tuned damper slip yoke with u-joint assembly, P/N 19151749, ONLY after diagnosis concludes that it is an "inherent" rear axle noise and no physical damage or incorrect adjustment exists. Do NOT replace the propshaft assembly. If the noise is not correctly diagnosed as "inherent" and having a peak in the narrow speed range of 72-96 km/h (45-60 mph), the addition of a tuned damper slip yoke and u-joint can aggravate the perceptible noise level. It is extremely important to first diagnose the rear axle noise as "inherent". Refer to the following diagnostic information and procedure for rear axle noise in SI: Diagnostic Starting Point - Rear Drive Axle Symptoms - Rear Drive Axle Rear Drive Axle Noises Noisy in Drive Parts Information Warranty Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Other Service Bulletins for Air Filter Element: > 06-04-17-002A > Jan > 07 > Drivetrain - Rear Drive Axle Whine Noise > Page 9595 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > All Other Service Bulletins for Air Filter Element: > 06-04-17-002A > Jan > 07 > Drivetrain - Rear Drive Axle Whine Noise > Page 9601 For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 9602 Air Filter Element: Service and Repair AIR CLEANER ELEMENT REPLACEMENT REMOVAL PROCEDURE 1. Remove the air cleaner outlet duct. 2. Disconnect the mass air flow/intake air temperature (MAF/IAT) sensor electrical connector (4). 3. Loosen the air cleaner housing top screws. 4. Remove the air cleaner housing cover. 5. Remove the air filter element. INSTALLATION PROCEDURE 1. Install a NEW air filter element. 2. Install the air cleaner housing cover. 3. Tighten the air cleaner housing top screws until snug. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Cleaner Housing > Air Filter Element > Component Information > Technical Service Bulletins > Page 9603 4. Connect the MAF/IAT sensor electrical connector (4). 5. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9609 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9610 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9611 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9612 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9613 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9614 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9615 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9616 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9617 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9618 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9619 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9620 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9621 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9622 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9623 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9624 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9625 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9626 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9627 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9628 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9629 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9630 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9631 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9632 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9633 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9634 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9635 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9636 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9637 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9638 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9639 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9640 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9641 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9642 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9643 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9644 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9645 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9646 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9647 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9648 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9649 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9650 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9651 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9652 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9653 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9654 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9655 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9656 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9657 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9658 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9659 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9660 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9661 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9662 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9663 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9664 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9665 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9666 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9667 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9668 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9669 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9670 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9671 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9672 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9673 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9674 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9675 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9676 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9677 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9678 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9679 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9680 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9681 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9682 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9683 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9684 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9685 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9686 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9687 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9688 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9689 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9690 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9691 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9692 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9693 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9694 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9695 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9696 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9697 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9698 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9699 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9700 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 9701 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 9702 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 9703 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. Fuel: Technical Service Bulletins Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. INFORMATION Bulletin No.: 10-06-04-015 Date: December 08, 2010 Subject: General Motors' Position Regarding Use of E15 in Model Year 2007 and Newer Vehicles Models: 2007-2011 GM Passenger Cars and Trucks General Motors' position regarding the Environmental Protection Agency announcement allowing the use of E 15 in 2007 and newer vehicles: - General Motors' remains focused on securing a safe and positive driving experience for our customers. GM believes that the waiver decision by the EPA regarding E 15 could lead to confusion for consumers as to what fuel their vehicle should use. In response, we will continue to encourage our customers to refer to their vehicle Owner Manual for proper fuel designation. The vehicle Owner Manual specifies that fuels containing more than 10 percent ethanol should not be used in GM vehicles that do not have a flex fuel designation. - GM has the largest fleet of flex fuel vehicles on the road today (over 4 million in the U.S.) and these vehicles can safely use ethanol blends of up to 85 percent ethanol. So blends of E 15 (15 percent ethanol), as in the partial waiver announced, are appropriate for these vehicles. However, ethanol blends greater than E 10 should not be used in GM vehicles that do not have a flex fuel designation as they are not designed and certified to run on gasoline consisting of more than 10 percent ethanol-blend volume to avoid any unintended consequences, as per: their Owner Manual. - We believe biofuels, especially E 85 ethanol, are an effective near-term solution to reduce petroleum dependence and the carbon footprint of driving. As the global leader in producing vehicles designed to handle ethanol blends from E 0 to E 85, GM offers 19 flexible-fuel vehicles for the 2011 model year. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9708 Fuel: Technical Service Bulletins Fuel System - TOP TIER Detergent Gasoline (Canada) INFORMATION Bulletin No.: 05-06-04-022G Date: October 27, 2010 Subject: TOP TIER Detergent Gasoline Information and Available Brands (Deposits, Fuel Economy, No Start, Power, Performance, Stall Concerns) - Canada ONLY Models: 2011 and Prior GM Passenger Cars and Trucks (Canada Only) Supercede: This bulletin is being revised to update the model years and include an additional gasoline brand as a TOP TIER source. Please discard Corporate Bulletin Number 05-06-04-022F (Section 06 - Engine/Propulsion System). In the U.S., refer to the latest version of Corporate Bulletin Number 04-06-04-047I. A new class of fuel called TOP TIER Detergent Gasoline is appearing at retail stations of some fuel marketers. This gasoline meets detergency standards developed by six automotive companies. All vehicles will benefit from using TOP TIER Detergent Gasoline over gasoline containing the "Lowest Additive Concentration" recommended by the Canadian General Standards Board (CGSB). Those vehicles that have experienced deposit related concerns may especially benefit from use of TOP TIER Detergent Gasoline. Intake valve: 16,093 km (10,000 mi) with TOP TIER Detergent Gasoline Intake valve: 16,093 km (10,000 mi) with Minimum Additive recommended by the CGSB Top Tier Fuel Availability Chevron was the first to offer TOP TIER Detergent Gasoline in Canada. Shell became the first national gasoline retailer to offer TOP TIER Detergent Gasoline across Canada. Petro-Canada began offering TOP TIER Detergent Gasoline nationally as of October 1, 2006. Sunoco began offering TOP TIER Detergent Gasoline in March of 2007. Esso began offering TOP TIER Detergent Gasoline in May of 2010. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9709 Gasoline Brands That Currently Meet TOP TIER Detergent Gasoline Standards The following gasoline brands meet the TOP TIER Detergent Gasoline Standards in all octane grades : Chevron Canada (markets in British Columbia and western Alberta) - Shell Canada (nationally) - Petro-Canada (nationally) - Sunoco-Canada (Ontario) - Esso-Canada (nationally) What is TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline is a new class of gasoline with enhanced detergency and no metallic additives. It meets new, voluntary deposit control standards developed by six automotive companies that exceed the detergent recommendations of Canadian standards and does not contain metallic additives, which can damage vehicle emission control components. Where Can TOP TIER Detergent Gasoline Be Purchased? The TOP TIER program began in the U.S. and Canada on May 3, 2004. Some fuel marketers have already joined and introduced TOP TIER Detergent Gasoline. This is a voluntary program and not all fuel marketers will offer this product. Once fuel marketers make public announcements, they will appear on a list of brands that meet the TOP TIER standards. Who developed TOP TIER Detergent Gasoline standards? TOP TIER Detergent Gasoline standards were developed by six automotive companies: BMW, General Motors, Honda, Toyota, Volkswagen and Audi. Why was TOP TIER Detergent Gasoline developed? TOP TIER Detergent Gasoline was developed to increase the level of detergent additive in gasoline. In the U.S., government regulations require that all gasoline sold in the U.S. contain a detergent additive. However, the requirement is minimal and in many cases, is not sufficient to keep engines clean. In Canada, gasoline standards recommend adherence to U.S. detergency requirements but do not require it. In fact, many brands of gasoline in Canada do not contain any detergent additive. In order to meet TOP TIER Detergent Gasoline standards, a higher level of detergent is needed than what is required or recommended, and no metallic additives are allowed. Also, TOP TIER was developed to give fuel marketers the opportunity to differentiate their product. Why did the six automotive companies join together to develop TOP TIER? All six corporations recognized the benefits to both the vehicle and the consumer. Also, joining together emphasized that low detergency and the intentional addition of metallic additives is an issue of concern to several automotive companies. What are the benefits of TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline will help keep engines cleaner than gasoline containing the "Lowest Additive Concentration" recommended by Canadian standards. Clean engines help provide optimal fuel economy and engine performance, and also provide reduced emissions. Also, the use of TOP TIER Detergent Gasoline will help reduce deposit related concerns. Who should use TOP TIER Detergent Gasoline? All vehicles will benefit from using TOP TIER Detergent Gasoline over gasoline containing the "Lowest Additive Concentration" recommended by Canadian standards. Those vehicles that have experienced deposit related concerns may especially benefit from use of TOP TIER Detergent Gasoline. More information on TOP TIER Detergent Gasoline can be found at this website, http://www.toptiergas.com/. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9710 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9711 Fuel: Technical Service Bulletins Fuel System - 'TOP TIER' Detergent Gasoline Information INFORMATION Bulletin No.: 04-06-04-047I Date: August 17, 2009 Subject: TOP TIER Detergent Gasoline (Deposits, Fuel Economy, No Start, Power, Performance, Stall Concerns) - U.S. Only Models: 2010 and Prior GM Passenger Cars and Trucks (including Saturn) (U.S. Only) 2003-2010 HUMMER H2 (U.S. Only) 2006-2010 HUMMER H3 (U.S. Only) 2005-2009 Saab 9-7X (U.S. Only) Supercede: This bulletin is being revised to add model years and additional sources to the Top Tier Fuel Retailers list. Please discard Corporate Bulletin Number 04-06-04-047H (Section 06 Engine/Propulsion System). In Canada, refer to Corporate Bulletin Number 05-06-04-022F. A new class of fuel called TOP TIER Detergent Gasoline is appearing at retail stations of some fuel marketers. This gasoline meets detergency standards developed by six automotive companies. All vehicles will benefit from using TOP TIER Detergent Gasoline over gasoline containing the "Lowest Additive Concentration" set by the EPA. Those vehicles that have experienced deposit related concerns may especially benefit from the use of TOP TIER Detergent Gasoline. Intake valve: - 10,000 miles with TOP TIER Detergent Gasoline Intake valve: - 10,000 miles with Legal Minimum additive Gasoline Brands That Currently Meet TOP TIER Detergent Gasoline Standards As of August 1, 2009, all grades of the following gasoline brands meet the TOP TIER Detergent Gasoline Standards: - Chevron - Chevron-Canada - QuikTrip - Conoco Phillips 66 - 76 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9712 - Shell - Shell-Canada - Entec Stations located in the greater Montgomery, Alabama area. - MFA Oil Company located throughout Missouri. - Kwik Trip, Inc. in Minnesota and Wisconsin and Kwik Star convenience stores in Iowa. The Somerset Refinery, Inc. at Somerset Oil stations in Kentucky. Aloha Petroleum - Tri-Par Oil Company - Turkey Hill Minit Markets - Texaco - Petro-Canada - Sunoco-Canada - Road Ranger located in Illinois, Indiana, Iowa, Kentucky, Missouri, Ohio and Wisconsin What is TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline is a new class of gasoline with enhanced detergency. It meets new, voluntary deposit control standards developed by six automotive companies that exceed the detergent requirements imposed by the EPA. Where Can TOP TIER Detergent Gasoline Be Purchased? The TOP TIER program began on May 3, 2004 and many fuel marketers have joined the program and have introduced TOP TIER Detergent Gasoline. This is a voluntary program and not all fuel marketers will offer this product. Once fuel marketers make public announcements, they will appear on a list of brands that meet the TOP TIER standards. Where Can I find the Latest Information on TOP TIER Fuel and Retailers? On the web, please visit www.toptiergas.com for additional information and updated retailer lists. Who developed TOP TIER Detergent Gasoline standards? TOP TIER Detergent Gasoline standards were developed by six automotive companies: Audi, BMW, General Motors, Honda, Toyota and Volkswagen. Why was TOP TIER Detergent Gasoline developed? TOP TIER Detergent Gasoline was developed to increase the level of detergent additive in gasoline. The EPA requires that all gasoline sold in the U.S. contain a detergent additive. However, the requirement is minimal and in many cases, is not sufficient to keep engines clean. In order to meet TOP TIER Detergent Gasoline standards, a higher level of detergent is needed than what is required by the EPA. Also, TOP TIER was developed to give fuel marketers the opportunity to differentiate their product. Why did the six automotive companies join together to develop TOP TIER? All six corporations recognized the benefits to both the vehicle and the consumer. Also, joining together emphasized that low detergency is an issue of concern to several automotive companies. What are the benefits of TOP TIER Detergent Gasoline? TOP TIER Detergent Gasoline will help keep engines cleaner than gasoline containing the "Lowest Additive Concentration" set by the EPA. Clean engines help provide optimal fuel economy and performance and reduced emissions. Also, use of TOP TIER Detergent Gasoline will help reduce deposit related concerns. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9713 Fuel: Technical Service Bulletins Fuel System - E85 Fuel Usage Precautions Bulletin No.: 05-06-04-035C Date: July 30, 2007 INFORMATION Subject: Usage of E85 Fuels in GM Vehicles Models: 1997-2008 GM Passenger Cars and Trucks (including Saturn) 2003-2008 HUMMER H2 2006-2008 HUMMER H3 1997-2008 Isuzu NPR Commercial Medium Duty Trucks 2005-2008 Saab 9-7X Supercede: This bulletin is being revised to add the 2008 model year and additional engines with E85 capability. Please discard Corporate Bulletin Number 05-06-04-035B (Section 06 Engine/Propulsion System). Customer Interest in E85 Fuel As the retail price of gasoline increases, some locations in the country are seeing price differentials between regular gasoline and E85 where E85 is selling for substantially less than regular grade gasoline. One result of this is that some customers have inquired if they are able to use E85 fuel in non-E85 compatible vehicles. Only vehicles designated for use with E85 should use E85 blended fuel. E85 compatibility is designated for vehicles that are certified to run on up to 85% ethanol and 15% gasoline. All other gasoline engines are designed to run on fuel that contains no more than 10% ethanol. Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion. Using E85 Fuels in Non-Compatible Vehicles General Motors is aware of an increased number of cases where customers have fueled non-FlexFuel designated vehicles with E85. Fueling non-FlexFuel designated vehicles with E85, or with fuels where the concentration of ethanol exceeds the ASTM specification of 10%, will result in one or more of the following conditions: Lean Driveability concerns such as hesitations, sags and/or possible stalling. SES lights due to OBD codes. Fuel Trim codes P0171 and/or P0174. Misfire codes (P0300). Various 02 sensor codes. Disabled traction control or Stability System disabled messages. Harsh/Firm transmission shifts. Fuel system and/or engine mechanical component degradation. Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion. If the dealer suspects that a non-FlexFuel designated vehicle brought in for service has been fueled with E85, the fuel in the vehicle's tank should be checked for alcohol content with tool J 44175. If the alcohol content exceeds 10% the fuel should be drained and the vehicle refilled with gasoline - preferably one of the Top Tier brands. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9714 Repairs to non-FlexFuel vehicles that have been fueled with E85 are not covered under the terms of the New Vehicle Warranty. A complete list of GM's FlexFuel vehicles can be found in this Service Bulletin, or at www.livegreengoyellow.com. E85 Compatible Vehicles The only E85 compatible vehicles produced by General Motors are shown. Only vehicles that are listed in the E85 Compatible Vehicles section of this bulletin and/or www.livegreengoyellow.com are E85 compatible. All other gasoline and diesel engines are NOT E85 compatible. Use of fuel containing greater than 10% ethanol in non-E85 designated vehicles can cause driveability issues, service engine soon indicators as well as increased fuel system corrosion. Repairs to non-FlexFuel vehicles that have been fueled with E85 are not covered under the terms of the New Vehicle Warranty. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Fuel - GM's Position on Use of E 15 in 2007 Newer M.Y. > Page 9715 Fuel: Technical Service Bulletins Fuel System - E85 Refueling Station Information Bulletin No.: 06-06-04-030 Date: May 15, 2006 INFORMATION Subject: Locations of E85 Refueling Stations and Expanded E85 Information Models: 2007 and Prior GM Cars and Trucks Equipped for Flexible Fuel (E85) Attention: U.S. dealers - This bulletin should be directed to the Sales Manager as well as the Service Manager. Copies of this bulletin may be given to customers purchasing or considering the purchase of E85 capable vehicles, and may be left or posted in customer waiting areas. Canadian dealers - This bulletin is intended for the U.S. Market and provides only limited information relevant to the Canadian market. Customer Questions, Concerns and Refueling Locations for E85 Fuel Extensive information on E85 Ethanol based fuels can be found at www.livegreengoyellow.com . This General Motors site contains vital information that anticipates and answers customer questions and concerns about E85 fuel. Part of the information is a useful link that provides the location nationally of all E85 refueling stations. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Page 9716 Fuel: Specifications GASOLINE OCTANE Use premium unleaded gasoline with a posted octane rating of 91 or higher. You may also use regular unleaded gasoline rated at 87 octane or higher, but your vehicle's acceleration may be slightly reduced, and you may notice a slight audible knocking noise, commonly referred to as spark knock. If the octane is less than 87, you may notice a heavy knocking noise when you drive. If this occurs, use a gasoline rated at 87 octane or higher as soon as possible. Otherwise, you might damage your engine. If you are using gasoline rated at 87 octane or higher and you hear heavy knocking, your engine needs service. GASOLINE SPECIFICATIONS At a minimum, gasoline should meet ASTM specification D 4814 in the United States or CAN/CGSB-3.5 in Canada. Some gasolines may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT). General Motors recommends against the use of gasolines containing MMT. CALIFORNIA FUEL If your vehicle is certified to meet California Emission Standards, it is designed to operate on fuels that meet California specifications. See the underhood emission control label. If this fuel is not available in states adopting California emissions standards, your vehicle will operate satisfactorily on fuels meeting federal specifications, but emission control system performance may be affected. The malfunction indicator lamp may turn on and your vehicle may fail a smog-check test. If it is determined that the condition is caused by the type of fuel used, repairs may not be covered by your warranty. ADDITIVES To provide cleaner air, all gasolines in the United States are now required to contain additives that will help prevent engine and fuel system deposits from forming, allowing your emission control system to work properly. In most cases, you should not have to add anything to your fuel. However, some gasolines contain only the minimum amount of additive required to meet U.S. Environmental Protection Agency regulations. To help keep fuel injectors and intake valves clean, or if your vehicle experiences problems due to dirty injectors or valves, look for gasoline that is advertised as TOP TIER Detergent Gasoline. Also, your dealer has additives that will help correct and prevent most deposit-related problems. Gasolines containing oxygenates, such as ethers and ethanol, and reformulated gasolines may be available in your area. General Motors recommends that you use these gasolines if they comply with the specifications described earlier. However, E85 (85% ethanol) and other fuels containing more than 10% ethanol must not be used in vehicles that were not designed for those fuels. NOTICE: Your vehicle was not designed for fuel that contains methanol. Do not use fuel containing methanol. It can corrode metal parts in the fuel system and also damage plastic and rubber parts. That damage would not be covered under your warranty. Some gasolines that are not reformulated for low emissions may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT); ask the attendant where you buy gasoline whether the fuel contains MMT. General Motors recommends against the use of such gasolines. Fuels containing MMT can reduce the life of spark plugs and the performance of the emission control system may be affected. The malfunction indicator lamp may turn on. If this occurs, return to your dealer for service. NOTICE: Your vehicle was not designed for fuel that contains methanol. Do not use fuel containing methanol. It can corrode metal parts in your fuel system and also damage the plastic and rubber parts. That damage would not be covered under your warranty. Some gasolines that are not reformulated for low emissions may contain an octane-enhancing additive called methylcyclopentadienyl manganese tricarbonyl (MMT); ask the attendant where you buy gasoline whether the fuel contains MMT. General Motors does not recommend the use of such gasolines. Fuels containing MMT can reduce the life of spark plugs and the performance of the emission control system may be affected. The malfunction indicator lamp may turn on. FUELS IN FOREIGN COUNTRIES If you plan on driving in another country outside the United States or Canada, the proper fuel may be hard to find. Never use leaded gasoline or any other fuel not recommended in the previous text on fuel. Costly repairs caused by use of improper fuel would not be covered by your warranty. To check the fuel availability, ask an auto club, or contact a major oil company that does business in the country where you will be driving. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Page 9717 Fuel: Service Precautions Gasoline/Gasoline Vapors Caution Caution: Gasoline or gasoline vapors are highly flammable. A fire could occur if an ignition source is present. Never drain or store gasoline or diesel fuel in an open container, due to the possibility of fire or explosion. Have a dry chemical (Class B) fire extinguisher nearby. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel > Component Information > Technical Service Bulletins > Page 9718 Fuel: Testing and Inspection ALCOHOL/CONTAMINANTS-IN-FUEL DIAGNOSIS TEST DESCRIPTION Water contamination in the fuel system may cause driveability conditions such as hesitation, stalling, no start, or misfires in one or more cylinders. Water may collect near a single fuel injector at the lowest point in the fuel injection system and cause a misfire in that cylinder. If the fuel system is contaminated with water, inspect the fuel system components for rust or deterioration. Ethanol concentrations of greater than 10 percent in nonblended gasoline, or greater than 85 percent with E85 blended gasoline for flexible fuel applications, can cause driveability conditions such as hesitation, lack of power, stalling, or a no start, and may contribute to fuel system corrosion, deterioration of fuel system components, and a restricted fuel filter. SYSTEM VERIFICATION The fuel sample should be drawn from the bottom of the tank so that any water present in the tank will be detected. The sample should be bright and clear. If the sample appears cloudy, or contaminated with water, as indicated by a water layer at the bottom of the sample, perform the Particulate Contaminants in Fuel Testing Procedure. - If alcohol contamination is suspected, perform the Alcohol in Fuel Testing procedure. ALCOHOL IN FUEL TESTING WITH SPECIAL TOOL 1. Test the fuel composition using J 44175 and Instruction Manual. 2. If water appears in the fuel sample, clean the fuel system. 3. Subtract 50 from the reading on the DMM in order to obtain the percentage of alcohol in the fuel sample. 4. If the nonblended gasoline fuel sample measures more than 15 percent ethanol, or if the E85 blended gasoline fuel sample measures more than 91 percent ethanol, add fresh regular gasoline to the vehicles's fuel tank. 5. Test the fuel composition. 6. If additional testing indicates that the ethanol percentage is still above 15 percent for a nonblended gasoline sample, drain and replace the vehicle's fuel. If additional testing indicates that the E85 blended gasoline sample still measures above 91 percent, continue adding fresh, regular gasoline until the ethanol content is 85 percent or less. ALCOHOL IN FUEL TESTING WITHOUT SPECIAL TOOL 1. Using a 100 ml (3.38 oz) specified cylinder with 1 ml (0.034 oz) graduation marks, fill the cylinder with fuel to the 90 ml (3.04 oz) mark. 2. Add 10 ml (0.34 oz) of water in order to bring the total fluid volume to 100 ml (3.38 oz) and install a stopper. 3. Shake the cylinder vigorously for 10-15 seconds. 4. Carefully loosen the stopper in order to release the pressure. 5. Re-install the stopper and shake the cylinder vigorously again for 10-15 seconds. 6. Put the cylinder on a level surface for approximately 5 minutes in order to allow adequate liquid separation. If alcohol is present in the fuel, the volume of the lower layer, which would now contain both alcohol and water, will be more than 10 ml (0.34 oz). For example, if the volume of the lower layer is increased to 15 ml (0.51 oz), this indicates at least 5 percent alcohol in the fuel. The actual amount of alcohol may be somewhat more because this procedure does not extract all of the alcohol from the fuel. PARTICULATE CONTAMINANTS IN FUEL TESTING PROCEDURE 1. Using an approved fuel container, draw approximately 0.5 liter (0.53 qt) of fuel. 2. Place the container on a level surface for approximately 5 minutes in order to allow settling of the particulate contamination. Particulate contamination will show up in various shapes and colors. Sand will typically be identified by a white or light brown crystals. Rubber will appear as black and irregular particles. 3. Observe the fuel sample. If any physical contaminants or water are present, clean the fuel system. REPAIR INSTRUCTIONS Perform the Diagnostic Repair Verification after completing the diagnostic procedure. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/Verification Tests and Procedures Fuel System Cleaning Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal Fuel Pressure Release: Service and Repair Fuel Pressure Gage Installation and Removal FUEL PRESSURE GAGE INSTALLATION AND REMOVAL TOOLS REQUIRED CH-48027 Digital Pressure Gage INSTALLATION PROCEDURE CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Connect the CH-48027-1 (1) to the CH-48027-2 (2). 3. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 4. Perform any tests and/or diagnostics as needed. For the proper usage of the CH-48027, refer to the manufacture's directions. REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9724 1. Relieve the fuel system pressure, if required. Perform the following steps: CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 1. Wrap a shop towel around the fuel rail service port. 2. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 3. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 4. Close the valve on the CH-48027-2 (2). 5. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. 6. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections 2. Disconnect the CH-48027-1 (1) from the CH-48027-2 (2). 3. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 4. Disconnect the CH-48027-3 (4) from the fuel rail service port. 5. Install the fuel rail service port cap. 6. Install the engine cover, if required. 7. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9725 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (With CH 48027) FUEL PRESSURE RELIEF (WITH CH 48027) TOOLS REQUIRED CH-48027 Digital Pressure Gage CAUTION: Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Remove the engine cover, if required. 2. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 3. Remove the fuel rail service port cap. CAUTION: Wrap a shop towel around the fuel pressure connection in order to reduce the risk of fire and personal injury. The towel will absorb any fuel leakage that occurs during the connection of the fuel pressure gage. Place the towel in an approved container when the connection of the fuel pressure gage is complete. 4. Wrap a shop towel around the fuel rail service port. 5. Connect the CH-48027-3 (4) to the fuel rail service port. 6. Connect the CH-48027-2 (2) to the CH-48027-3 (4). 7. Place the hose on the CH-48027-2 (2) into an approved gasoline container. 8. Open the valve on the CH-48027-2 (2) in order to bleed any fuel from the fuel rail. 9. Close the valve on the CH-48027-2 (2). 10. Remove the hose on the CH-48027-2 (2) from the approved gasoline container. NOTE: Clean all of the following areas before performing any disconnections in order to avoid possible contamination in the system: The fuel pipe connections - The hose connections - The areas surrounding the connections IMPORTANT: If relieving the fuel pressure for the fuel pressure gage installation and removal, it is NOT necessary to proceed with the following steps. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9726 11. Disconnect the CH-48027-2 (2) from the CH-48027-3 (4). 12. Disconnect the CH-48027-3 (4) from the fuel rail service port. 13. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 14. Install the fuel rail service port cap. 15. Install the engine cover, if required. 16. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Filter > Fuel Pressure Release > System Information > Service and Repair > Fuel Pressure Gage Installation and Removal > Page 9727 Fuel Pressure Release: Service and Repair Fuel Pressure Relief (Without CH 48027) FUEL PRESSURE RELIEF (WITHOUT CH 48027) CAUTION: - Refer to Gasoline/Gasoline Vapors Caution. - Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. 1. Loosen the fuel fill cap in order to relieve the fuel tank vapor pressure. 2. Remove the engine cover, if required. 3. Remove the fuel rail service port cap. 4. Wrap a shop towel around the fuel rail service port and using a small flat bladed tool, depress (open) the fuel rail test port valve. 5. Remove the shop towel from around the fuel rail service port, and place in an approved gasoline container. 6. Install the fuel rail service port cap. 7. Install the engine cover, if required. 8. Tighten the fuel fill cap. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > Customer Interest: > 03-06-04-030G > Apr > 09 > Fuel System - Driveability Issues/MIL/Multiple DTC's Fuel Injector: Customer Interest Fuel System - Driveability Issues/MIL/Multiple DTC's TECHNICAL Bulletin No.: 03-06-04-030G Date: April 22, 2009 Subject: Various Driveability Symptoms Due to Clogged Fuel Injectors, MIL/SES DTCs P0171, P0172, P0174, P0300, P1174, P1175 (Clean Fuel Injectors and/or Perform Injector Test With AFIT CH-47976) Models: 2005-2009 GM Passenger Cars and Light Duty Trucks 2005-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X Equipped with Engine RPOs listed in the Table above and MULTEC(R) 2 Fuel Injectors Attention: GM does not support cleaning injectors on any engines that are not listed in this bulletin. Engines other than the ones listed in this bulletin that diagnosis indicates having restricted injectors should have those injectors replaced. Supercede: This bulletin is being revised to update the model year to 2009 and to provide applicable engine RPO table. Please discard Corporate Bulletin Number 03-06-04-030F (Section 06 - Engine/Propulsion System). Condition Some customers may comment on any of the following various driveability symptoms: - Extended Crank Time - Hard to Start - MIL/SES Illuminated with DTCs - Hesitation - Lack of Power - Surge or Chuggle - Rough Idle - Light or Intermittent Misfire Cause Due to various factors, the fuel injectors may become restricted. Extensive testing has demonstrated that fuel related issues are the cause of clogged injectors. At this point, no specific fuel, fuel constituent, or engine condition has been identified as causing the restriction. The restriction causes the engine to operate at a lean air fuel ratio. This may either trigger the MIL to illuminate or the engine to develop various driveability symptoms. Correction Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > Customer Interest: > 03-06-04-030G > Apr > 09 > Fuel System - Driveability Issues/MIL/Multiple DTC's > Page 9736 Fuel injector restrictions, deposits can be cleaned on the vehicle using the following procedure. Under NO circumstances should this procedure be modified, changed or shortened. As a long term solution, and to prevent reoccurrence, customers should be encouraged to use Top Tier Detergent Gasoline. For further information on Top Tier detergent gasoline and fuel retailers, please refer to the following Corporate Bulletin Numbers: - 04-06-04-047G (U.S. Only) - 05-06-04-022D (Canada ONLY) Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent approved for use with General Motors fuel system components. Other injector cleaners may cause damage to plastics, plated metals or bearings. General Motors has completed extensive laboratory testing of GM Upper Engine and Fuel Injector Cleaner, and can assure its compatibility with General Motors fuel system components, as long as the cleaning procedure is followed correctly. Injector Cleaning Procedure The following tools, or their equivalent, are required: - CH-47976 Active Fuel Injector Tester (AFIT) - J 35800-A Fuel Injector Cleaner - J 37287 Fuel Line Shut-off Adapter - J 42964 Fuel Line Shut-off Adapter - J 42873 Fuel Line Shut-off Adapter - * One bottle of GM Upper Engine and Fuel Injector Cleaner, P/N 88861802 (in Canada, P/N 88861804) - * One bottle of GM Fuel System Treatment Plus, P/N 88861011 (in Canada, P/N 88861012) Active Fuel Injector Tester (AFIT- CH-47976) Some dealers may not have an Active Fuel Injector Tester (AFIT- CH-47976). Dealers can contact to order an AFIT- CH-47976. Dealers still can test the fuel injectors without an AFIT. Refer to Fuel Injector Diagnosis (w/ J 39021 or Tech 2(R)) in SI. Important As mentioned in the AFIT User Guide, vehicles that are not listed in the AFIT menu can still be tested with the AFIT. Depending on the model, it may be possible to enter the previous model year and proceed with testing using the DLC connection. If this is not possible on the model that you are working on, it will be necessary to use the direct connection method outlined in the AFIT User Guide (See Pages 17-31). General Motors recommends that the Active Fuel Injector Tester (AFIT) be used in testing fuel injectors. If the SI diagnostics do not isolate a cause for this concern, use the Active Fuel Injector Tester (AFIT - CH-47976) to perform an "Injector Test" as outlined in the AFIT User Guide. The AFIT "Injector Test" measures the flow characteristics of all fuel injectors, which is more precise when compared with the standard Tech 2(R) fuel injector balance test. As a result, the AFIT is more likely to isolate the cause of a P1174 DTC (for example: if it is being caused by a fuel injector concern). The CH-47976 (Active Fuel Injector Tester - AFIT) can also be used to measure fuel pressure and fuel system leak down. Also, as mentioned in the P1174 SI diagnosis, if the misfire current counters or misfire graph indicate any misfires, it may be an indicator of the cylinder that is causing the concern. Refer to Fuel Injector Diagnosis (w/CH-47976) in SI for additional instructions. Training (U.S.) To access the training video on AFIT, take the following path at the GM Training Website: 1. After logging into the training website, choose the link on the left side of the page titled "web video library." 2. Then choose "technical." 3. Next, within the search box, type in September course number "10206.09D. 4. This will bring up a link with this course. Scroll through to choose "feature topic." 5. At this point, the seminar can be chosen to view or the video related to the AFIT. Additional training is available from the training website. Please see TECHassist 16044.18T2 Active Fuel Injector Tester and also see 16044.14D1 GM Powertrain Performance for more information on GM Upper Engine and Fuel Injector Cleaner. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > Customer Interest: > 03-06-04-030G > Apr > 09 > Fuel System - Driveability Issues/MIL/Multiple DTC's > Page 9737 Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Training (Canada) To access the training video on AFIT, take the following path at the GMPro LMS Training Website: 1. After logging into the website, choose the link on the left side of the page titled "Catalog." 2. Then choose "Catalog Search." 3. Next, within the search box, Select Course Number - Contains - "T" then select search. 4. This will bring up a list of TECHassist courses. Scroll through to choose "Active Fuel Injector Tester" and select "View." 5. At this point, a new window will open and the program can be Launched. Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Techlink Additional information can be found on AFIT (June 2006 Edition) and GM Upper Engine and Fuel Injector Cleaner (November 2006 Edition) in Techlink. To access the articles, take the following path: 1. Go to GM DealerWorld (U.S.) or the GM GlobalConnect (Canada). 2. Click on the Service Tab in DealerWorld (in Canada, click Technican Resources in the Service Library of GM GlobalConnect). 3. Click on the GM Techlink Hyperlink. 4. Click on the Archives Hyperlink at GM Techlink. - Click on 06-2006 in the Archives Section and Click on the Active Fuel Injector Tester Link in the June 2006 Techlink Article. - Click on 11-2006 in the Archives Section and Click on the GM Top Engine Cleaner Replaced Link in the November 2006 Techlink Article. Injector Cleaning Procedure Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent recommended. DO NOT USE OTHER CLEANING AGENTS AS THEY MAY CONTAIN METHANOL, WHICH CAN DAMAGE FUEL SYSTEM COMPONENTS. Under NO circumstances should the GM Upper Engine and Fuel Injector Cleaner be added to the vehicle fuel tank. Do not exceed the recommended cleaning solution concentration. Testing has demonstrated that exceeding the recommended cleaning solution concentration does not improve the effectiveness of this procedure. Important Vehicles with less than 160 km (100 mi) on the odometer should not have the injectors cleaned. These vehicles should have any out of specification injectors replaced. 1. For 4, 5 and 6 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A - Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) mixed with 420 ml (14 oz) of regular unleaded gasoline. 2. For 8 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) of Upper Engine and Fuel Injector Cleaner mixed with 420 ml (14 oz) of regular unleaded gasoline. This procedure will need to be repeated for a second time for an 8 cylinder engine (8 cylinder engines receive 960 ml total fluid 120 ml (4 oz) of Upper Engine and Fuel Injector Cleaner and 840 ml (28 oz) of gasoline. 3. Be sure to follow all additional instructions provided with the tool. 4. Electrically disable the vehicle fuel pump by either removing the fuel pump fuse or the fuel pump relay and disconnecting the oil pressure switch connector, if equipped. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > Customer Interest: > 03-06-04-030G > Apr > 09 > Fuel System - Driveability Issues/MIL/Multiple DTC's > Page 9738 5. Turn the ignition to the OFF position. 6. Relieve fuel pressure and disconnect the fuel feed and return lines at the fuel rail. Plug the fuel feed and return lines coming off the fuel rail with J 37287, J 42873 or J 42964 as appropriate for the fuel system. 7. Connect the J 35800-A to the vehicle fuel rail. 8. Pressurize the J 35800-A to 510 kPa (75 psi). 9. Start and idle the engine until it stalls, due to lack of fuel. This should take approximately 15-20 minutes. 10. Turn the ignition to the OFF position. 11. Disconnect the J 35800-A from the fuel rail. 12. Reconnect the vehicle fuel pump relay and oil pressure switch connector, if equipped. 13. Remove the J 37287, J 42873 or J 42964 and reconnect the vehicle fuel feed and return lines. 14. Start and idle the vehicle for an additional two minutes to ensure residual injector cleaner is flushed from the fuel rail and fuel lines. 15. Pour the entire contents of GM Fuel System Treatment Plus (P/N 88861011 [in Canada, P/N 88861012]) into the tank and advise the customer to fill the tank. 16. Review the benefits of using Top Tier Detergent gasoline with the customer and recommend that they add a bottle of GM Fuel System Treatment Plus to the fuel tank at every oil change. Regular use of GM Fuel System Treatment Plus should keep the customer from having to repeat the injector cleaning procedure. 17. Road test the vehicle to verify that the customer concern has been corrected. Parts Information * Only 1/8 of the cost may be claimed for 4 and 6 cylinder engines and 1/4 of the cost for 8 cylinder engines. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > Customer Interest: > 03-06-04-030G > Apr > 09 > Fuel System - Driveability Issues/MIL/Multiple DTC's > Page 9739 For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 03-06-04-030G > Apr > 09 > Fuel System Driveability Issues/MIL/Multiple DTC's Fuel Injector: All Technical Service Bulletins Fuel System - Driveability Issues/MIL/Multiple DTC's TECHNICAL Bulletin No.: 03-06-04-030G Date: April 22, 2009 Subject: Various Driveability Symptoms Due to Clogged Fuel Injectors, MIL/SES DTCs P0171, P0172, P0174, P0300, P1174, P1175 (Clean Fuel Injectors and/or Perform Injector Test With AFIT CH-47976) Models: 2005-2009 GM Passenger Cars and Light Duty Trucks 2005-2009 HUMMER H2 2006-2009 HUMMER H3 2005-2009 Saab 9-7X Equipped with Engine RPOs listed in the Table above and MULTEC(R) 2 Fuel Injectors Attention: GM does not support cleaning injectors on any engines that are not listed in this bulletin. Engines other than the ones listed in this bulletin that diagnosis indicates having restricted injectors should have those injectors replaced. Supercede: This bulletin is being revised to update the model year to 2009 and to provide applicable engine RPO table. Please discard Corporate Bulletin Number 03-06-04-030F (Section 06 - Engine/Propulsion System). Condition Some customers may comment on any of the following various driveability symptoms: - Extended Crank Time - Hard to Start - MIL/SES Illuminated with DTCs - Hesitation - Lack of Power - Surge or Chuggle - Rough Idle - Light or Intermittent Misfire Cause Due to various factors, the fuel injectors may become restricted. Extensive testing has demonstrated that fuel related issues are the cause of clogged injectors. At this point, no specific fuel, fuel constituent, or engine condition has been identified as causing the restriction. The restriction causes the engine to operate at a lean air fuel ratio. This may either trigger the MIL to illuminate or the engine to develop various driveability symptoms. Correction Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 03-06-04-030G > Apr > 09 > Fuel System Driveability Issues/MIL/Multiple DTC's > Page 9745 Fuel injector restrictions, deposits can be cleaned on the vehicle using the following procedure. Under NO circumstances should this procedure be modified, changed or shortened. As a long term solution, and to prevent reoccurrence, customers should be encouraged to use Top Tier Detergent Gasoline. For further information on Top Tier detergent gasoline and fuel retailers, please refer to the following Corporate Bulletin Numbers: - 04-06-04-047G (U.S. Only) - 05-06-04-022D (Canada ONLY) Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent approved for use with General Motors fuel system components. Other injector cleaners may cause damage to plastics, plated metals or bearings. General Motors has completed extensive laboratory testing of GM Upper Engine and Fuel Injector Cleaner, and can assure its compatibility with General Motors fuel system components, as long as the cleaning procedure is followed correctly. Injector Cleaning Procedure The following tools, or their equivalent, are required: - CH-47976 Active Fuel Injector Tester (AFIT) - J 35800-A Fuel Injector Cleaner - J 37287 Fuel Line Shut-off Adapter - J 42964 Fuel Line Shut-off Adapter - J 42873 Fuel Line Shut-off Adapter - * One bottle of GM Upper Engine and Fuel Injector Cleaner, P/N 88861802 (in Canada, P/N 88861804) - * One bottle of GM Fuel System Treatment Plus, P/N 88861011 (in Canada, P/N 88861012) Active Fuel Injector Tester (AFIT- CH-47976) Some dealers may not have an Active Fuel Injector Tester (AFIT- CH-47976). Dealers can contact to order an AFIT- CH-47976. Dealers still can test the fuel injectors without an AFIT. Refer to Fuel Injector Diagnosis (w/ J 39021 or Tech 2(R)) in SI. Important As mentioned in the AFIT User Guide, vehicles that are not listed in the AFIT menu can still be tested with the AFIT. Depending on the model, it may be possible to enter the previous model year and proceed with testing using the DLC connection. If this is not possible on the model that you are working on, it will be necessary to use the direct connection method outlined in the AFIT User Guide (See Pages 17-31). General Motors recommends that the Active Fuel Injector Tester (AFIT) be used in testing fuel injectors. If the SI diagnostics do not isolate a cause for this concern, use the Active Fuel Injector Tester (AFIT - CH-47976) to perform an "Injector Test" as outlined in the AFIT User Guide. The AFIT "Injector Test" measures the flow characteristics of all fuel injectors, which is more precise when compared with the standard Tech 2(R) fuel injector balance test. As a result, the AFIT is more likely to isolate the cause of a P1174 DTC (for example: if it is being caused by a fuel injector concern). The CH-47976 (Active Fuel Injector Tester - AFIT) can also be used to measure fuel pressure and fuel system leak down. Also, as mentioned in the P1174 SI diagnosis, if the misfire current counters or misfire graph indicate any misfires, it may be an indicator of the cylinder that is causing the concern. Refer to Fuel Injector Diagnosis (w/CH-47976) in SI for additional instructions. Training (U.S.) To access the training video on AFIT, take the following path at the GM Training Website: 1. After logging into the training website, choose the link on the left side of the page titled "web video library." 2. Then choose "technical." 3. Next, within the search box, type in September course number "10206.09D. 4. This will bring up a link with this course. Scroll through to choose "feature topic." 5. At this point, the seminar can be chosen to view or the video related to the AFIT. Additional training is available from the training website. Please see TECHassist 16044.18T2 Active Fuel Injector Tester and also see 16044.14D1 GM Powertrain Performance for more information on GM Upper Engine and Fuel Injector Cleaner. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 03-06-04-030G > Apr > 09 > Fuel System Driveability Issues/MIL/Multiple DTC's > Page 9746 Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Training (Canada) To access the training video on AFIT, take the following path at the GMPro LMS Training Website: 1. After logging into the website, choose the link on the left side of the page titled "Catalog." 2. Then choose "Catalog Search." 3. Next, within the search box, Select Course Number - Contains - "T" then select search. 4. This will bring up a list of TECHassist courses. Scroll through to choose "Active Fuel Injector Tester" and select "View." 5. At this point, a new window will open and the program can be Launched. Also, dealers can now download software updates for the AFIT at GM Dealer Equipment (GMDE). Techlink Additional information can be found on AFIT (June 2006 Edition) and GM Upper Engine and Fuel Injector Cleaner (November 2006 Edition) in Techlink. To access the articles, take the following path: 1. Go to GM DealerWorld (U.S.) or the GM GlobalConnect (Canada). 2. Click on the Service Tab in DealerWorld (in Canada, click Technican Resources in the Service Library of GM GlobalConnect). 3. Click on the GM Techlink Hyperlink. 4. Click on the Archives Hyperlink at GM Techlink. - Click on 06-2006 in the Archives Section and Click on the Active Fuel Injector Tester Link in the June 2006 Techlink Article. - Click on 11-2006 in the Archives Section and Click on the GM Top Engine Cleaner Replaced Link in the November 2006 Techlink Article. Injector Cleaning Procedure Notice GM UPPER ENGINE AND FUEL INJECTOR CLEANER is the only injector cleaning agent recommended. DO NOT USE OTHER CLEANING AGENTS AS THEY MAY CONTAIN METHANOL, WHICH CAN DAMAGE FUEL SYSTEM COMPONENTS. Under NO circumstances should the GM Upper Engine and Fuel Injector Cleaner be added to the vehicle fuel tank. Do not exceed the recommended cleaning solution concentration. Testing has demonstrated that exceeding the recommended cleaning solution concentration does not improve the effectiveness of this procedure. Important Vehicles with less than 160 km (100 mi) on the odometer should not have the injectors cleaned. These vehicles should have any out of specification injectors replaced. 1. For 4, 5 and 6 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A - Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) mixed with 420 ml (14 oz) of regular unleaded gasoline. 2. For 8 cylinder engines, empty two of the 30 ml (1 oz) reservoirs of the GM Upper Engine and Fuel Injector Cleaner container into the J 35800-A Injector Cleaning Tank then add 420 ml (14 oz) of regular unleaded gasoline. If you are using any other brand of cleaning tank, you will need a total of 60 ml (2 oz) of Upper Engine and Fuel Injector Cleaner mixed with 420 ml (14 oz) of regular unleaded gasoline. This procedure will need to be repeated for a second time for an 8 cylinder engine (8 cylinder engines receive 960 ml total fluid 120 ml (4 oz) of Upper Engine and Fuel Injector Cleaner and 840 ml (28 oz) of gasoline. 3. Be sure to follow all additional instructions provided with the tool. 4. Electrically disable the vehicle fuel pump by either removing the fuel pump fuse or the fuel pump relay and disconnecting the oil pressure switch connector, if equipped. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 03-06-04-030G > Apr > 09 > Fuel System Driveability Issues/MIL/Multiple DTC's > Page 9747 5. Turn the ignition to the OFF position. 6. Relieve fuel pressure and disconnect the fuel feed and return lines at the fuel rail. Plug the fuel feed and return lines coming off the fuel rail with J 37287, J 42873 or J 42964 as appropriate for the fuel system. 7. Connect the J 35800-A to the vehicle fuel rail. 8. Pressurize the J 35800-A to 510 kPa (75 psi). 9. Start and idle the engine until it stalls, due to lack of fuel. This should take approximately 15-20 minutes. 10. Turn the ignition to the OFF position. 11. Disconnect the J 35800-A from the fuel rail. 12. Reconnect the vehicle fuel pump relay and oil pressure switch connector, if equipped. 13. Remove the J 37287, J 42873 or J 42964 and reconnect the vehicle fuel feed and return lines. 14. Start and idle the vehicle for an additional two minutes to ensure residual injector cleaner is flushed from the fuel rail and fuel lines. 15. Pour the entire contents of GM Fuel System Treatment Plus (P/N 88861011 [in Canada, P/N 88861012]) into the tank and advise the customer to fill the tank. 16. Review the benefits of using Top Tier Detergent gasoline with the customer and recommend that they add a bottle of GM Fuel System Treatment Plus to the fuel tank at every oil change. Regular use of GM Fuel System Treatment Plus should keep the customer from having to repeat the injector cleaning procedure. 17. Road test the vehicle to verify that the customer concern has been corrected. Parts Information * Only 1/8 of the cost may be claimed for 4 and 6 cylinder engines and 1/4 of the cost for 8 cylinder engines. Warranty Information (excluding Saab U.S. Models) For vehicles repaired under warranty, use the table above. Warranty Information (Saab U.S. Models) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Technical Service Bulletins: > 03-06-04-030G > Apr > 09 > Fuel System Driveability Issues/MIL/Multiple DTC's > Page 9748 For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached Seat Cover: All Technical Service Bulletins Interior - Front Seat Cushion Cover Becomes Detached TECHNICAL Bulletin No.: 08-08-50-001D Date: April 06, 2011 Subject: Front Seat Cushion Cover Becomes Detached (Add Push Pin Fasteners to J-Retainer) Models: 2007-2012 Cadillac Escalade, Escalade ESV, Escalade EXT 2007-2012 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2012 GMC Sierra, Yukon, Yukon Denali, Yukon XL, Yukon Denali XL with Front Seat RPO Codes AN3, A95, AE7 or AZ3 Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 08-08-50-001C (Section 08 - Body and Accessories). Condition Some customers may comment that the driver or passenger front seat cushion cover is coming detached from the seat frame along the front edge, or that the seat cushion foam has become exposed at the front corner(s) of the seat. Correction To improve the retention of the front seat cushion cover to the seat frame, modify the cover J-retainer and add two push pin retainers, GM P/N 10121502, to securely attach the J-retainer. Follow the procedure below: Important A number of the following graphics show the seat assembly removed from the vehicle. This is for illustration purposes only. Do not remove the seat from the vehicle for this repair. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached > Page 9754 1. Release the seat cushion cover J-retainer from the seat frame and roll the J-retainer/trim completely down. 2. Locate the slot on each side of the cushion pan frame by lifting the cushion/cover up and away from the lower edge of the frame to expose the slots (1). 3. Using a ruler and marker, measure and mark the cushion trim to match up with the slots on the cushion pan J-retainer attachment tab location. Repeat this process on the opposite end of cushion trim cover. Important Ensure that the J-retainer is fully unrolled, and that the holes are drilled through the lower edge of the J-retainer (1) and not through the U-channel (2) of the retainer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached > Page 9755 4. Using a drill with a 5/16 drill bit, or equivalent, pierce holes through the trim and plastic J-retainer at the marked locations on each end of the seat cushion trim. 5. Pushing only approximately 1/4 of the way through, insert a push pin retainer (1) into the drilled holes on each side of the J-retainer. 6. Reposition the seat cushion and cover, and roll the J-retainer and trim to install position. 7. Attach the J-retainer to the seat cushion pan on one side by positioning the push pin retainer (1) to the rear side of the slot on cushion pan, and pushing forward to fully seat the push pin in the slot. 8. Repeat step 7 on the opposite end of J-retainer. 9. The seat cushion cover will now have better retention to the seat frame, and exhibit an improved fit across the forward edge of the seat. Parts Information Purchase the tape locally. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached > Page 9756 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 04-08-50-006D > Sep > 10 > Interior - Seat Cover Wrinkle/Crease/Burn Info Seat Cover: All Technical Service Bulletins Interior - Seat Cover Wrinkle/Crease/Burn Info INFORMATION Bulletin No.: 04-08-50-006D Date: September 09, 2010 Subject: Minor Wrinkles/Creases, Discoloration, Cigarette Burns and Customer Induced Cuts and Stains on Front and Rear Driver and Passenger Seats with Leather, Vinyl or Cloth Seat Covers Models: 2011 and Prior GM Passenger Cars and Light Duty Trucks 2009 and Prior HUMMER H2 2010 and Prior HUMMER H3 2009 and Prior Saab 9-7X 2010 and Prior Saturn Supercede: This bulletin is being revised to add a model year. Please discard Corporate Bulletin Number 04-08-50-006C (Section 08 - Body and Accessories). If a customer comes in to your dealership due to certain conditions of the seat covers (splits, wrinkles, loose stitching, etc.), you must examine the seat cover in order to determine the validity of the customer claim. Some components from the above listed vehicles have been returned to the Warranty Parts Center (WPC) and analysis of these parts showed "customer induced damage" or No Trouble Found (NTF). The dealer should pay particular attention to the following conditions: - Cigarette burns Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 04-08-50-006D > Sep > 10 > Interior - Seat Cover Wrinkle/Crease/Burn Info > Page 9761 - Customer induced cuts (knife cuts, cut by customer tools, etc.) - Paint stains (customer should have cleaned paint stains while paint was still wet) - Coffee stains and other removable dirt These should be cleaned as described in the Owner's Manual under Appearance Care. Also, refer to Corporate Bulletin Number 06-00-89-029A or later. - Evidence of chemicals used for cleaning, other than those specified in the Owner's Manual - Other chemical spills - Minor and normal leather wrinkles as a result of use - Other defects to the seat cover not detected during the pre-delivery inspection (PDI). Inform the customer that the above issues were not present when the vehicle was purchased and cannot be replaced under warranty. The covers, however, may be repaired or replaced at the customer's expense. The following conditions are not caused by the customer and should be covered by warranty: - Split seams Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 04-08-50-006D > Sep > 10 > Interior - Seat Cover Wrinkle/Crease/Burn Info > Page 9762 - Wear/cracking/peeling - Discoloration/dye transfer from customer clothing (if discoloration/dye transfer is not removed after using GM Leather and Vinyl Plastic Cleaner, P/N 88861401 (in Canada, P/N 88861409), replace the covers.) Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle Seat Cover: All Technical Service Bulletins Interior - Cleaning Interior Surfaces of Vehicle INFORMATION Bulletin No.: 06-00-89-029F Date: April 27, 2010 Subject: Interior Cleaning - Instrument Panel (IP), Hard or Plastic Surfaces, Seats, Carpet, Leather, Vinyl, Fabric Cleaner, Stain Remover, Restorer - Product Availability Models: 2006-2011 GM Passenger Cars and Trucks including Saturn (EXCLUDES Cadillac DTS Platinum and Escalade Platinum with RPO R9N - Tehama Leather) 2006-2010 HUMMER H2, H3 2006-2009 Saab 9-7X Supercede: This bulletin is being revised to update the model years. Please discard Corporate Bulletin Number 06-00-89-029E (Section 00 - General Information). To keep the vehicle interior looking the best, it should be cleaned often. It is important to keep the upholstery from becoming heavily soiled. The vehicle's interior can experience extreme heat, which can cause stains to set quickly. Lighter color interiors may require more frequent cleaning. Care should be taken because newspapers and garments may transfer color to the vehicle's interior. Many of today's interiors are made with new low gloss materials. Permanent damage may result from using cleaners on ANY surfaces (interior trim, instrument panel, carpet, leather, vinyl and fabric) for which they are not intended. Using non-approved products can actually set the stain to the point that nothing can remove it. Important Do not use silicone or wax-based products or those containing organic solvents (such as naptha, alcohol, etc.) to clean your vehicle's interior because they can alter the appearance by increasing the gloss in a non-uniform manner. The increase in gloss may cause annoying reflections in the windshield and even make it difficult to see through the windshield under certain conditions. - Never use a STIFF brush or a brush that has been previously used with a harsh chemical. This can cause damage to the vehicle's interior surfaces. - Use only mild, Neutral-pH cleaners. Avoid laundry detergents or dishwashing soaps with degreasers. Using too much soap will leave residue that leaves streaks and attracts dirt. Because it is critical to use only mild, neutral-pH cleaners, General Motors has approved the use of the cleaners and conditioners listed in this bulletin for the cleaning of interiors. These products are in the neutral-pH range and will maintain the best vehicle interior appearance. These products are water-based, biodegradable, and do not contain bleach, solvents or harsh chemicals. Interior trim pieces on new vehicles, as well as service components, arrive with a protective film. When removing the protective film, adhesive residue may be left on the trim panels/components. The cleaner (for leather, vinyl, plastic and interior paint) is an effective cleaner in removing adhesive residue without causing damage to the component. Important - If soapy, alkaline cleaning solutions are used on fabrics, and not thoroughly rinsed out, the residual left in the fabric will attract dirt. Because the recommended cleaners/conditioners are in the pH neutral range, they won't leave behind soapy residue. - On heavily stained or difficult to clean fabric/carpet, it is recommended that the entire surface be treated and cleaned vs. spot cleaning. Refer to Extractor Machine and Concentrate section of this bulletin for more information. Effective cleaning steps for hard and/or plastic surfaces: 1. Using a clean towel, apply/spray cleaner - leather, vinyl, plastic, interior paint, directly onto the towel. 2. Wipe the surface with the towel/cleaner. 3. If necessary, use a soft bristle brush to work cleaner into the crevasses of the area being cleaned. 4. Wipe off any excess cleaner from the surface. 5. Using a clean towel, apply/spray the conditioner (leather, vinyl restorer) directly onto the towel. 6. Wipe the conditioner onto the previously cleaned area to restore the material to it's original luster. Important Today's interiors are developed and intended to have a low-gloss appearance. It is important to use only products which provide a low-gloss finish in order to maintain the interior's integrity, customer appeal and satisfaction. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle > Page 9767 Effective cleaning steps for fabric: 1. Remove any residue by lightly rubbing the surface with a clean towel. 2. Choose the appropriate stain remover based on the stain type. 3. Spray and lightly brush the area with a clean, soft bristle brush. 4. Gently blot up the stain. 5. On upholstery/carpet, the use of a fabric protector can help to reduce or eliminate future staining. Upholstery and Carpet Stains When cleaning upholstery and carpet stains ONLY, the following cleaning chart will help you determine which cleaner/formula works best on a particular stain. The chart lists many of the common stains. Some complex stains may require the application of both stain removers, one after the other, to remove both food-based oils and synthetic oils. A soft bristle brush (P/N 88861425) should be used to safely work the cleaner into the leather grain or material. This enables the dirt/stain to be completely removed from the material. Leather Conditioner/Restorer A Leather Conditioner/Restorer is also available. The restorer is safe for all vinyl and leather. It is a water-based product and contains essential emollients to restore suppleness, conditions and adds luster without adding gloss. The restorer will also provide protection against re-staining. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle > Page 9768 Dye Transfer: Dye transfer will happen any time a natural fiber like cotton, silk, wool, or suede comes into contact with leather. The lighter the leather color, the more quickly the dye transfer will appear. Leather should be cleaned on a regular basis so that the dirt and grime do not adversely affect the top coat of the leather. After cleaning the leather, it is important to treat the surface with the restorer. Extractor Machine and Concentrate For difficult to clean materials or when cleaning a large area, the best results will be achieved when using an extractor machine and concentrate. General Motors offers the Ruby Extractor (P/N 627-CC-3000AU) through GM Tools and Equipment 1-800-GM-TOOLS, and has recently released a concentrate for use with the extractor machine. Whichever extractor machine is used, it should meet the minimum specifications of the Ruby Extractor: Ruby Extractor Specifications: - Pump PSI: 55 - Water Lift: 85" - Hose Length: 10 ft Important The Ruby Extractor also comes with a 6 year Outer Body and 3 year Parts warranty. Extractor: The Ruby Extractor machine was designed for automotive use and works effectively in the vehicle's interior. The narrow design of the vacuum head allows detail work in tight areas. The water pressure pump is reduced so the fabric surface is not wet more than is necessary. The dry time is greatly reduced due to less water on the fabric surface, the vacuum head making better contact with the surface and the significant water lift capability of the machine. Concentrate: The concentrated extraction cleaner is engineered with lower pH levels to help remove alkaline buildup on fabrics. The concentrate should be mixed according to the instructions listed on the container. The available concentrate helps to break the stain down and then the stain is easily removed with less water. The concentrate used in the Ruby Extractor is slightly acidic to remove soap and alkalinity from the fabric surfaces left behind by using improper, soapy solutions. Dirt, grease and grime are more easily removed when the proper solution is used during the extraction process. Parts Information Products are available in two sizes; 8 oz / 235 ML and 24 oz / 710 ML bottles. Available Equipment Equipment is available by contacting 1-800-GMTOOLS. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle > Page 9769 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats Seat Cover: All Technical Service Bulletins Interior - Lint Accumulation On Ebony Colored Seats TECHNICAL Bulletin No.: 07-08-50-018E Date: August 05, 2009 Subject: Excessive Lint Accumulation on Ebony Colored Cloth Seats (Replace All Seat Covers, Headrests and Armrests) Models: 2007-2009 Chevrolet Avalanche, Silverado, Suburban, Tahoe 2007-2009 GMC Sierra, Yukon, Yukon XL Built Prior to October 1, 2008 and Equipped with Ebony Cloth Seats (RPO 19C and 19D) Supercede: This bulletin is being revised to update the parts information for the utilities. Please discard Corporate Bulletin Number 07-08-50-018D (Section 08 - Body and Accessories). Important Implementation of this service bulletin by all dealers requires prior District Service Manager (DVM) (in Canada, the Warranty Manager) approval. Condition Some customers may comment on excessive lint accumulation on the cloth seat material. Darker colored seat fabric seems to show the condition more than lighter fabrics. Cause The source of the lint accumulation is not the seat fabric material. The seat material, though, exhibits a tendency to accumulate and retain lint from sources that come into contact with the fabric. Correction Important All seats will need to be updated in the vehicle. Let customers with RPO 19D know that the appearance of the insert material will be noticeably different. If the customer has ebony colored cloth seats, replace the seat covers (back and cushion), the headrests and the armrests with revised fabric. Refer to SI for the appropriate seat back and cushion cover, headrest and armrest replacement procedures. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats > Page 9774 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats > Page 9775 Warranty Information Important Implementation of this service bulletin by all dealers requires prior District Service Manager (DVM) (in Canada, the Warranty Manager) approval. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats > Page 9776 For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 00-00-89-027E > Sep > 08 > Interior - Elimination Of Unwanted Odors Seat Cover: All Technical Service Bulletins Interior - Elimination Of Unwanted Odors INFORMATION Bulletin No.: 00-00-89-027E Date: September 29, 2008 Subject: Eliminating Unwanted Odors in Vehicles Models: 2009 and Prior GM Passenger Cars and Trucks (including Saturn) 2009 and Prior HUMMER H2, H3 Vehicles 2009 and Prior Saab 9-7X Supercede: This bulletin is being revised to add model years and refine the instructions. Please discard Corporate Bulletin Number 00-00-89-027D (Section 00 - General Information). Vehicle Odor Elimination General Motors offers a product that may control or eliminate odors in the interior and luggage compartment areas of GM vehicles. GM Vehicle Care Odor Eliminator is a non-toxic, biodegradable odor remover. This odorless product has been shown to greatly reduce or remove objectionable smells of mold and mildew resulting from vehicle water leaks (as well as customer created odors, i.e. smoke). You may use GM Vehicle Care Odor Eliminator on fabrics, vinyl, leather, carpet and sound deadening materials. It may also be induced into HVAC modules and instrument panel ducts (for the control of non-bacterial related odors). Important: This product leaves no residual scent and should not be sold as or considered an air freshener. Product action may result in the permanent elimination of an odor and may be preferable to customers with allergies who are sensitive to perfumes. How to Use This Product GM Vehicle Care Odor Eliminator may be sprayed on in a ready-to-use formula or used in steam cleaners as an additive with carpet shampoo. This water-based, odorless product is safe for all vehicle interiors. Do not wet or soak any interior surface that plain water would cause to deteriorate, as this product will have the same effect. Also avoid letting this product come into contact with vinegar or any acidic substance. Acid-based products will hamper the effectiveness of, or render GM Vehicle Care Odor Eliminator inert. Note: Complete eight page treatment sheets are enclosed within each case of GM Vehicle Care Odor Eliminator. These treatment instructions range from simple vehicle odor elimination to full step by step procedures for odor removal from water leaks. If lost, contact 800-977-4145 to get a replacement set faxed or e-mailed to your dealership. Instructions and cautions are printed on the bottle, but additional help is available. If you encounter a difficult to eliminate or reoccurring odor, you may call 1-800-955-8591 (in Canada, 1-800-977-4145) to obtain additional information and usage suggestions. Important: This product may effectively remove odors when directly contacting the odor source. It should be used in conjunction with diagnostic procedures (in cases such as a water leak) to first eliminate the root cause of the odor, and then the residual odor to permanently correct the vehicle condition. Vehicle Waterleak Odor Elimination STEP ONE: Confirm that all water leaks have been repaired. Determine what areas of the vehicle were water soaked or wet. Components with visible mold/mildew staining should be replaced. Isolate the odor source inside the vehicle. Often an odor can be isolated to an area or component of the vehicle interior by careful evaluation. Odor evaluation may need to be performed by multiple persons. Another method of isolating an odor source is to remove and segregate interior trim and components. Plastic sheeting or drop cloths can be used to confine seats, headliners, etc. to assist in evaluation and diagnoses. If appropriate the vehicle and interior trim should be evaluated separately to determine if the odor stays with the vehicle or the interior components. Odors that stay with the vehicle may be isolated to insulating and sound deadening materials (i.e. water leak at the windshield or standing water in the front foot well area caused mold/mildew to form on the bulkhead or kick panel sound deadening pads. If the interior is removed the floor pan and primed/painted surfaces should be treated with bleach/soap solution, rinsed with clean water and dried. Interior surfaces should then be treated with GM Vehicle Care Odor Eliminator product before reinstalling carpet or reassembling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 00-00-89-027E > Sep > 08 > Interior - Elimination Of Unwanted Odors > Page 9781 The GM Vehicle Care Odor Eliminator product is an effective odor elimination product when used properly. It must come into direct contact with the odor source. It should be used in conjunction with diagnostic procedures to first eliminate the root cause of the odor. Some procedures for use after odor root cause correction are: STEP TWO: ^ Use the trigger spray head. ^ Put a drop of dish soap the size of a quarter in the bottom of a bottle. ^ Add 8 oz. of GM Vehicle Care Odor Eliminator (1 cup) to the dish soap and top off the bottle with tap water. ^ This formula should be used on hard surfaces (dash, interior plastic molding, and floor pan) STEP THREE: The third step to neutralizing the vehicle is a light to medium treatment of all carpeting and upholstered seats with the GM Vehicle Care Odor Eliminator formula and a wide fan spray setting (at full strength) (i.e.: carpeting on the driver's side requires 4-5 triggers pulls for coverage). The headliner and trunk should be sprayed next. Lightly brushing the formula into the carpeting and upholstery is a recommended step for deep odor problems. The dash and all hard surfaces should be sprayed with dish soap/water mixture. Let stand for 1-2 minutes then wipe off the surface. STEP FOUR: (vehicle ventilation system treatment) The ventilation system is generally the last step in the treatment of the vehicle. a. Spray the GM Vehicle Care Odor Eliminator formula into all dash vents. (1-2 trigger pulls per vent). b. Start the vehicle and turn the vehicle fan on high cool (not A/C setting). c. Spray the formula (10 trigger pulls) into the outside fresh air intake vent (cowl at base of windshield) d. Enter the vehicle after 1 minute and wipe off the excess formula spurting out of the dash vents. e. Smell the air coming from the dash vents. If odors are still present, spray another 5 triggers into the cowl, wait another minute and smell the results. Once you have obtained a fresh, clean smell coming from the vents, turn the system to the A/C re-circulation setting. Roll up the windows, spray 3-5 pumps into the right lower IP area and let the vehicle run with the fan set on high for 5-7 minutes. Please follow this diagnosis process thoroughly and complete each step. If the condition exhibited is resolved without completing every step, the remaining steps do not need to be performed. If these steps do not resolve the condition, please contact GM TAC for further diagnostic assistance. Additional Suggestions to Increase Customer Satisfaction Here are some additional ideas to benefit your dealership and to generate greater customer enthusiasm for this product. ^ Keep this product on-hand for both the Service Department and the Used Car lot. Add value to your used car trades; treat loaner and demo cars during service and at final sale to eliminate smoke, pet, and other common odors offensive to customers. Make deodorizing a vehicle part of your normal vehicle detailing service. ^ Consider including GM Vehicle Care Odor Eliminator as a give-away item with new vehicle purchases. Many dealers give away as "gifts" various cleaning supplies at time of delivery. GM Odor Eliminator is one of a few products GM offers that has as many uses in the home as in the vehicle. Customers may find this product can be used for a host of recreational activities associated with their new vehicle, such as deodorizing a boat they tow, or a camper. ^ GM Odor Eliminator and many of the GM Vehicle Care products offer you the chance to increase dealership traffic as these superior quality products cannot be purchased in stores. Many Dealerships have product displays at the parts counter. Consider additional displays in the Customer Service Lounge, the Showroom and at the Service Desk or Cashier Window. Many customers who purchase vehicles and receive regular maintenance at your dealership may never visit the parts counter, and subsequently are not exposed to the variety and value that these products offer. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 00-00-89-027E > Sep > 08 > Interior - Elimination Of Unwanted Odors > Page 9782 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached > Page 9788 1. Release the seat cushion cover J-retainer from the seat frame and roll the J-retainer/trim completely down. 2. Locate the slot on each side of the cushion pan frame by lifting the cushion/cover up and away from the lower edge of the frame to expose the slots (1). 3. Using a ruler and marker, measure and mark the cushion trim to match up with the slots on the cushion pan J-retainer attachment tab location. Repeat this process on the opposite end of cushion trim cover. Important Ensure that the J-retainer is fully unrolled, and that the holes are drilled through the lower edge of the J-retainer (1) and not through the U-channel (2) of the retainer. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached > Page 9789 4. Using a drill with a 5/16 drill bit, or equivalent, pierce holes through the trim and plastic J-retainer at the marked locations on each end of the seat cushion trim. 5. Pushing only approximately 1/4 of the way through, insert a push pin retainer (1) into the drilled holes on each side of the J-retainer. 6. Reposition the seat cushion and cover, and roll the J-retainer and trim to install position. 7. Attach the J-retainer to the seat cushion pan on one side by positioning the push pin retainer (1) to the rear side of the slot on cushion pan, and pushing forward to fully seat the push pin in the slot. 8. Repeat step 7 on the opposite end of J-retainer. 9. The seat cushion cover will now have better retention to the seat frame, and exhibit an improved fit across the forward edge of the seat. Parts Information Purchase the tape locally. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 08-08-50-001D > Apr > 11 > Interior - Front Seat Cushion Cover Becomes Detached > Page 9790 Warranty Information For vehicles repaired under warranty, use the table. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 04-08-50-006D > Sep > 10 > Interior - Seat Cover Wrinkle/Crease/Burn Info > Page 9795 - Customer induced cuts (knife cuts, cut by customer tools, etc.) - Paint stains (customer should have cleaned paint stains while paint was still wet) - Coffee stains and other removable dirt These should be cleaned as described in the Owner's Manual under Appearance Care. Also, refer to Corporate Bulletin Number 06-00-89-029A or later. - Evidence of chemicals used for cleaning, other than those specified in the Owner's Manual - Other chemical spills - Minor and normal leather wrinkles as a result of use - Other defects to the seat cover not detected during the pre-delivery inspection (PDI). Inform the customer that the above issues were not present when the vehicle was purchased and cannot be replaced under warranty. The covers, however, may be repaired or replaced at the customer's expense. The following conditions are not caused by the customer and should be covered by warranty: - Split seams Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 04-08-50-006D > Sep > 10 > Interior - Seat Cover Wrinkle/Crease/Burn Info > Page 9796 - Wear/cracking/peeling - Discoloration/dye transfer from customer clothing (if discoloration/dye transfer is not removed after using GM Leather and Vinyl Plastic Cleaner, P/N 88861401 (in Canada, P/N 88861409), replace the covers.) Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle > Page 9801 Effective cleaning steps for fabric: 1. Remove any residue by lightly rubbing the surface with a clean towel. 2. Choose the appropriate stain remover based on the stain type. 3. Spray and lightly brush the area with a clean, soft bristle brush. 4. Gently blot up the stain. 5. On upholstery/carpet, the use of a fabric protector can help to reduce or eliminate future staining. Upholstery and Carpet Stains When cleaning upholstery and carpet stains ONLY, the following cleaning chart will help you determine which cleaner/formula works best on a particular stain. The chart lists many of the common stains. Some complex stains may require the application of both stain removers, one after the other, to remove both food-based oils and synthetic oils. A soft bristle brush (P/N 88861425) should be used to safely work the cleaner into the leather grain or material. This enables the dirt/stain to be completely removed from the material. Leather Conditioner/Restorer A Leather Conditioner/Restorer is also available. The restorer is safe for all vinyl and leather. It is a water-based product and contains essential emollients to restore suppleness, conditions and adds luster without adding gloss. The restorer will also provide protection against re-staining. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle > Page 9802 Dye Transfer: Dye transfer will happen any time a natural fiber like cotton, silk, wool, or suede comes into contact with leather. The lighter the leather color, the more quickly the dye transfer will appear. Leather should be cleaned on a regular basis so that the dirt and grime do not adversely affect the top coat of the leather. After cleaning the leather, it is important to treat the surface with the restorer. Extractor Machine and Concentrate For difficult to clean materials or when cleaning a large area, the best results will be achieved when using an extractor machine and concentrate. General Motors offers the Ruby Extractor (P/N 627-CC-3000AU) through GM Tools and Equipment 1-800-GM-TOOLS, and has recently released a concentrate for use with the extractor machine. Whichever extractor machine is used, it should meet the minimum specifications of the Ruby Extractor: Ruby Extractor Specifications: - Pump PSI: 55 - Water Lift: 85" - Hose Length: 10 ft Important The Ruby Extractor also comes with a 6 year Outer Body and 3 year Parts warranty. Extractor: The Ruby Extractor machine was designed for automotive use and works effectively in the vehicle's interior. The narrow design of the vacuum head allows detail work in tight areas. The water pressure pump is reduced so the fabric surface is not wet more than is necessary. The dry time is greatly reduced due to less water on the fabric surface, the vacuum head making better contact with the surface and the significant water lift capability of the machine. Concentrate: The concentrated extraction cleaner is engineered with lower pH levels to help remove alkaline buildup on fabrics. The concentrate should be mixed according to the instructions listed on the container. The available concentrate helps to break the stain down and then the stain is easily removed with less water. The concentrate used in the Ruby Extractor is slightly acidic to remove soap and alkalinity from the fabric surfaces left behind by using improper, soapy solutions. Dirt, grease and grime are more easily removed when the proper solution is used during the extraction process. Parts Information Products are available in two sizes; 8 oz / 235 ML and 24 oz / 710 ML bottles. Available Equipment Equipment is available by contacting 1-800-GMTOOLS. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 06-00-89-029F > Apr > 10 > Interior - Cleaning Interior Surfaces of Vehicle > Page 9803 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats > Page 9808 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats > Page 9809 Warranty Information Important Implementation of this service bulletin by all dealers requires prior District Service Manager (DVM) (in Canada, the Warranty Manager) approval. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 07-08-50-018E > Aug > 09 > Interior - Lint Accumulation On Ebony Colored Seats > Page 9810 For vehicles repaired under warranty, use the table above. Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 00-00-89-027E > Sep > 08 > Interior - Elimination Of Unwanted Odors > Page 9815 The GM Vehicle Care Odor Eliminator product is an effective odor elimination product when used properly. It must come into direct contact with the odor source. It should be used in conjunction with diagnostic procedures to first eliminate the root cause of the odor. Some procedures for use after odor root cause correction are: STEP TWO: ^ Use the trigger spray head. ^ Put a drop of dish soap the size of a quarter in the bottom of a bottle. ^ Add 8 oz. of GM Vehicle Care Odor Eliminator (1 cup) to the dish soap and top off the bottle with tap water. ^ This formula should be used on hard surfaces (dash, interior plastic molding, and floor pan) STEP THREE: The third step to neutralizing the vehicle is a light to medium treatment of all carpeting and upholstered seats with the GM Vehicle Care Odor Eliminator formula and a wide fan spray setting (at full strength) (i.e.: carpeting on the driver's side requires 4-5 triggers pulls for coverage). The headliner and trunk should be sprayed next. Lightly brushing the formula into the carpeting and upholstery is a recommended step for deep odor problems. The dash and all hard surfaces should be sprayed with dish soap/water mixture. Let stand for 1-2 minutes then wipe off the surface. STEP FOUR: (vehicle ventilation system treatment) The ventilation system is generally the last step in the treatment of the vehicle. a. Spray the GM Vehicle Care Odor Eliminator formula into all dash vents. (1-2 trigger pulls per vent). b. Start the vehicle and turn the vehicle fan on high cool (not A/C setting). c. Spray the formula (10 trigger pulls) into the outside fresh air intake vent (cowl at base of windshield) d. Enter the vehicle after 1 minute and wipe off the excess formula spurting out of the dash vents. e. Smell the air coming from the dash vents. If odors are still present, spray another 5 triggers into the cowl, wait another minute and smell the results. Once you have obtained a fresh, clean smell coming from the vents, turn the system to the A/C re-circulation setting. Roll up the windows, spray 3-5 pumps into the right lower IP area and let the vehicle run with the fan set on high for 5-7 minutes. Please follow this diagnosis process thoroughly and complete each step. If the condition exhibited is resolved without completing every step, the remaining steps do not need to be performed. If these steps do not resolve the condition, please contact GM TAC for further diagnostic assistance. Additional Suggestions to Increase Customer Satisfaction Here are some additional ideas to benefit your dealership and to generate greater customer enthusiasm for this product. ^ Keep this product on-hand for both the Service Department and the Used Car lot. Add value to your used car trades; treat loaner and demo cars during service and at final sale to eliminate smoke, pet, and other common odors offensive to customers. Make deodorizing a vehicle part of your normal vehicle detailing service. ^ Consider including GM Vehicle Care Odor Eliminator as a give-away item with new vehicle purchases. Many dealers give away as "gifts" various cleaning supplies at time of delivery. GM Odor Eliminator is one of a few products GM offers that has as many uses in the home as in the vehicle. Customers may find this product can be used for a host of recreational activities associated with their new vehicle, such as deodorizing a boat they tow, or a camper. ^ GM Odor Eliminator and many of the GM Vehicle Care products offer you the chance to increase dealership traffic as these superior quality products cannot be purchased in stores. Many Dealerships have product displays at the parts counter. Consider additional displays in the Customer Service Lounge, the Showroom and at the Service Desk or Cashier Window. Many customers who purchase vehicles and receive regular maintenance at your dealership may never visit the parts counter, and subsequently are not exposed to the variety and value that these products offer. Parts Information Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Technical Service Bulletins > All Other Service Bulletins for Fuel Injector: > 00-00-89-027E > Sep > 08 > Interior - Elimination Of Unwanted Odors > Page 9816 Disclaimer Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Specifications > Electrical Specifications Fuel Injector: Electrical Specifications Fuel Injector Resistance....................................................................................................................... ..................................................................11-14 ohms Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Specifications > Electrical Specifications > Page 9819 Fuel Injector: Pressure, Vacuum and Temperature Specifications Pressure Drop...................................................................................................................................... ................................................................20 kPa (3 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions Fuel Injector: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9822 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9823 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9824 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9825 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9826 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9827 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9828 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9829 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9830 Fuel Injector: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9831 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9832 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9833 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9834 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9835 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9836 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9837 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9838 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9839 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9840 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9841 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9842 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9843 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9844 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9845 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9846 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9847 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9848 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9849 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9850 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9851 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9852 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9853 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9854 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9855 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9856 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9857 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9858 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9859 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9860 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9861 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9862 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9863 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9864 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9865 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9866 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9867 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9868 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9869 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9870 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9871 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9872 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9873 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9874 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9875 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9876 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9877 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9878 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9879 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9880 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9881 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9882 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9883 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9884 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9885 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9886 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9887 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9888 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9889 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9890 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9891 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9892 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9893 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9894 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9895 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9896 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9897 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9898 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9899 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9900 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9901 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9902 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9903 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9904 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9905 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9906 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9907 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9908 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9909 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9910 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9911 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9912 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9913 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9914 Fuel Injector: Connector Views Fuel Injector 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9915 Fuel Injector 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9916 Fuel Injector 3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9917 Fuel Injector 4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9918 Fuel Injector 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9919 Fuel Injector 6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9920 Fuel Injector 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Diagrams > Diagram Information and Instructions > Page 9921 Fuel Injector 8 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Service Precautions > Technician Safety Information Fuel Injector: Technician Safety Information Lower O-Ring Removal Caution Caution: Verify that the lower (small) O-ring of each injector does not remain in the lower manifold in order to reduce the risk of fire and personal injury. If the O-ring is not removed with the injector, the replacement injector with new O-rings will not seat properly in the injector socket. Improper seating could cause a fuel leak. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Service Precautions > Technician Safety Information > Page 9924 Fuel Injector: Vehicle Damage Warnings Fuel Injector Balance Test Notice Notice: Do Not repeat any portion of this test before running the engine in order to prevent the engine from flooding. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Testing and Inspection > Fuel Injector Balance Test With Special Tool Fuel Injector: Testing and Inspection Fuel Injector Balance Test With Special Tool FUEL INJECTOR BALANCE TEST WITH SPECIAL TOOL DESCRIPTION Fuel Injector Balance Test With Special Tool Fuel Injector Balance Test Example (Typical) The scan tool is first used to energize the fuel pump. The fuel injector tester is then used to pulse each injector for a precise amount of time, allowing a measured amount of fuel into the manifold. This causes a drop in system fuel pressure that can be recorded and used to compare each injector. TEST DESCRIPTION Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Testing and Inspection > Fuel Injector Balance Test With Special Tool > Page 9927 Step 1 - Step 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Testing and Inspection > Fuel Injector Balance Test With Special Tool > Page 9928 Step 6 - Step 8 The number below refers to the step number on the diagnostic table. 6. If the pressure drop value for each fuel injector is within 10 kPa (1.5 psi) of the average pressure drop value, the fuel injectors are flowing properly. Calculate the pressure drop value for each fuel injector by subtracting the second pressure reading from the first pressure reading. Refer to the illustration. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Testing and Inspection > Fuel Injector Balance Test With Special Tool > Page 9929 Fuel Injector: Testing and Inspection Fuel Injector Balance Test with Tech 2 FUEL INJECTOR BALANCE TEST WITH TECH 2 DESCRIPTION Fuel Injector Balance Test Example (Typical) The scan tool is first used to energize the fuel pump. The scan tool is then used to pulse each injector for a precise amount of time, allowing a measured amount of fuel into the manifold. This causes a drop in system fuel pressure that can be recorded and used to compare the flow through each injector. TEST DESCRIPTION Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Testing and Inspection > Fuel Injector Balance Test With Special Tool > Page 9930 Step 1 - Step 4 Step 5 - Step 7 The number below refers to the step number on the diagnostic table. 5. If the pressure drop value for each fuel injector is within 10 kPa (1.5 psi) of the average pressure drop value, the fuel injectors are flowing properly. Calculate the pressure drop value for each fuel injector by subtracting the second pressure reading from the first pressure reading. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Testing and Inspection > Fuel Injector Balance Test With Special Tool > Page 9931 Fuel Injector: Testing and Inspection Fuel Injector Solenoid Coil Test FUEL INJECTOR SOLENOID COIL TEST CIRCUIT DESCRIPTION The control module enables the appropriate fuel injector pulse for each cylinder. Ignition voltage is supplied directly to the fuel injectors. The control module controls each fuel injector by grounding the control circuit via a solid state device called a driver. A fuel injector coil winding resistance that is too high or too low will affect engine driveability. A fuel injector control circuit DTC may not set, but a misfire may be apparent. The fuel injector coil windings are affected by temperature. The resistance of the fuel injector coil windings will increase as the temperature of the fuel injector increases. DIAGNOSTIC AIDS - The use of Dielectric compound GM P/N 12377900 (Canadian P/N 10953529) in the fuel injector electrical connector may eliminate a corrosion condition. - Monitoring the misfire current counters, or misfire graph, may help isolate the fuel injector that is causing the condition. - Operating the vehicle over a wide temperature range may help isolate the fuel injector that is causing the condition. - Perform the fuel injector coil test within the conditions of the customers concern. A fuel injector condition may only be apparent at a certain temperature, or under certain conditions. - If the fuel injector coil test does not isolate the condition perform the fuel injector balance test. Refer to Fuel Injector Balance Test with Special Tool or Fuel Injector Balance Test with Tech 2. See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics/Fuel Injector Balance Test With Special Tool See: Computers and Control Systems/Testing and Inspection/Component Tests and General Diagnostics/Fuel Injector Balance Test With Tech 2 TEST Step 1 - Step 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Service and Repair > Procedures Fuel Injector: Procedures FUEL INJECTOR CLEANING TOOLS REQUIRED - J 37287 Fuel Line Shut-Off Adapters - J 35800-A Fuel Injector Cleaner - J 42873-1 3/8 Fuel Line Shut-Off Valve - J 42873-2 5/16 Return Pipe Shut-Off Valve - J 42964-1 3/8 Fuel Pipe Shut-Off Valve - J 42964-2 5/16 Fuel Pipe Shut-Off Valve NOTE: GM Top-Engine Cleaner is the only injector cleaning agent recommended. Do not use other cleaning agents, as they may contain methanol which can damage fuel system components. - Under NO circumstances should the top engine cleaner be added to the vehicles fuel tank, as it may damage the fuel pump and other system components. - Do not exceed a 10 percent cleaning solution concentration. Higher concentrations may damage fuel system components. Testing has demonstrated that exceeding the 10 percent cleaning solution concentration does not improve the effectiveness of this procedure. IMPORTANT: - Vehicles with less than 160 km (100 mi) on the odometer should not have the injectors cleaned. These vehicles should have the injectors replaced. - During this procedure you will need a total of 960 ml (32.4 oz) of cleaning solution. That is 2 tanks of solution for the J 35800-A. Other brands of tools may have a different capacity and would therefore require more or less tanks to complete the procedure. You must use all 960 ml (32.4 oz) of solution to ensure complete injector cleaning. 1. Obtain J 35800-A (2). IMPORTANT: Make sure the valve at the bottom of the canister (3) is closed. 2. For US dealers, empty 2 pre-measured GM Top-Engine Cleaner containers, 24 ml (0.812 oz) each, GM P/N 12346535, into the J 35800-A. 3. For Canadian dealers, measure and dispense 48 ml (1.62 oz) of Top-Engine Cleaner, Canadian P/N 992872, into the J 35800-A. 4. If you are using any other brand of tank you will need a total of 96 ml (3.24 oz) of Top-Engine Cleaner mixed with 864 ml (29.16 oz) of regular unleaded gasoline. 5. Fill the injector cleaning tank with regular unleaded gasoline. Be sure to follow all additional instructions provided with the tool. 6. Electrically disable the vehicle fuel pump by removing the fuel pump relay and disconnecting the oil pressure switch connector, if equipped. 7. Disconnect the fuel feed and return line, if equipped, at the fuel rail. Plug the fuel feed and return line, if equipped, coming off the fuel rail with J 37287, or J 42964-1, and J 42964-2 or J 42873-1, and J 42873-2 as appropriate for the fuel system. 8. Connect the J 35800-A to the vehicle fuel rail. 9. Pressurize the J 35800-A to 510 kPa (75 psi). 10. Start and idle the engine until it stalls due to lack of fuel. This should take approximately 15-20 minutes. 11. Disconnect J 35800-A from the fuel rail. 12. Reconnect the vehicle fuel pump relay and oil pressure switch connector, if equipped. 13. Remove J 37287 or J 42964-1, and J 42964-2 or J 42873-1, and J 42873-2 and reconnect the vehicle fuel feed and return lines. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Service and Repair > Procedures > Page 9934 14. Start and idle the vehicle for an additional 2 minutes to ensure residual injector cleaner is flushed from the fuel rail and fuel lines. 15. Repeat steps 1-5 of the Injector Balance Test, and record the fuel pressure drop from each injector. 16. Subtract the lowest fuel pressure drop from the highest fuel pressure drop. If the value is 15 kPa (2 psi) or less, no additional action is required. If the value is greater than 15 kPa (2 psi), replace the injector with the lowest fuel pressure drop. 17. Add one ounce of Port Fuel Injector Cleaner, GM P/N 12345104 (Canadian P/N 10953467), to the vehicle fuel tank for each gallon of gasoline estimated to be in the fuel tank. Instruct the customer to add the reminder of the bottle of Port Fuel Injector Cleaner to the vehicle fuel tank at the next fill-up. 18. Advise the customer to change brands of fuel and to add GM Port Fuel Injector Cleaner every 5000 km (3,000 mi). GM Port Fuel Injector Cleaner contains the same additives that the fuel companies are removing from the fuel to reduce costs. Regular use of GM Port Fuel Injector Cleaner should keep the customer from having to repeat the injector cleaning procedure. 19. Road test the vehicle to verify that the customer concern has been corrected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Service and Repair > Procedures > Page 9935 Fuel Injector: Removal and Replacement FUEL INJECTOR REPLACEMENT REMOVAL PROCEDURE NOTE: Use care in removing the fuel injectors in order to prevent damage to the fuel injector electrical connector pins or the fuel injector nozzles. Do not immerse the fuel injector in any type of cleaner. The fuel injector is an electrical component and may be damaged by this cleaning method. IMPORTANT: The engine oil may be contaminated with fuel if the fuel injectors are leaking. 1. Remove the fuel rail. 2. Remove and discard the fuel injector retainer clip (19). 3. Remove the fuel injector (17). 4. Remove and discard the fuel injector retainer clip (1). 5. Remove and discard the fuel injector O-ring seals (2, 4). INSTALLATION PROCEDURE IMPORTANT: When ordering new fuel injectors, you must order the correct injector for the application being serviced. The fuel injector (1) is stamped with a identification part number (2). A four-digit build date code (3) indicates the month (4), day (5), year (6), and shift (7) that built the injector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Injector > Component Information > Service and Repair > Procedures > Page 9936 1. Lubricate the NEW injector O-ring seals (2, 4) with clean engine oil. 2. Install the NEW injector O-ring seals onto the fuel injector. 3. Install a NEW retainer clip (1) onto the fuel injector. 4. Push the fuel injector (17) into the fuel rail injector socket with the electrical connector facing outward. The retainer clip (19) locks on to a flange on the fuel rail injector socket. 5. Install the fuel rail. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Line Coupler > Component Information > Service and Repair > Metal Collar Quick Connect Fitting Service Fuel Line Coupler: Service and Repair Metal Collar Quick Connect Fitting Service METAL COLLAR QUICK CONNECT FITTING SERVICE TOOLS REQUIRED - J 41769 Fuel Line Quick Disconnect Tool - J 43178 Fuel Line Disconnect Tool REMOVAL PROCEDURE 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Remove the retainer from the fuel feed line to engine quick-connect fitting. 3. If equipped with the 5.3L (L59) engine, remove the retainers from the fuel feed and return line to engine quick-connect fittings. CAUTION: Wear safety glasses when using compressed air, as flying dirt particles may cause eye injury. 4. Using compressed air, blow any dirt or debris from around the fitting. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Line Coupler > Component Information > Service and Repair > Metal Collar Quick Connect Fitting Service > Page 9941 5. Using the correct tool from J 41769, insert the tool into the female connector, then push inward in order to release the quick connect locking tabs. 6. If the vehicle is a cab/chassis, it may be necessary to use J 43178 in order to release the quick connect locking tabs. 7. Pull the fuel line connection apart. NOTE: If necessary, remove rust or burrs from the fuel pipes with an emery cloth. Use a radial motion with the fuel pipe end in order to prevent damage to the O-ring sealing surface. Use a clean shop towel in order to wipe off the male tube ends. Inspect all the connections for dirt and burrs. Clean or replace the components and assemblies as required. 8. Use a clean shop towel in order to wipe off the male connection end. 9. Inspect both ends of the fitting for dirt and burrs. Clean or replace the components as required. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury, before connecting fuel pipe fittings, always apply a few drops of clean engine oil to the male pipe ends. 1. This will ensure proper reconnection and prevent a possible fuel leak. During normal operation, the O-rings located in the female connector will swell and may prevent proper reconnection if not lubricated. Apply a few drops of clean engine oil to the male connection end. 2. Push both sides of the fittings together in order to snap the retaining tabs into place. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Line Coupler > Component Information > Service and Repair > Metal Collar Quick Connect Fitting Service > Page 9942 3. Once installed, pull on both sides of the connection in order to make sure the connection is secure. 4. If equipped with the 5.3L (L59) engine, install the retainers to the fuel feed and return line to engine quick-connect fittings. 5. Install the retainer to the fuel feed line quick-connect fitting. 6. Install the fuel fill cap. 7. Connect the negative battery cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Line Coupler > Component Information > Service and Repair > Metal Collar Quick Connect Fitting Service > Page 9943 Fuel Line Coupler: Service and Repair Plastic Collar Quick Connect Fitting Service PLASTIC COLLAR QUICK CONNECT FITTING SERVICE REMOVAL PROCEDURE IMPORTANT: There are several types of plastic fuel and evaporative emission (EVAP) quick connect fittings used on this vehicle. The following instructions apply to all types of plastic quick connect fittings except where indicated. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). CAUTION: Wear safety glasses when using compressed air in order to prevent eye injury. 2. Using compressed air, blow any dirt or debris from around the quick connect fitting. 3. Squeeze the plastic quick connect fitting release tabs together to disengage the quick connect fitting. (This step applies to Bartholomew style fittings ONLY) 4. Squeeze where indicated by the arrows on both sides of the plastic ring to disengage the quick connect fitting. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Line Coupler > Component Information > Service and Repair > Metal Collar Quick Connect Fitting Service > Page 9944 5. Squeeze where indicated by the arrows on both sides of the plastic ring to disengage the quick connect fitting. 6. Pull the quick connect fitting connection apart. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury, before connecting fuel pipe fittings, always apply a few drops of clean engine oil to the male pipe ends. 1. This will ensure proper reconnection and prevent a possible fuel leak. During normal operation, the O-rings located in the female connector will swell and may prevent proper reconnection if not lubricated. Apply a few drops of clean engine oil to the male connection end. 2. Push both sides of the quick-connect fitting together in order to cause the retaining tabs to snap into place. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Line Coupler > Component Information > Service and Repair > Metal Collar Quick Connect Fitting Service > Page 9945 3. Once installed, pull on both sides of the quick-connect fittings in order to make sure the connection is secure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pressure > System Information > Specifications Fuel Pressure: Specifications Fuel Pressure (Key ON, Engine OFF).................................................................................................. ..............................................384-425 kPa (55-62 psi) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pressure > System Information > Service Precautions > Technician Safety Information Fuel Pressure: Technician Safety Information Relieving Fuel Pressure Caution Caution: Remove the fuel tank cap and relieve the fuel system pressure before servicing the fuel system in order to reduce the risk of personal injury. After you relieve the fuel system pressure, a small amount of fuel may be released when servicing the fuel lines, the fuel injection pump, or the connections. In order to reduce the risk of personal injury, cover the fuel system components with a shop towel before disconnection. This will catch any fuel that may leak out. Place the towel in an approved container when the disconnection is complete. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pressure > System Information > Service Precautions > Technician Safety Information > Page 9952 Fuel Pressure: Vehicle Damage Warnings Fuel Pressure Notice Notice: Do not allow the fuel pressure to exceed the specified value because damage to the fuel pressure regulator or the fuel pressure gage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pressure > System Information > Service Precautions > Page 9953 Fuel Pressure: Testing and Inspection FUEL SYSTEM DIAGNOSIS SYSTEM DESCRIPTION The control module enables the fuel pump relay when the ignition switch is turned ON. The control module will disable the fuel pump relay within two seconds unless the control module detects ignition reference pulses. The control module continues to enable the fuel pump relay as long as ignition reference pulses are detected. The control module disables the fuel pump relay within two seconds if ignition reference pulses cease to be detected and the ignition remains ON. The Fuel System is a returnless on-demand design. The fuel pressure regulator is a part of the fuel sender assembly, eliminating the need for a return pipe from the engine. A returnless fuel system reduces the internal temperature of the fuel tank by not returning hot fuel from the engine to the fuel tank. Reducing the internal temperature of the fuel tank results in lower evaporative emissions. The fuel tank stores the fuel supply. An electric turbine style fuel pump attaches to the fuel sender assembly inside the fuel tank. The fuel pump supplies high pressure fuel through the fuel filter and the fuel feed pipe to the fuel injection system. The fuel pump provides fuel at a higher rate of flow than is needed by the fuel injection system. The fuel pump also supplies fuel to a venturi pump located on the bottom of the fuel sender assembly. The function of the venturi pump is to fill the fuel sender assembly reservoir. The fuel pressure regulator, a part of the fuel sender assembly, maintains the correct fuel pressure to the fuel injection system. The fuel pump and sender assembly contains a reverse flow check valve. The check valve and the fuel pressure regulator maintain fuel pressure in the fuel feed pipe and the fuel rail in order to prevent long cranking times. TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pressure > System Information > Service Precautions > Page 9954 Step 1 - Step 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pressure > System Information > Service Precautions > Page 9955 Step 6 - Step 13 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Locations Fuel Pump Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9961 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9962 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9963 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9964 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9965 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9966 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9967 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9968 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9969 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9970 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9971 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9972 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9973 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9974 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9975 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9976 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9977 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9978 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9979 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9980 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9981 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9982 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9983 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9984 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9985 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9986 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9987 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9988 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9989 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9990 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9991 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9992 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9993 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9994 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9995 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9996 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9997 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9998 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 9999 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10000 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10001 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10002 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10003 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10004 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10005 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10006 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10007 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10008 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10009 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10010 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10011 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10012 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10013 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10014 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10015 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10016 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10017 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10018 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10019 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10020 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10021 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10022 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10023 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10024 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10025 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10026 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10027 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10028 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10029 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10030 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10031 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10032 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10033 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10034 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10035 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10036 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10037 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10038 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10039 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10040 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10041 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10042 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10043 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10044 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10045 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10046 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10047 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10048 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10049 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10050 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10051 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10052 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Pump > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10053 Fuel Pump (FP) Relay - Secondary (With RPO Code Dual Tanks) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions Fuel Rail: Service Precautions Fuel Rail Stop Bracket Installation Caution Caution: The fuel rail stop bracket must be installed onto the engine assembly. The stop bracket serves as a protective shield for the fuel rail in the event of a vehicle frontal crash. If the fuel rail stop bracket is not installed and the vehicle is involved in a frontal crash, fuel could be sprayed possibly causing a fire and personal injury from burns. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10057 Fuel Rail: Service and Repair FUEL INJECTION FUEL RAIL ASSEMBLY REPLACEMENT REMOVAL PROCEDURE IMPORTANT: An 8-digit identification number (1) is located on the fuel rail. Refer to this identification number when servicing or when part replacement is required. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Remove the wire harness bracket nut (2). 3. Disconnect the evaporative emission (EVAP) purge solenoid electrical connector (1). 4. Disconnect the generator electrical connector (3). 5. Disconnect the following electrical connectors: - Manifold absolute pressure (MAP) sensor (1) - Knock sensor (2) 6. Remove the knock sensor harness connector from the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10058 7. Disconnect the electronic throttle control (ETC) electrical connector (2), preform the following: 1. Disengage the gray retainer. 2. Push down the black clip. 3. Disconnect the connector. 8. Remove the connector position assurance (CPA) retainer (5). 9. Disconnect the following electrical connectors from the right side of the engine: - Main coil (4) - Fuel injectors (3) 10. Remove the harness clips from the fuel rail (1). 11. Remove the CPA retainer from the left side of the engine. 12. Disconnect the following electrical connectors from the left side of the engine: - Main coil (2) - Fuel injectors 13. Remove the harness clips from the fuel rail (1). 14. Reposition the engine wire harness aside. 15. Perform the following steps in order to disconnect the fuel injector electrical connectors. 0. Mark the connectors to their corresponding injectors to ensure correct reassembly. 1. Pull the connector position assurance (CPA) retainer (2) on the connector up 1 click. 2. Push the tab (1) on the connector in. 3. Disconnect the fuel injector electrical connector. 4. Repeat the steps for each injector electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10059 16. Remove the positive crankcase ventilation (PCV) hose. 17. Disconnect the fuel feed pipe (1) from the fuel rail. 18. Remove the fuel rail bolts. NOTE: Remove the fuel rail assembly carefully in order to prevent damage to the injector electrical connector terminals and the injector spray tips. Support the fuel rail after the fuel rail is removed in order to avoid damaging the fuel rail components. - Cap the fittings and plug the holes when servicing the fuel system in order to prevent dirt and other contaminants from entering open pipes and Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10060 passages. IMPORTANT: Before removal, clean the fuel rail with a spray type engine cleaner, such as GM X-30A or equivalent, if necessary. Follow the package instructions. Do not soak the fuel rail in liquid cleaning solvent. 19. Remove the fuel rail. 20. Remove the fuel injector lower O-ring seal (4) from each injector, if necessary. 21. Discard the O-ring seal. INSTALLATION PROCEDURE 1. Lubricate NEW fuel injector lower O-ring seals (4) with clean engine oil. 2. Install the NEW O-ring seals (4) onto each injector, if necessary. 3. Install the fuel rail. 4. Apply a 5 mm (0.2 in) band of threadlock GM P/N 12345382 (Canadian P/N 10953489), or equivalent to the threads of the fuel rail bolts. NOTE: Refer to the Fastener Notice. 5. Install the fuel rail bolts. Tighten the bolts to 10 N.m (89 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10061 6. Connect the fuel feed pipe (1) to the fuel rail. 7. Install the PCV hose. 8. Perform the following steps in order to connect the fuel injector electrical connectors. 1. Install the connectors to their corresponding injectors to ensure correct reassembly. 2. Connect the fuel injector electrical connector. 3. Push the CPA retainer (2) on the connector in 1 click. 4. Repeat the steps for each injector electrical connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10062 9. Position the engine wire harness. 10. Connect the following electrical connectors to the left side of the engine: - Main coil (2) - Fuel injectors 11. Install the harness clips to the fuel rail (1). 12. Install the CPA retainer. 13. Connect the following electrical connectors to the right side of the engine: - Main coil (4) - Fuel injectors (3) 14. Install the CPA retainer (5). 15. Install the harness clips to the fuel rail (1). 16. Connect the ETC electrical connector (2), preform the following: 0. Connect the connector. 1. Engage the gray retainer. 17. Connect the following electrical connectors: - MAP sensor (1) - Knock sensor (2) 18. Install the knock sensor harness connector to the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Rail > Component Information > Service Precautions > Page 10063 19. Connect the EVAP purge solenoid electrical connector (1). 20. Connect the generator electrical connector (3). 21. Install the wire harness bracket nut (2). Tighten the nut to 5 N.m (44 lb in). 22. Tighten the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 0. Turn the ignition ON, with the engine OFF, for 2 seconds. 1. Turn the ignition OFF for 10 seconds. 2. Turn the ignition ON, with the engine OFF. 3. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) Fuel Return Line: Service and Repair Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding area prior to disconnecting the fitting in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed line (1) from the sending unit and retaining clips. 3. Cap the fuel feed and evaporative emission (EVAP) openings in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10068 Fuel Return Line: Service and Repair Fuel Hose/Pipes Assembly Replacement (1500 Crew Cab) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding areas prior to disconnecting the fittings in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed (1) line from the sending unit and retaining clips. 3. Cap the fuel feed/return, and evaporative emission (EVAP) lines in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10069 Fuel Return Line: Service and Repair Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis Front) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - FRONT) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail in order to avoid possible system contamination. 5. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10070 8. Remove the fuel line clips from the brackets on the transmission. 9. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 10. Disconnect the fuel and EVAP quick connect fittings. 11. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 12. Remove the EVAP line from the clips (2) on the fuel tank. 13. Disconnect the quick connect fittings from the EVAP canister. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10071 14. Remove the fuel and EVAP bundle nuts. 15. Remove the fuel and EVAP bundle. INSTALLATION PROCEDURE 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle nuts. Tighten the nuts to 12 N.m (106 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10072 3. Connect the quick connect fittings to the EVAP canister. 4. Install the EVAP line to the clips (2) on the fuel tank. 5. Remove the caps from the fuel and EVAP lines. 6. Connect the fuel and EVAP quick connect fittings. 7. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 8. Install the fuel line clips to the brackets on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10073 9. Install the fuel pipe bracket to the bellhousing stud. 10. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 11. Lower the vehicle. 12. Remove the caps from the fuel rail. 13. Connect the EVAP canister purge tube line (2). 14. Connect the fuel feed line (1) at the engine. 15. Install the fuel fill cap. 16. Connect the negative battery cable. 17. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10074 Fuel Return Line: Service and Repair Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis Rear) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - REAR) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed and pressure balance lines from the front tank. 3. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. 4. Disconnect the fuel feed and pressure balance lines from the rear tank. 5. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10075 6. Remove the rear fuel line bundle clip nuts. 7. Remove the rear fuel line bundle. INSTALLATION PROCEDURE 1. Install the rear fuel line bundle. NOTE: Refer to Fastener Notice. 2. Install the rear fuel line bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10076 3. Remove the caps from the fuel and balance lines at the fuel tank. 4. Connect the fuel feed and pressure balance lines to the rear tank. 5. Remove the caps from the fuel and balance lines at the fuel tank. 6. Connect the fuel feed and pressure balance lines to the front tank. 7. Install the fuel fill cap. 8. Connect the negative battery cable. 9. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10077 Fuel Return Line: Service and Repair Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding area prior to disconnecting the fitting in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed line (1) from the sending unit and retaining clips. 3. Cap the fuel feed and evaporative emission (EVAP) openings in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Fuel Hose/Pipes Assembly Replacement (1500 Crew Cab) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding areas prior to disconnecting the fittings in order to avoid possible fuel Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10078 system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed (1) line from the sending unit and retaining clips. 3. Cap the fuel feed/return, and evaporative emission (EVAP) lines in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis - Front) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - FRONT) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10079 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail in order to avoid possible system contamination. 5. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the fuel line clips from the brackets on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10080 9. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 10. Disconnect the fuel and EVAP quick connect fittings. 11. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 12. Remove the EVAP line from the clips (2) on the fuel tank. 13. Disconnect the quick connect fittings from the EVAP canister. 14. Remove the fuel and EVAP bundle nuts. 15. Remove the fuel and EVAP bundle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10081 INSTALLATION PROCEDURE 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Connect the quick connect fittings to the EVAP canister. 4. Install the EVAP line to the clips (2) on the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10082 5. Remove the caps from the fuel and EVAP lines. 6. Connect the fuel and EVAP quick connect fittings. 7. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 8. Install the fuel line clips to the brackets on the transmission. 9. Install the fuel pipe bracket to the bellhousing stud. 10. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10083 11. Lower the vehicle. 12. Remove the caps from the fuel rail. 13. Connect the EVAP canister purge tube line (2). 14. Connect the fuel feed line (1) at the engine. 15. Install the fuel fill cap. 16. Connect the negative battery cable. 17. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis - Rear) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - REAR) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed and pressure balance lines from the front tank. 3. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10084 4. Disconnect the fuel feed and pressure balance lines from the rear tank. 5. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. 6. Remove the rear fuel line bundle clip nuts. 7. Remove the rear fuel line bundle. INSTALLATION PROCEDURE 1. Install the rear fuel line bundle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10085 NOTE: Refer to Fastener Notice. 2. Install the rear fuel line bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and balance lines at the fuel tank. 4. Connect the fuel feed and pressure balance lines to the rear tank. 5. Remove the caps from the fuel and balance lines at the fuel tank. 6. Connect the fuel feed and pressure balance lines to the front tank. 7. Install the fuel fill cap. 8. Connect the negative battery cable. 9. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Fuel Hose/Pipes Replacement - Chassis (Pickup) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (PICKUP) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10086 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail and EVAP lines in order to avoid possible system contamination. 5. If equipped with a manual transmission, raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. If equipped with an automatic transmission, remove the transmission. 7. Remove the fuel pipe bracket nut. 8. Remove the fuel pipe bracket from the bellhousing stud. 9. Remove the heated oxygen sensor (HO2S) sensor connector from the bracket. 10. Remove the fuel line clip from the bracket on the transmission. 11. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 12. Remove the clip from the bracket on the frame. 13. Remove the transfer case harness from the clip bracket. IMPORTANT: The area around the electro-hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled antilock brake (ABS) components. 14. Thoroughly wash all contaminants from around the EHCU. 15. Disconnect the chassis electrical harness connectors from the electronic brake control module (EBCM). IMPORTANT: Make sure the brake lines are tagged and kept in order for proper reassembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10087 16. Disconnect the brake lines from the brake pressure modulator valve (BPMV). 17. Remove the bolts (4) attaching the EHCU bracket to the frame (5). 18. Remove the EHCU (1). 19. If equipped with 4WD, remove the torsion bar bracket. 20. Disconnect the fuel and EVAP lines at the fuel tank. 21. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 22. Remove the fuel and EVAP bundle clip nuts. 23. Remove the fuel and EVAP bundle. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10088 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines at the fuel tank. 4. Connect the fuel and EVAP quick connect fittings. 5. If equipped with 4WD, install the torsion bar bracket. 6. Install the EHCU (1). 7. Install the bolts (4) attaching the EHCU bracket to the frame (5). Tighten the bolts to 25 N.m (18 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10089 8. Connect the brake lines to the BPMV. Tighten the fittings to 25 N.m (18 lb ft). 9. Connect the chassis electrical harness connectors to the EBCM. 10. Install the transfer case harness to the clip bracket. 11. Install the clip to the bracket on the frame. 12. If removed, install the automatic transmission. 13. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 14. Install the fuel line clips to the brackets on the transmission. 15. Install the HO2S sensor connector to the bracket. 16. Install the fuel pipe bracket to the bellhousing stud. 17. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 18. Lower the vehicle. 19. Remove the caps from the fuel rail and EVAP line. 20. Connect the fuel feed line (1) at the engine. 21. Connect the EVAP canister purge tube line (2). 22. Install the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Fuel Hose/Pipes Replacement - Chassis (1500 Crew Cab) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10090 FUEL HOSE/PIPES REPLACEMENT - CHASSIS (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the fittings in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) fitting at the engine. 3. Disconnect the EVAP canister purge tube (2) fitting. 4. Cap the fuel rail and EVAP lines in order to avoid possible system contamination. 5. Raise and support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the heated oxygen (HO2S) sensor connector from the bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10091 9. Remove the fuel line clip from the bracket on the transmission. 10. Remove the fuel line clip from the bracket on the transfer case, if equipped with 4 wheel drive (4WD). 11. Remove the clip from the bracket on the frame. 12. Remove the transfer case harness from the clip bracket. IMPORTANT: The area around the electro-hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled anti-lock brake (ABS) components. 13. Thoroughly wash all contaminants from around the EHCU. 14. Disconnect the chassis electrical harness connectors from the electronic brake control module (EBCM). 15. Disconnect the brake lines from the brake pressure modulator valve (BPMV). 16. Remove the bolts (4) attaching the EHCU bracket to the frame (5). 17. Remove the EHCU (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10092 18. Remove the torsion bar bracket, if equipped with 4WD. 19. Remove the EVAP canister. 20. Disconnect the fuel line at the tank. 21. Cap the fuel and EVAP lines in order to avoid possible system contamination. 22. Remove the fuel/EVAP bundle clip nuts. 23. Remove the fuel/EVAP bundle. INSTALLATION PROCEDURE 1. Install the fuel/EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel/EVAP bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines. 4. Connect the fuel line at the tank. 5. Install the EVAP canister. 6. Install the torsion bar bracket, if equipped with 4WD. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10093 7. Install the EHCU (1). 8. Install the bolts (4) attaching the EHCU bracket to the frame (5). Tighten the bolts to 25 N.m (18 lb ft). 9. Connect the brake lines to the BPMV. Tighten the fittings to 25 N.m (18 lb ft). 10. Connect the chassis electrical harness connectors to the EBCM. 11. Install the transfer case harness to the clip bracket. 12. Install the clip to the bracket on the frame. 13. Install the fuel line clip to the bracket on the transfer case, if equipped with 4WD. 14. Install the fuel line clip to the bracket on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Return Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10094 15. Install the HO2S sensor connector to the bracket. 16. Install the fuel pipe bracket to the bellhousing stud. 17. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 18. Lower the vehicle. 19. Remove the caps from the fuel rail and EVAP lines. 20. Connect the EVAP canister purge tube (2) fitting. 21. Connect the fuel feed line (1) fitting at the engine. 22. Install the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) Fuel Supply Line: Service and Repair Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding area prior to disconnecting the fitting in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed line (1) from the sending unit and retaining clips. 3. Cap the fuel feed and evaporative emission (EVAP) openings in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10099 Fuel Supply Line: Service and Repair Fuel Hose/Pipes Assembly Replacement (1500 Crew Cab) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding areas prior to disconnecting the fittings in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed (1) line from the sending unit and retaining clips. 3. Cap the fuel feed/return, and evaporative emission (EVAP) lines in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10100 Fuel Supply Line: Service and Repair Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis Front) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - FRONT) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail in order to avoid possible system contamination. 5. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10101 8. Remove the fuel line clips from the brackets on the transmission. 9. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 10. Disconnect the fuel and EVAP quick connect fittings. 11. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 12. Remove the EVAP line from the clips (2) on the fuel tank. 13. Disconnect the quick connect fittings from the EVAP canister. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10102 14. Remove the fuel and EVAP bundle nuts. 15. Remove the fuel and EVAP bundle. INSTALLATION PROCEDURE 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle nuts. Tighten the nuts to 12 N.m (106 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10103 3. Connect the quick connect fittings to the EVAP canister. 4. Install the EVAP line to the clips (2) on the fuel tank. 5. Remove the caps from the fuel and EVAP lines. 6. Connect the fuel and EVAP quick connect fittings. 7. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 8. Install the fuel line clips to the brackets on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10104 9. Install the fuel pipe bracket to the bellhousing stud. 10. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 11. Lower the vehicle. 12. Remove the caps from the fuel rail. 13. Connect the EVAP canister purge tube line (2). 14. Connect the fuel feed line (1) at the engine. 15. Install the fuel fill cap. 16. Connect the negative battery cable. 17. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10105 Fuel Supply Line: Service and Repair Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis Rear) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - REAR) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed and pressure balance lines from the front tank. 3. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. 4. Disconnect the fuel feed and pressure balance lines from the rear tank. 5. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10106 6. Remove the rear fuel line bundle clip nuts. 7. Remove the rear fuel line bundle. INSTALLATION PROCEDURE 1. Install the rear fuel line bundle. NOTE: Refer to Fastener Notice. 2. Install the rear fuel line bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10107 3. Remove the caps from the fuel and balance lines at the fuel tank. 4. Connect the fuel feed and pressure balance lines to the rear tank. 5. Remove the caps from the fuel and balance lines at the fuel tank. 6. Connect the fuel feed and pressure balance lines to the front tank. 7. Install the fuel fill cap. 8. Connect the negative battery cable. 9. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10108 Fuel Supply Line: Service and Repair Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (PICKUP AND CAB/CHASSIS) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding area prior to disconnecting the fitting in order to avoid possible fuel system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed line (1) from the sending unit and retaining clips. 3. Cap the fuel feed and evaporative emission (EVAP) openings in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Fuel Hose/Pipes Assembly Replacement (1500 Crew Cab) FUEL HOSE/PIPES ASSEMBLY REPLACEMENT (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel feed pipe connection and surrounding areas prior to disconnecting the fittings in order to avoid possible fuel Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10109 system contamination. 1. Remove the fuel tank. 2. Disconnect and remove the fuel feed (1) line from the sending unit and retaining clips. 3. Cap the fuel feed/return, and evaporative emission (EVAP) lines in order to prevent possible fuel/EVAP system contamination. INSTALLATION PROCEDURE 1. Remove the caps from the fuel feed/return, and EVAP lines. 2. Install and connect the fuel feed (1) line to the sending unit and retaining clips. 3. Install the fuel tank. Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis - Front) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - FRONT) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10110 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail in order to avoid possible system contamination. 5. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the fuel line clips from the brackets on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10111 9. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 10. Disconnect the fuel and EVAP quick connect fittings. 11. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 12. Remove the EVAP line from the clips (2) on the fuel tank. 13. Disconnect the quick connect fittings from the EVAP canister. 14. Remove the fuel and EVAP bundle nuts. 15. Remove the fuel and EVAP bundle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10112 INSTALLATION PROCEDURE 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Connect the quick connect fittings to the EVAP canister. 4. Install the EVAP line to the clips (2) on the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10113 5. Remove the caps from the fuel and EVAP lines. 6. Connect the fuel and EVAP quick connect fittings. 7. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 8. Install the fuel line clips to the brackets on the transmission. 9. Install the fuel pipe bracket to the bellhousing stud. 10. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10114 11. Lower the vehicle. 12. Remove the caps from the fuel rail. 13. Connect the EVAP canister purge tube line (2). 14. Connect the fuel feed line (1) at the engine. 15. Install the fuel fill cap. 16. Connect the negative battery cable. 17. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Fuel Hose/Pipes Replacement - Chassis (Cab/Chassis - Rear) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (CAB/CHASSIS - REAR) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed and pressure balance lines from the front tank. 3. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10115 4. Disconnect the fuel feed and pressure balance lines from the rear tank. 5. Cap the fuel and balance lines at the fuel tank in order to avoid possible system contamination. 6. Remove the rear fuel line bundle clip nuts. 7. Remove the rear fuel line bundle. INSTALLATION PROCEDURE 1. Install the rear fuel line bundle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10116 NOTE: Refer to Fastener Notice. 2. Install the rear fuel line bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and balance lines at the fuel tank. 4. Connect the fuel feed and pressure balance lines to the rear tank. 5. Remove the caps from the fuel and balance lines at the fuel tank. 6. Connect the fuel feed and pressure balance lines to the front tank. 7. Install the fuel fill cap. 8. Connect the negative battery cable. 9. Perform the following procedure in order to inspect for leaks. 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Fuel Hose/Pipes Replacement - Chassis (Pickup) FUEL HOSE/PIPES REPLACEMENT - CHASSIS (PICKUP) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the lines in order to avoid possible system contamination. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10117 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) at the engine. 3. Disconnect the EVAP canister purge tube line (2). 4. Cap the fuel rail and EVAP lines in order to avoid possible system contamination. 5. If equipped with a manual transmission, raise and suitably support the vehicle. Refer to Vehicle Lifting. 6. If equipped with an automatic transmission, remove the transmission. 7. Remove the fuel pipe bracket nut. 8. Remove the fuel pipe bracket from the bellhousing stud. 9. Remove the heated oxygen sensor (HO2S) sensor connector from the bracket. 10. Remove the fuel line clip from the bracket on the transmission. 11. If equipped with 4-wheel drive (4WD), remove the fuel line clip from the bracket on the transfer case. 12. Remove the clip from the bracket on the frame. 13. Remove the transfer case harness from the clip bracket. IMPORTANT: The area around the electro-hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled antilock brake (ABS) components. 14. Thoroughly wash all contaminants from around the EHCU. 15. Disconnect the chassis electrical harness connectors from the electronic brake control module (EBCM). IMPORTANT: Make sure the brake lines are tagged and kept in order for proper reassembly. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10118 16. Disconnect the brake lines from the brake pressure modulator valve (BPMV). 17. Remove the bolts (4) attaching the EHCU bracket to the frame (5). 18. Remove the EHCU (1). 19. If equipped with 4WD, remove the torsion bar bracket. 20. Disconnect the fuel and EVAP lines at the fuel tank. 21. Cap the fuel and EVAP lines at the fuel tank in order to avoid possible system contamination. 22. Remove the fuel and EVAP bundle clip nuts. 23. Remove the fuel and EVAP bundle. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10119 1. Install the fuel and EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel and EVAP bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines at the fuel tank. 4. Connect the fuel and EVAP quick connect fittings. 5. If equipped with 4WD, install the torsion bar bracket. 6. Install the EHCU (1). 7. Install the bolts (4) attaching the EHCU bracket to the frame (5). Tighten the bolts to 25 N.m (18 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10120 8. Connect the brake lines to the BPMV. Tighten the fittings to 25 N.m (18 lb ft). 9. Connect the chassis electrical harness connectors to the EBCM. 10. Install the transfer case harness to the clip bracket. 11. Install the clip to the bracket on the frame. 12. If removed, install the automatic transmission. 13. If equipped with 4WD, install the fuel line clip to the bracket on the transfer case. 14. Install the fuel line clips to the brackets on the transmission. 15. Install the HO2S sensor connector to the bracket. 16. Install the fuel pipe bracket to the bellhousing stud. 17. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 18. Lower the vehicle. 19. Remove the caps from the fuel rail and EVAP line. 20. Connect the fuel feed line (1) at the engine. 21. Connect the EVAP canister purge tube line (2). 22. Install the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Fuel Hose/Pipes Replacement - Chassis (1500 Crew Cab) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10121 FUEL HOSE/PIPES REPLACEMENT - CHASSIS (1500 CREW CAB) REMOVAL PROCEDURE IMPORTANT: Clean the fuel and evaporative emission (EVAP) connections and surrounding areas prior to disconnecting the fittings in order to avoid possible system contamination. 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Disconnect the fuel feed line (1) fitting at the engine. 3. Disconnect the EVAP canister purge tube (2) fitting. 4. Cap the fuel rail and EVAP lines in order to avoid possible system contamination. 5. Raise and support the vehicle. Refer to Vehicle Lifting. 6. Remove the fuel pipe bracket nut. 7. Remove the fuel pipe bracket from the bellhousing stud. 8. Remove the heated oxygen (HO2S) sensor connector from the bracket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10122 9. Remove the fuel line clip from the bracket on the transmission. 10. Remove the fuel line clip from the bracket on the transfer case, if equipped with 4 wheel drive (4WD). 11. Remove the clip from the bracket on the frame. 12. Remove the transfer case harness from the clip bracket. IMPORTANT: The area around the electro-hydraulic control unit (EHCU) MUST be free from loose dirt to prevent contamination of disassembled anti-lock brake (ABS) components. 13. Thoroughly wash all contaminants from around the EHCU. 14. Disconnect the chassis electrical harness connectors from the electronic brake control module (EBCM). 15. Disconnect the brake lines from the brake pressure modulator valve (BPMV). 16. Remove the bolts (4) attaching the EHCU bracket to the frame (5). 17. Remove the EHCU (1). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10123 18. Remove the torsion bar bracket, if equipped with 4WD. 19. Remove the EVAP canister. 20. Disconnect the fuel line at the tank. 21. Cap the fuel and EVAP lines in order to avoid possible system contamination. 22. Remove the fuel/EVAP bundle clip nuts. 23. Remove the fuel/EVAP bundle. INSTALLATION PROCEDURE 1. Install the fuel/EVAP bundle. NOTE: Refer to Fastener Notice. 2. Install the fuel/EVAP bundle clip nuts. Tighten the nuts to 12 N.m (106 lb in). 3. Remove the caps from the fuel and EVAP lines. 4. Connect the fuel line at the tank. 5. Install the EVAP canister. 6. Install the torsion bar bracket, if equipped with 4WD. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10124 7. Install the EHCU (1). 8. Install the bolts (4) attaching the EHCU bracket to the frame (5). Tighten the bolts to 25 N.m (18 lb ft). 9. Connect the brake lines to the BPMV. Tighten the fittings to 25 N.m (18 lb ft). 10. Connect the chassis electrical harness connectors to the EBCM. 11. Install the transfer case harness to the clip bracket. 12. Install the clip to the bracket on the frame. 13. Install the fuel line clip to the bracket on the transfer case, if equipped with 4WD. 14. Install the fuel line clip to the bracket on the transmission. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Supply Line > Component Information > Service and Repair > Fuel Hose/Pipes Assembly Replacement (Pickup and Cab/Chassis) > Page 10125 15. Install the HO2S sensor connector to the bracket. 16. Install the fuel pipe bracket to the bellhousing stud. 17. Install the fuel pipe bracket nut. Tighten the nut to 10 N.m (89 lb in). 18. Lower the vehicle. 19. Remove the caps from the fuel rail and EVAP lines. 20. Connect the EVAP canister purge tube (2) fitting. 21. Connect the fuel feed line (1) fitting at the engine. 22. Install the fuel fill cap. 23. Connect the negative battery cable. 24. Use the following procedure in order to inspect for leaks: 1. Turn the ignition ON, with the engine OFF, for 2 seconds. 2. Turn the ignition OFF for 10 seconds. 3. Turn the ignition ON, with the engine OFF. 4. Inspect for fuel leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) Fuel Filler Hose: Service and Repair Filler Tube Replacement (Pickup) FILLER TUBE REPLACEMENT (PICKUP) REMOVAL PROCEDURE 1. Remove the fuel tank filler housing to body TORX(r) screws (1) and pushpin retainer (2). 2. Remove the fuel tank filler housing to fuel tank fill pipe bolts. 3. Remove the fuel tank filler housing. 4. Raise and suitably support the vehicle half way. Refer to Vehicle Lifting. 5. Remove the fuel tank fill pipe ground wire bolt (1). 6. Remove the fuel tank fill pipe ground wire (3) anti-rotation tab from the frame hole. 7. Reposition the fuel tank fill pipe ground wire and chassis harness ground wire (2). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10131 8. Open the axle vent hose clip on the fuel fill pipe bracket. 9. Remove the rear axle vent hose from the clip. 10. Loosen the fuel tank fill pipe clamp (1) at the fuel tank. 11. Disconnect the recirculation line from the sending unit. 12. Remove the fuel tank fill pipe. 13. Cap the opening on the fuel tank in order to prevent possible system contamination. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10132 1. Remove the cap from the opening on the fuel tank. 2. Install the fuel tank fill pipe. 3. Connect the recirculation line to the sending unit. NOTE: Refer to Fastener Notice. 4. Tighten the fuel tank fill pipe clamp (1) at the fuel tank. Tighten the clamp to 2.5 N.m (22 lb in). 5. Install the rear axle vent hose to the clip on the fuel fill pipe bracket. 6. Close the axle vent hose clip. 7. Position the fuel tank fill pipe ground wire and chassis harness ground wire (2). 8. Install the fuel tank fill pipe ground wire (3) anti-rotation tab into the frame hole. 9. Install the fuel tank fill pipe ground wire bolt (1). Tighten the bolt to 9 N.m (80 lb in). 10. Lower the vehicle. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10133 11. Install the fuel tank filler housing. 12. Install the fuel tank filler housing to fuel tank fill pipe bolts. Tighten the screws to 2.3 N.m (20 lb in). 13. Install the fuel tank filler housing to body TORX(r) screws (1) and pushpin retainer (2). Tighten the screws to 2.3 N.m (20 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10134 Fuel Filler Hose: Service and Repair Filler Tube Replacement (1500 Crew Cab) FILLER TUBE REPLACEMENT (1500 CREW CAB) REMOVAL PROCEDURE 1. Remove the fuel tank filler housing to body TORX(r) screws (1) and retainer (2). 2. Remove the fuel tank filler housing to fuel tank fill pipe bolts. 3. Remove the fuel tank filler housing. 4. Partially raise and suitably support the vehicle. Refer to Vehicle Lifting. 5. Remove the fuel tank fill pipe ground wire bolt. 6. Remove the fuel tank fill pipe ground wire from the frame. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10135 7. Loosen the fuel tank fill pipe clamp at the fuel tank. 8. Disconnect the recirculation line quick connect fitting at the tank. 9. Remove the fuel tank fill pipe. 10. Cap the opening on the fuel tank in order to prevent possible system contamination. INSTALLATION PROCEDURE 1. Remove the cap from the opening on the fuel tank. 2. Install the fuel tank fill pipe. 3. Connect the recirculation line quick connect fitting at the tank. NOTE: Refer to Fastener Notice. 4. Tighten the fuel tank fill pipe clamp at the fuel tank. Tighten the clamp to 2.5 N.m (22 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10136 5. Position the fuel tank fill pipe ground wire to the frame. Ensure the anti-rotation tab is positioned correctly. 6. Install the fuel tank fill pipe ground wire bolt. Tighten the bolt to 9 N.m (80 lb in). 7. Lower the vehicle. 8. Install the fuel tank filler housing. 9. Install the fuel tank filler housing to fuel tank fill pipe bolts. Tighten the bolts to 2.3 N.m (20 lb in). 10. Install the fuel tank filler housing to body TORX(r) screws (1) and retainer (2). Tighten the screws to 2.3 N.m (20 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10137 Fuel Filler Hose: Service and Repair Filler Tube Replacement (Cab/Chassis - Front) FILLER TUBE REPLACEMENT (CAB/CHASSIS - FRONT) REMOVAL PROCEDURE 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. If equipped with a rear auxiliary tank, disconnect the fuel and evaporative emission (EVAP) quick connect fittings. 3. Cap the fuel feed and EVAP pipes in order to prevent possible system contamination. 4. Loosen the fuel fill pipe clamp (2) at the tank. 5. Loosen the vent pipe clamp (1) at the tank. 6. Remove the fuel fill pipe and vent pipe from the tank. 7. Cap the fuel and vent openings in the tank in order to prevent possible system contamination. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10138 1. Remove the caps from the fuel and vent openings in the tank. 2. Install the fuel fill pipe and vent pipe to the tank. NOTE: Refer to Fastener Notice. 3. Tighten the vent pipe clamp (1) at the tank. 4. Tighten the fuel fill pipe clamp (2) at the tank. Tighten the clamps to 2.5 N.m (22 lb in). 5. Remove the caps from the fuel feed and EVAP pipes. 6. If equipped with a rear auxiliary tank, connect the fuel and EVAP quick connect fittings. Refer to Metal Collar Quick Connect Fitting Service. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Filler Hose > Component Information > Service and Repair > Filler Tube Replacement (Pickup) > Page 10139 Fuel Filler Hose: Service and Repair Filler Tube Replacement (Cab/Chassis - Rear) FILLER TUBE REPLACEMENT (CAB/CHASSIS - REAR) REMOVAL PROCEDURE 1. Relieve the fuel system pressure. Refer to Fuel Pressure Relief (With CH 48027) Fuel Pressure Relief (Without CH 48027). 2. Loosen the fuel fill pipe hose clamp (2) at the tank. 3. Loosen the fuel vent pipe hose clamp (1) at the tank. 4. Remove the fuel fill and vent hoses from the tank. INSTALLATION PROCEDURE 1. Install the fuel fill and vent hoses to the tank. 2. Tighten the fuel vent pipe hose clamp (1) at the tank. NOTE: Refer to Fastener Notice. 3. Tighten the fuel fill pipe hose clamp (2) at the tank. Tighten the clamps to 2.5 N.m (22 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Gauge Sender > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Gauge Sender: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Gauge Sender > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 10144 Fuel Gauge Sender: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Gauge Sender > Component Information > Diagrams > Page 10145 Fuel Gauge Sender: Service and Repair FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. 4. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. IMPORTANT: Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank > Fuel Gauge Sender > Component Information > Diagrams > Page 10146 7. Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank Unit > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Fuel Tank Unit: Diagrams Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Primary - All Gas Except L59 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank Unit > Component Information > Diagrams > Fuel Pump/Sender Assembly - Primary - All Gas Except L59 > Page 10151 Fuel Tank Unit: Diagrams Fuel Pump/Sender Assembly - Secondary - Gas Displays and Gages Connector End Views Fuel Pump/Sender Assembly - Secondary - Gas Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank Unit > Component Information > Diagrams > Page 10152 Fuel Tank Unit: Service and Repair FUEL SENDER ASSEMBLY REPLACEMENT TOOLS REQUIRED J 45722 Fuel Sender Lock Ring Wrench REMOVAL PROCEDURE 1. Remove the fuel tank. 2. Disconnect the fuel line from the sending unit. 3. Disconnect the evaporative emission (EVAP) line from the sending unit. 4. CAUTION: Drain the fuel from the fuel sender assembly into an approved container in order to reduce the risk of fire and personal injury. Never store the fuel in an open container. NOTE: Avoid damaging the lock ring. Use only J-45722 to prevent damage to the lock ring. - Do Not handle the fuel sender assembly by the fuel pipes. The amount of leverage generated by handling the fuel pipes could damage the joints. IMPORTANT: Do NOT use impact tools. Significant force will be required to release the lock ring. The use of a hammer and screwdriver is not recommended. Secure the fuel tank in order to prevent fuel tank rotation. Use the J 45722 and a long breaker-bar in order to unlock the fuel sender lock ring. 5. Remove the sending unit and seal. Discard the seal. 6. Clean the sending unit sealing surfaces.Turn the fuel sender lock ring in a counterclockwise direction. IMPORTANT: Some lock rings were manufactured with "DO NOT REUSE" stamped into them. These lock rings may be reused if they are not damaged or warped. - Inspect the lock ring for damage due to improper removal or installation procedures. If damage is found, install a NEW lock ring. - Check the lock ring for flatness. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Fuel Tank Unit > Component Information > Diagrams > Page 10153 7. Place the lock ring on a flat surface. Measure the clearance between the lock ring and the flat surface using a feeler gage at 7 points. 8. If warpage is less than 0.41 mm (0.016 in), the lock ring does not require replacement. 9. If warpage is greater than 0.41 mm (0.016 in), the lock ring must be replaced. INSTALLATION PROCEDURE CAUTION: In order to reduce the risk of fire and personal injury that may result from a fuel leak, always replace the fuel sender gasket when reinstalling the fuel sender assembly. IMPORTANT: The fuel strainer must be in a horizontal position when installing the sending unit is installed in the tank. When installing the sending unit, assure that the fuel strainer does not block full travel of the float arm. 1. Install the sending unit. IMPORTANT: Always replace the fuel sender seal when installing the fuel sender assembly. Replace the lock ring if necessary. DO NOT apply any type of lubrication in the seal groove. 2. Ensure the lock ring is installed with the correct side facing upward. A correctly installed lock ring will only turn in a clockwise direction. Use the J 45722 in order to install the fuel sender lock ring. Turn the fuel sender lock ring in a clockwise direction. 3. Connect the EVAP line to the sending unit. 4. Connect the fuel line to the sending unit. 5. Install the fuel tank. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Idle Speed/Throttle Actuator Electronic > Component Information > Service Precautions Idle Speed/Throttle Actuator - Electronic: Service Precautions Handling Idle Air Control Valve Notice Notice: If the IAC valve has been in service: DO NOT push or pull on the IAC valve pintle. The force required to move the pintle may damage the threads on the worm drive. Also, DO NOT soak the IAC valve in any liquid cleaner or solvent, as damage may result. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Locations Fuel Pump Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions Fuel Pump Relay: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10163 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10164 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10165 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10166 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10167 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10168 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10169 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10170 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10171 Fuel Pump Relay: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10172 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10173 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10174 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10175 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10176 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10177 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10178 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10179 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10180 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10181 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10182 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10183 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10184 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10185 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10186 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10187 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10188 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10189 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10190 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10191 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10192 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10193 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10194 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10195 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10196 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10197 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10198 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10199 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10200 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10201 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10202 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10203 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10204 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10205 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10206 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10207 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10208 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10209 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10210 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10211 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10212 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10213 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10214 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10215 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10216 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10217 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10218 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10219 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10220 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10221 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10222 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10223 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10224 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10225 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10226 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10227 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10228 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10229 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10230 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10231 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10232 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10233 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10234 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10235 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10236 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10237 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10238 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10239 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10240 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10241 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10242 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10243 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10244 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10245 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10246 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10247 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10248 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10249 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10250 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10251 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10252 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10253 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10254 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Relays and Modules - Fuel Delivery and Air Induction > Fuel Pump Relay > Component Information > Diagrams > Diagram Information and Instructions > Page 10255 Fuel Pump (FP) Relay - Secondary (With RPO Code Dual Tanks) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations Accelerator Pedal Position (APP) Sensor Connector Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 10260 Accelerator Pedal Position (APP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 10261 Accelerator Pedal Position Sensor: Service and Repair ACCELERATOR PEDAL POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. 1. Remove the connector position assurance (CPA) retainer. 2. Disconnect the accelerator pedal position (APP) sensor electrical connector (1). 3. Remove the accelerator pedal bolts. 4. Remove the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 10262 INSTALLATION PROCEDURE 1. Position the accelerator pedal to the accelerator pedal bracket. NOTE: Refer to Fastener Notice. 2. Install the accelerator pedal bolts. Tighten the bolts to 9 N.m (80 lb in). 3. Connect the APP sensor electrical connector (1). 4. Install the CPA retainer. 5. Connect a scan tool to the diagnostic port in order to test for proper throttle-opening and throttle-closing range. 6. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 7. Verify that the vehicle meets the following conditions: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Accelerator Pedal Position Sensor > Component Information > Locations > Page 10263 - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 8. Inspect the carpet fit under the accelerator pedal. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Locations Air Induction Components Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions Air Flow Meter/Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10269 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10270 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10271 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10272 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10273 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10274 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10275 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10276 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10277 Air Flow Meter/Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10278 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10279 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10280 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10281 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10282 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10283 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10284 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10285 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10286 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10287 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10288 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10289 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10290 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10291 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10292 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10293 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10294 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10295 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10296 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10297 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10298 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10299 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10300 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10301 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10302 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10303 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10304 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10305 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10306 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10307 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10308 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10309 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10310 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10311 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10312 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10313 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10314 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10315 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10316 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10317 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10318 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10319 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10320 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10321 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10322 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10323 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10324 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10325 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10326 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10327 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10328 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10329 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10330 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10331 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10332 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10333 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10334 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10335 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10336 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10337 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10338 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10339 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10340 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10341 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10342 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10343 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10344 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10345 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10346 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10347 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10348 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10349 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10350 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10351 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10352 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10353 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10354 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10355 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10356 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10357 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10358 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10359 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10360 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10361 Mass Air Flow (MAF)/Intake Air Temperature (IAT) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 10362 Air Flow Meter/Sensor: Service and Repair MASS AIRFLOW SENSOR/INTAKE AIR TEMPERATURE SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Use care when handling the mass air flow (MAF)/ intake air temperature (IAT) sensor. Do not dent, puncture, or otherwise damage the honeycell located at the air inlet end of the MAF/IAT. Do not touch the sensing elements or allow anything including cleaning solvents and lubricants to come in contact with them. Use a small amount of a non-silicone based lubricant, on the air duct only, to aid in installation. 1. Remove the air cleaner outlet duct. 2. Pull out the gray connector position assurance (CPA) retainer. 3. Push down on the black clip in order to disconnect the MAF/IAT sensor electrical connector (4). 4. Loosen the MAF/IAT clamp. 5. Remove the MAF/IAT sensor from the air cleaner assembly. INSTALLATION PROCEDURE IMPORTANT: The embossed arrow on the MAF/IAT sensor indicates the proper air flow direction. The arrow must point toward the engine. 1. Locate the air flow direction arrow (2) on the MAF/IAT sensor. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Air Flow Meter/Sensor > Component Information > Diagrams > Page 10363 2. Install the MAF/IAT sensor to the air cleaner assembly. NOTE: Refer to Fastener Notice. 3. Tighten the MAF/IAT clamp. Tighten the clamp to 7 N.m (62 lb in). 4. Connect the MAF/IAT sensor electrical connector (4). 5. Push in the gray CPA retainer. 6. Install the air cleaner outlet duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10368 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10369 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10370 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10371 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10372 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10373 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10374 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10375 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10376 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10377 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10378 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10379 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10380 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10381 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10382 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10383 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10384 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10385 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10386 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10387 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10388 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10389 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10390 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10391 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10392 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10393 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10394 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10395 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10396 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10397 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10398 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10399 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10400 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10401 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10402 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10403 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10404 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10405 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10406 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10407 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10408 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10409 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10410 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10411 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10412 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10413 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10414 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10415 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10416 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10417 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10418 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10419 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10420 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10421 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10422 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10423 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10424 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10425 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10426 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10427 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10428 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10429 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10430 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10431 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10432 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10433 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10434 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10435 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10436 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10437 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10438 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10439 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10440 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10441 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10442 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10443 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10444 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10445 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10446 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10447 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10448 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10449 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10450 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10451 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10452 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10453 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10454 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10455 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10456 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10457 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10458 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Sensors and Switches - Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10459 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Body > Component Information > Diagrams Throttle Body Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Body > Component Information > Service and Repair > Procedures Throttle Body: Procedures THROTTLE BODY CLEANING 1. Remove the air cleaner intake duct. CAUTION: Turn OFF the ignition before inserting fingers into the throttle bore. Unexpected movement of the throttle blade could cause personal injury. NOTE: Do not insert any tools into the throttle body bore in order to avoid damage to the throttle valve plate. 2. Inspect the throttle body bore and the throttle plate for deposits. You will need to open the throttle plate in order to inspect all surfaces. NOTE: Do not use any solvent that contains Methyl Ethyl Ketone (MEK). This solvent may damage fuel system components 3. Clean the throttle body bore and the throttle plate using a clean shop towel with GM Top Engine Cleaner, P/N 1052626 or AC-Delco Carburetor Tune-Up Conditioner, P/N X66-P, or an equivalent product. 4. Install the air cleaner intake duct. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Body > Component Information > Service and Repair > Procedures > Page 10465 Throttle Body: Removal and Replacement THROTTLE BODY ASSEMBLY REPLACEMENT REMOVAL PROCEDURE NOTE: Handle the electronic throttle control components carefully. Use cleanliness in order to prevent damage. Do not drop the electronic throttle control components. Do not roughly handle the electronic throttle control components. Do not immerse the electronic throttle control components in cleaning solvents of any type. IMPORTANT: DO NOT for any reason, insert a screwdriver or other small hand tools into the throttle body to hold open the throttle plate, as the wedge inside the throttle body could be damaged. - An 8-digit part identification number is stamped on the throttle body casting. Refer to this number if servicing, or part replacement is required. 1. Partially drain the cooling system in order to allow the hose at the throttle body to be removed. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 2. Remove the air cleaner outlet duct. 3. Remove the engine sight shield. 4. Disconnect the throttle actuator motor electrical connector (2). 5. Reposition the coolant air bleed hose clamp at the throttle body. 6. Remove the coolant air bleed hose from the throttle body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Body > Component Information > Service and Repair > Procedures > Page 10466 7. Remove the throttle body nuts. 8. Remove the throttle body. 9. Remove and discard the throttle body gasket. INSTALLATION PROCEDURE 1. Install the NEW throttle body gasket. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Body > Component Information > Service and Repair > Procedures > Page 10467 2. Install the throttle body. NOTE: Refer to Fastener Notice. 3. Install the throttle body nuts. Tighten the nuts to 10 N.m (89 lb in). 4. Install the coolant air bleed hose to the throttle body. 5. Position the coolant air bleed hose clamp at the throttle body. IMPORTANT: Verify that the throttle actuator motor harness connector and the connector seal are properly installed and not damaged. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Body > Component Information > Service and Repair > Procedures > Page 10468 6. Connect the throttle actuator motor electrical connector (2). 7. Install the engine sight shield. 8. Install the air cleaner outlet duct. 9. Refill the cooling system. Refer to Draining and Filling Cooling System (Static Fill) Draining and Filling Cooling System (w/RPO HP2) Draining and Filling Cooling System (Vac-N-Fill). 10. Connect a scan tool in order to test for proper throttle-opening and throttle-closing range. 11. Operate the accelerator pedal and monitor the throttle angles. The accelerator pedal should operate freely, without binding, between a closed throttle, and a wide open throttle (WOT). 12. Verify that the vehicle meets the following conditions: - The vehicle is not in a reduced engine power mode. - The ignition is ON. - The engine is OFF. 13. Start the engine. 14. Inspect for coolant leaks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Throttle Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10473 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10474 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10475 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10476 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10477 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10478 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10479 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10480 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10481 Throttle Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10482 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10483 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10484 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10485 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10486 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10487 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10488 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10489 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10490 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10491 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10492 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10493 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10494 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10495 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10496 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10497 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10498 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10499 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10500 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10501 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10502 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10503 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10504 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10505 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10506 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10507 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10508 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10509 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10510 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10511 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10512 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10513 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10514 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10515 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10516 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10517 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10518 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10519 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10520 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10521 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10522 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10523 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10524 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10525 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10526 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10527 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10528 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10529 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10530 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10531 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10532 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10533 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10534 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10535 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10536 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10537 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10538 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10539 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10540 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10541 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10542 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10543 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10544 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10545 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10546 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10547 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10548 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10549 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10550 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10551 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10552 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10553 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10554 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10555 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10556 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10557 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10558 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10559 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10560 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10561 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10562 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10563 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Fuel Delivery and Air Induction > Throttle Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10564 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10570 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10571 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10572 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10573 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10574 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10575 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10576 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10577 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10578 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10579 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10580 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10581 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10582 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10583 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10584 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10585 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10586 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10587 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10588 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10589 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10590 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10591 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10592 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10593 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10594 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10595 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10596 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10597 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10598 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10599 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10600 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10601 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10602 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10603 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10604 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10605 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10606 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10607 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10608 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10609 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10610 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10611 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10612 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10613 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10614 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10615 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10616 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10617 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10618 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10619 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10620 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10621 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10622 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10623 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10624 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10625 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10626 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10627 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10628 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10629 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10630 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10631 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10632 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10633 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10634 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10635 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10636 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10637 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10638 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10639 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10640 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10641 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10642 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10643 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10644 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10645 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10646 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10647 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10648 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10649 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10650 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10651 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10652 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10653 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10654 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10655 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10656 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10657 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10658 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10659 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10660 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10661 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10662 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Page 10663 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10668 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10669 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10670 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10671 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10672 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10673 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10674 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10675 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10676 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10677 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10678 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10679 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10680 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10681 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10682 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10683 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10684 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10685 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10686 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10687 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10688 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10689 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10690 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10691 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10692 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10693 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10694 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10695 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10696 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10697 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10698 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10699 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10700 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10701 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10702 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10703 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10704 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10705 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10706 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10707 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10708 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10709 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10710 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10711 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10712 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10713 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10714 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10715 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10716 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10717 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10718 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10719 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10720 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10721 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10722 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10723 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10724 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10725 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10726 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10727 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10728 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10729 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10730 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10731 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10732 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10733 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10734 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10735 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10736 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10737 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10738 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10739 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10740 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10741 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10742 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10743 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10744 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10745 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10746 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10747 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10748 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10749 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10750 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10751 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10752 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10753 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10754 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10755 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10756 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10757 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10758 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10759 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10760 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 10763 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 10764 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Cable > Component Information > Specifications Ignition Cable: Specifications Spark Plug Wire Resistance................................................................................................................. ...........................................................397-1337 Ohms Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Cable > Component Information > Specifications > Page 10768 Ignition Cable: Testing and Inspection SPARK PLUG WIRE INSPECTION Spark plug wire integrity is vital for proper engine operation. A thorough inspection is necessary to accurately identify conditions that may affect engine operation. Inspect for the following conditions: 1. Correct routing of the spark plug wires-Incorrect routing may cause cross-firing. 2. Any signs of cracks or splits in the wires. 3. Inspect each boot for the following conditions: - Tearing - Piercing - Arcing - Carbon tracking - Corroded terminal If corrosion, carbon tracking or arcing are indicated on a spark plug wire boot or terminal, replace the wire and the component connected to the wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Cable > Component Information > Specifications > Page 10769 Ignition Cable: Service and Repair SPARK PLUG WIRE REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire from the spark plug. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the spark plug. 2. Remove the spark plug wire from the ignition coil. 1. Twist the spark plug wire boot a 1/2 turn. 2. Pull only on the boot in order to remove the wire from the ignition coil. 3. IMPORTANT: The Melco(R) spark plug wires MUST be used only with the Melco(R) coils and bracket, like wise the Delphi(R) spark plug wires MUST be used only with Delphi(R) coils and bracket. The components are NOT interchangeable. There are 2 different manufacturers for the spark plug wire, ignition coils and coil brackets. They are as follows: 4. The Melco(R) spark plug wire (1) will have a blue foil mark on it, and the wire is 145 mm (5.70 in) in length from cable seal to cable seal. 5. The Delphi(R) spark plug wire (2) will have a white foil mark on it, and the wire is 110 mm (4.30 in) in length cable seal to cable seal. 6. The Melco(r) (1) ignition coil is a square design. 7. The Delphi(r) (2) ignition coil is a round design. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Cable > Component Information > Specifications > Page 10770 8. The Melco(r) ignition coil bracket (1) is a square design. 9. The Delphi(r) ignition coil bracket (2) is a round design. INSTALLATION PROCEDURE 1. Install the spark plug wire to the ignition coil. 2. Install the spark plug wire to the spark plug. 3. Inspect the spark plug wire for proper installation: 1. Push sideways on each boot in order to inspect the seating. 2. Reinstall any loose boot. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams Ignition Coil: Diagrams Ignition Coil 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10774 Ignition Coil 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10775 Ignition Coil 3 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10776 Ignition Coil 4 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10777 Ignition Coil 5 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10778 Ignition Coil 6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10779 Ignition Coil 7 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10780 Ignition Coil 8 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10781 Ignition Coil: Service and Repair IGNITION COIL REPLACEMENT REMOVAL PROCEDURE 1. If equipped with regular production option (RPO) HP2, disconnect the energy storage box (ESB). 2. Remove the spark plug wire from the ignition coil. 3. Disconnect the ignition coil electrical connector. 4. If equipped with regular production option (RPO) HP2, remove the auxiliary heater water pump bracket bolts. 5. Remove the auxiliary heater water pump from the studs, and reposition out of the way. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10782 6. If equipped with RPO HP2, remove the starter/generator control module (SGCM) cover bolts, and cover. 7. Remove the 3-phase cable nuts to the SGCM. 8. Remove the 3-phase cable from the SGCM. 9. If equipped with RPO HP2, remove the 3-phase cable bracket nuts (2). 10. Remove the 3-phase cable bracket (1) from the studs, and reposition the cable and bracket out of the way. 11. Remove the ignition coil bolts. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10783 12. Remove the ignition coil. INSTALLATION PROCEDURE 1. Install the ignition coil. 2. NOTE: Refer to Fastener Notice. Install the ignition coil bolts. Tighten the bolts to 8 N.m (71 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10784 3. If equipped with RPO HP2, position the cable (w/bracket) and install the 3-phase cable bracket to the studs. 4. Install the 3-phase cable bracket nuts (2). Tighten the nuts to 15 N.m (11 lb ft). 5. If equipped with RPO HP2, install the 3-phase cable to the SGCM. 6. Install the 3-phase cable nuts to the SGCM. Tighten the nuts to 9 N.m (80 lb in). 7. Install the SGCM cover and bolts. Tighten the bolts to 9 N.m (80 lb in). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Coil > Component Information > Diagrams > Page 10785 8. If equipped with RPO HP2, position the auxiliary heater water pump and install it onto the studs. 9. Install the auxiliary heater water pump bracket bolts. Tighten the bolts to 15 N.m (11 lb ft). 10. Connect the ignition coil electrical connector. 11. Install the spark plug wire to the ignition coil. 12. If equipped with RPO HP2, connect the ESB. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Relay > Component Information > Locations Ignition Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Relay > Component Information > Locations > Page 10789 Ignition Relay: Testing and Inspection IGNITION RELAY DIAGNOSIS CIRCUIT DESCRIPTION The ignition relay is a normally open relay. The relay armature is held in the open position by spring tension. When the ignition switch is turned to the run or start position, current will flow through the relay coil. A wire connected to the other end of the relay coil completes the path to ground. The electomagnetic field created by the relay coil, overcomes the spring tension and moves the armature allowing the relay contacts to close. The closed relay contacts allow current to flow from the battery to the following fuses: The PCM 1 fuse - The ETC/ECM fuse - The INJ 1 fuse - The INJ 2 fuse - The SBA fuse, if equipped. When the ignition switch is turned to the OFF position, the electromagnetic field collapses. This action allows the spring tension to move the armature away from the relay contacts, which interrupts current flow to the fuses. If the ignition relay fails to close, the engine will crank, but will not run. The class 2 communications will be available with the use of a scan tool. The ignition relay table assumes that the vehicle battery is fully charged. Refer to Battery Inspection/Test (Non-HP2) Battery Inspection/Test (HP2). See: Starting and Charging/Testing and Inspection/Component Tests and General Diagnostics/Battery Inspection/Test (Non-HP2) TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Relay > Component Information > Locations > Page 10790 Step 1 - Step 6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Relay > Component Information > Locations > Page 10791 Step 7 - Step 16 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Relay > Component Information > Locations > Page 10792 Step 17 - Step 24 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Ignition Relay > Component Information > Locations > Page 10793 Step 25 - Step 31 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10799 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10800 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10801 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10802 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10803 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10804 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10805 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10806 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10807 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10808 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10809 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10810 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10811 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10812 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10813 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10814 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10815 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10816 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10817 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10818 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10819 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10820 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10821 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10822 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10823 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10824 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10825 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10826 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10827 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10828 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10829 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10830 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10831 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10832 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10833 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10834 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10835 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10836 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10837 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10838 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10839 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10840 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10841 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10842 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10843 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10844 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10845 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10846 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10847 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10848 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10849 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10850 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10851 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10852 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10853 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10854 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10855 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10856 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10857 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10858 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10859 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10860 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10861 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10862 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10863 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10864 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10865 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10866 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10867 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10868 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10869 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10870 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10871 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10872 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10873 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10874 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10875 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10876 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10877 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10878 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10879 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10880 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10881 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10882 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10883 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10884 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10885 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10886 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10887 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10888 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10889 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10890 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10891 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10892 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Page 10893 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Page 10894 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Knock Sensor > Component Information > Diagrams > Page 10895 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations Ignition Relay: Locations Fuse Block - Underhood Label Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 10900 Ignition Relay: Testing and Inspection IGNITION RELAY DIAGNOSIS CIRCUIT DESCRIPTION The ignition relay is a normally open relay. The relay armature is held in the open position by spring tension. When the ignition switch is turned to the run or start position, current will flow through the relay coil. A wire connected to the other end of the relay coil completes the path to ground. The electomagnetic field created by the relay coil, overcomes the spring tension and moves the armature allowing the relay contacts to close. The closed relay contacts allow current to flow from the battery to the following fuses: The PCM 1 fuse - The ETC/ECM fuse - The INJ 1 fuse - The INJ 2 fuse - The SBA fuse, if equipped. When the ignition switch is turned to the OFF position, the electromagnetic field collapses. This action allows the spring tension to move the armature away from the relay contacts, which interrupts current flow to the fuses. If the ignition relay fails to close, the engine will crank, but will not run. The class 2 communications will be available with the use of a scan tool. The ignition relay table assumes that the vehicle battery is fully charged. Refer to Battery Inspection/Test (Non-HP2) Battery Inspection/Test (HP2). See: Starting and Charging/Testing and Inspection/Component Tests and General Diagnostics/Battery Inspection/Test (Non-HP2) TEST Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 10901 Step 1 - Step 6 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 10902 Step 7 - Step 16 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 10903 Step 17 - Step 24 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Relays and Modules - Ignition System > Ignition Relay > Component Information > Locations > Page 10904 Step 25 - Step 31 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Camshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10910 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10911 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10912 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10913 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10914 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10915 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10916 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10917 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10918 Camshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10919 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10920 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10921 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10922 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10923 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10924 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10925 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10926 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10927 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10928 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10929 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10930 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10931 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10932 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10933 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10934 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10935 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10936 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10937 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10938 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10939 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10940 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10941 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10942 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10943 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10944 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10945 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10946 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10947 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10948 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10949 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10950 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10951 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10952 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10953 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10954 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10955 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10956 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10957 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10958 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10959 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10960 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10961 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10962 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10963 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10964 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10965 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10966 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10967 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10968 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10969 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10970 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10971 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10972 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10973 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10974 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10975 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10976 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10977 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10978 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10979 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10980 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10981 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10982 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10983 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10984 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10985 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10986 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10987 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10988 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10989 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10990 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10991 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10992 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10993 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10994 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10995 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10996 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10997 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10998 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 10999 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11000 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11001 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11002 Camshaft Position (CMP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Camshaft Position Sensor > Component Information > Diagrams > Page 11003 Camshaft Position Sensor: Service and Repair CAMSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Clean the area around the camshaft position (CMP) sensor before removal in order to prevent debris from entering the engine. 1. Remove the CMP sensor bolt. 2. Remove the CMP sensor. INSTALLATION PROCEDURE 1. Install the CMP sensor. NOTE: Refer to Fastener Notice. 2. Install the CMP sensor bolt. Tighten the bolt to 29 N.m (21 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions Crankshaft Position Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11008 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11009 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11010 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11011 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11012 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11013 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11014 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11015 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11016 Crankshaft Position Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11017 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11018 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11019 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11020 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11021 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11022 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11023 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11024 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11025 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11026 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11027 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11028 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11029 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11030 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11031 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11032 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11033 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11034 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11035 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11036 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11037 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11038 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11039 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11040 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11041 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11042 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11043 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11044 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11045 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11046 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11047 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11048 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11049 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11050 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11051 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11052 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11053 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11054 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11055 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11056 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11057 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11058 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11059 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11060 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11061 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11062 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11063 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11064 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11065 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11066 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11067 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11068 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11069 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11070 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11071 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11072 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11073 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11074 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11075 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11076 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11077 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11078 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11079 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11080 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11081 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11082 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11083 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11084 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11085 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11086 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11087 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11088 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11089 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11090 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11091 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11092 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11093 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11094 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11095 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11096 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11097 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11098 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11099 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11100 Crankshaft Position (CKP) Sensor Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement Crankshaft Position Sensor: Service and Repair Crankshaft Position Sensor Replacement CRANKSHAFT POSITION SENSOR REPLACEMENT REMOVAL PROCEDURE IMPORTANT: Perform the Crankshaft Position System Variation Learn whenever the crankshaft position sensor is removed or replaced. 1. Remove the starter. 2. Disconnect the crankshaft position (CKP) sensor electrical connector. 3. Clean the area around the CKP sensor before removal in order to avoid debris from entering the engine. 4. Remove the CKP sensor bolt. 5. Remove the CKP sensor. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 11103 1. Install the CKP sensor. NOTE: Refer to Fastener Notice. 2. Install the CKP sensor bolt. Tighten the bolt to 25 N.m (18 lb ft). 3. Connect the CKP sensor electrical connector. 4. Install the starter. 5. Perform the CKP system variation learn procedure. Refer to Crankshaft Position System Variation Learn. See: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Crankshaft Position Sensor > Component Information > Service and Repair > Crankshaft Position Sensor Replacement > Page 11104 Crankshaft Position Sensor: Service and Repair Crankshaft Position System Variation Learn CRANKSHAFT POSITION SYSTEM VARIATION LEARN 1. Install a scan tool. 2. Monitor the powertrain control module (PCM) for DTCs with a scan tool. If other DTCs are set, except DTC P0315, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 3. Select the crankshaft position variation learn procedure with a scan tool. 4. The scan tool instructs you to perform the following: 1. Accelerate to wide open throttle (WOT). 2. Release throttle when fuel cut-off occurs. 3. Observe fuel cut-off for applicable engine. 4. Engine should not accelerate beyond calibrated RPM value. 5. Release throttle immediately if value is exceeded. 6. Block drive wheels. 7. Set parking brake. 8. DO NOT apply brake pedal. 9. Cycle ignition from OFF to ON. 10. Apply and hold brake pedal. 11. Start and idle engine. 12. Turn the A/C OFF. 13. Vehicle must remain in Park or Neutral. 14. The scan tool monitors certain component signals to determine if all the conditions are met to continue with the procedure. The scan tool only displays the condition that inhibits the procedure. The scan tool monitors the following components: Crankshaft position (CKP) sensors activity-If there is a CKP sensor condition, refer to the applicable DTC. - Camshaft position (CMP) signal activity-If there is a CMP signal condition, refer to the applicable DTC. - Engine coolant temperature (ECT)-If the engine coolant temperature is not warm enough, idle the engine until the engine coolant temperature reaches the correct temperature. 5. Enable the CKP system variation learn procedure with the scan tool. IMPORTANT: While the learn procedure is in progress, release the throttle immediately when the engine starts to decelerate. The engine control is returned to the operator and the engine responds to throttle position after the learn procedure is complete. 6. Accelerate to WOT. 7. Release throttle when fuel cut-off occurs. 8. The scan tool display reads Test In Progress. 9. The scan tool displays Learn Status: Learned this ignition. If the scan tool indicates that DTC P0315 ran and passed, the CKP variation learn procedure is complete. If the scan tool indicates DTC P0315 failed or did not run, refer to DTC P0315. If any other DTCs set, refer to Diagnostic Trouble Code (DTC) List - Vehicle for the applicable DTC. See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Tests and Associated Procedures/P Code Charts/P0315 See: Computers and Control Systems/Testing and Inspection/Diagnostic Trouble Code Descriptions 10. Turn OFF the ignition for 30 seconds after the learn procedure is completed successfully. 11. The CKP system variation learn procedure is also required when the following service procedures have been performed, regardless of whether or not DTC P0315 is set: An engine replacement - A PCM replacement - A harmonic balancer replacement - A crankshaft replacement - A CKP sensor replacement - Any engine repairs which disturb the crankshaft to CKP sensor relationship. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation Ignition Switch Lock Cylinder: Description and Operation Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Ignition Switch > Ignition Switch Lock Cylinder > Component Information > Description and Operation > Page 11109 Ignition Switch Lock Cylinder: Service and Repair Key and Lock Cylinder Coding Use Instruction Sheet Supplied For the lock cylinder coding procedure, refer to the instruction sheet supplied in the lock cylinder kit. For key cutting information, refer to the instructions provided from the manufacturer of the key cutting equipment used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Locations Knock Sensors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions Knock Sensor: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11115 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11116 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11117 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11118 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11119 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11120 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11121 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11122 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11123 Knock Sensor: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11124 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11125 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11126 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11127 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11128 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11129 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11130 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11131 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11132 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11133 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11134 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11135 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11136 - There are only a few situations where reprogramming a control module is appropriate: A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11137 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11138 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11139 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11140 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11141 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11142 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11143 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11144 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11145 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11146 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11147 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11148 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11149 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11150 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11151 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11152 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11153 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11154 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11155 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11156 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11157 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11158 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11159 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11160 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11161 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11162 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11163 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11164 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11165 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11166 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11167 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11168 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11169 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11170 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11171 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11172 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11173 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11174 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11175 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11176 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11177 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11178 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11179 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11180 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11181 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11182 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11183 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11184 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11185 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11186 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11187 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11188 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11189 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11190 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11191 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11192 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11193 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11194 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11195 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11196 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11197 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11198 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11199 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11200 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11201 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11202 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11203 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11204 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11205 IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11206 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11207 Knock Sensor: Connector Views Knock Sensor (KS) 1 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Diagram Information and Instructions > Page 11208 Knock Sensor (KS) 2 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 11209 Knock Sensor: Description and Operation KNOCK SENSOR (KS) SYSTEM DESCRIPTION PURPOSE The knock sensor (KS) system enables the control module to control the ignition timing for the best possible performance while protecting the engine from potentially damaging levels of detonation. The control module uses the KS system to test for abnormal engine noise that may indicate detonation, also known as spark knock. SENSOR DESCRIPTION This knock sensor (KS) system uses one or 2 broadband one-wire sensors. The sensor uses piezo-electric crystal technology that produces an AC voltage signal of varying amplitude and frequency based on the engine vibration, or noise, level. The amplitude and frequency are dependant upon the level of knock that the KS detects. The control module receives the KS signal through a signal circuit. The KS ground is supplied by the engine block through the sensor housing. One way the control module monitors the system is by output of a bias voltage on the KS signal wire. The bias voltage creates a voltage drop that the control module monitors and uses to help diagnose KS faults. The KS noise signal rides along this bias voltage, and due to the constantly fluctuating frequency and amplitude of the signal, will always be outside of the bias voltage parameters. Another way the control module monitors the system is by learning the average normal noise output from the KS. The control module learns a minimum noise level, or background noise, at idle from the KS and uses calibrated values for the rest of the RPM range. The control module uses the minimum noise level to calculate a noise channel. The control module uses this noise channel, and the KS signal that rides along the noise channel, in much the same way as the bias voltage type does. As engine speed and load change, the noise channel upper and lower parameters will change to accommodate the normal KS signal. In order to determine which cylinders are knocking, the control module only uses KS signal information when each cylinder is near top dead center (TDC) of the firing stroke. If the control module has determined that knock is present, it will retard the ignition timing to attempt to eliminate the knock. The control module will always try to work back to a zero compensation level, or no spark retard. An abnormal KS signal will fall within the noise channel or will not be present. KS diagnostics are calibrated to detect faults with the KS circuitry inside the control module, the KS wiring, or the KS voltage output. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 11210 Knock Sensor: Service and Repair KNOCK SENSOR REPLACEMENT REMOVAL PROCEDURE 1. Remove the intake manifold. 2. Gently pry up the rubber covers. 3. Disconnect the knock sensor electrical connectors. 4. Remove the knock sensors. INSTALLATION PROCEDURE 1. NOTE: Refer to Fastener Notice. Install the knock sensors. Tighten the sensor to 20 N.m (15 lb ft). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Sensors and Switches - Ignition System > Knock Sensor > Component Information > Diagrams > Page 11211 2. Connect the knock sensor electrical connectors. 3. Push down on the rubber covers. 4. Install the intake manifold. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Spark Plug > Component Information > Specifications Spark Plug: Specifications Spark Plug Gap.................................................................................................................................... .......................................................1.52 mm - 0.060 in Spark Plug Torque.......................................... ................................................................................................................................................15 N.m 11 lb ft Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Spark Plug > Component Information > Specifications > Page 11215 Spark Plug: Application and ID Spark Plug Type................................................................................................................................... ............................................25171803 [AC plug type] Spark Plug Type.............................................. ..............................................................................................................................12567759 [NGK plug type] Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Spark Plug > Component Information > Specifications > Page 11216 Spark Plug: Testing and Inspection SPARK PLUG INSPECTION - Verify that the correct spark plug is installed. An incorrect spark plug causes driveability conditions. Refer to Ignition System Specifications for the correct spark plug. - Ensure that the spark plug has the correct heat range. An incorrect heat range causes the following conditions: Spark plug fouling - Colder plug - Pre-ignition causing spark plug and/or engine damage - Hotter plug - Inspect the terminal post (1) for damage. Inspect for a bent or broken terminal post (1). - Test for a loose terminal post (1) by twisting and pulling the post. The terminal post (1) should not move. - Inspect the insulator (2) for flashover or carbon tracking, or soot. This is caused by the electrical charge traveling across the insulator (2) between the terminal post (1) and ground. Inspect for the following conditions: Inspect the spark plug boot for damage. - Inspect the spark plug recess area of the cylinder head for moisture, such as oil, coolant, or water. A spark plug boot that is saturated will cause arcing to ground. - Inspect the insulator (2) for cracks. All or part of the electrical charge may arc through the crack instead of the electrodes (3, 4). - Inspect for evidence of improper arcing. Measure the gap between the center electrode (4) and the side electrode (3). - Inspect for the correct spark plug torque. Insufficient torque can prevent correct spark plug operation. An over torqued spark plug, causes the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Spark Plug > Component Information > Specifications > Page 11217 insulator (2) to crack. - Inspect for signs of tracking that occurred near the insulator tip instead of the center electrode (4). - Inspect for a broken or worn side electrode (3). - Inspect for a broken, worn, or loose center electrode (4) by shaking the spark plug. A rattling sound indicates internal damage. - A loose center electrode (4) reduces the spark intensity. - Inspect for bridged electrodes (3, 4). Deposits on the electrodes (3, 4) reduce or eliminates the gap. - Inspect for worn or missing platinum pads on the electrodes (3, 4), if equipped. - Inspect for excessive fouling. - Inspect the spark plug recess area of the cylinder head for debris. Dirty or damaged threads can cause the spark plug not to seat correctly during installation. Visual Inspection Normal operation - Brown to grayish-tan with small amounts of white powdery deposits are normal combustion by-products from fuels with additives. - Carbon fouled - Dry, fluffy black carbon, or soot caused by the following conditions: Rich fuel mixtures Leaking fuel injectors - Excessive fuel pressure - Restricted air filter element - Incorrect combustion - Reduced ignition system voltage output Weak ignition coils - Worn ignition wires - Incorrect spark plug gap - Excessive idling or slow speeds under light loads can keep spark plug temperatures so low that normal combustion deposits may not burn off. - Deposit fouling - Oil, coolant, or additives that include substances such as silicone, very white coating, reduces the spark plug intensity. Most powdery deposits will not affect spark plug intensity unless they form into a glazing over the electrode. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Spark Plug > Component Information > Specifications > Page 11218 Spark Plug: Service and Repair SPARK PLUG REPLACEMENT REMOVAL PROCEDURE 1. Remove the spark plug wire. 2. Loosen the spark plug 1 or 2 turns. 3. Brush or using compressed air, blow away any dirt from around the spark plug. 4. Remove the spark plug.If removing more than one plug, place each plug in a tray marked with the corresponding cylinder number. INSTALLATION PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Ignition System > Spark Plug > Component Information > Specifications > Page 11219 1. Correctly position the spark plug washer. 2. Inspect the spark plug gap. Adjust the gap as needed. Spark plug gap: 1.016 mm (0.040 in) 3. Hand start the spark plug in the corresponding cylinder. NOTE: Refer to Fastener Notice. 4. Tighten the spark plug. - Tighten the plug to 15 N.m (11 lb ft) for used heads. - Tighten the plug to 20 N.m (15 lb ft) for NEW heads. 5. Install the spark plug wire. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Clutch Control Solenoid Valve, A/T > Component Information > Service and Repair Clutch Control Solenoid Valve: Service and Repair Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 2. Important: Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. Remove the 1-2 accumulator, if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ torque converter clutch pulse width modulation (TCC PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer bolt (364A) and retainer (378). 5. Remove the pressure control solenoid (377). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Clutch Control Solenoid Valve, A/T > Component Information > Service and Repair > Page 11226 6. Remove the 1-2 shift solenoid retainer (395) and the 1-2 shift solenoid (367A). 7. Remove the 2-3 shift solenoid retainer (395) and the 2-3 shift solenoid (367A). 8. Remove the 3-2 control solenoid retainer (395) and the 3-2 control solenoid (394). Installation Procedure 1. Install the 3-2 control solenoid (394) and the 3-2 control solenoid retainer (395). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Clutch Control Solenoid Valve, A/T > Component Information > Service and Repair > Page 11227 2. Install the 2-3 shift solenoid (367A) and the 2-3 shift solenoid retainer (395). 3. Install the 1-2 shift solenoid (367A) and the 1-2 shift solenoid retainer (395). 4. Notice: Be sure all solenoids are installed with the electrical connectors facing the non-machined (cast) side of the valve body; otherwise, the solenoids will bind against the transmission case as the valve body bolts are tightened and damage may occur. Important: When installing the pressure control solenoid, the electrical connector must be in the position 1 shown. Do not use position 2. Install the pressure control solenoid (377). 5. Notice: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Clutch Control Solenoid Valve, A/T > Component Information > Service and Repair > Page 11228 Install the pressure control solenoid retainer (378) and retainer bolt (364A). Tighten the bolt to 11 Nm (97 inch lbs.). 6. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 7. Install the 1-2 accumulator, if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 8. Install the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 9. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. Reset the TAP values. Refer to Transmission Adaptive Functions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission Pressure Regulating Solenoid: Locations 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Electronic Component Views Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 108 - Secondary Fluid Pump Assembly - M33 Model Only 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11233 Pressure Regulating Solenoid: Locations 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Electronic Component Views Automatic Transmission Internal Electronic Components (4L80-E) 22a - Automatic Transmission (AT) Input (Shaft) Speed Sensor (ISS) Assembly 22b - Automatic Transmission (AT) Output (Shaft) Speed Sensor (OSS) Assembly 34 - Automatic Transmission Fluid Temperature (TFT) Sensor 40 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 311 - 2-3 Shift Solenoid (SS) Valve Assembly 313 - 1-2 Shift Solenoid (SS) Valve Assembly 320 - Pressure Control (PC) Solenoid Valve Assembly 323 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission Pressure Regulating Solenoid: Diagrams 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Internal Connector End Views (M30/M32) Pressure Control (PC) Solenoid Valve, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Diagrams > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11236 Pressure Regulating Solenoid: Diagrams 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Internal Connector End Views Pressure Control Solenoid Valve, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Pressure Regulating Solenoid: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Pressure Regulator Replacement (with Light Grey Case Connector) Removal Procedure 1. Important: If the transmission has a black case connector, the transmission has an input speed sensor. Oil pump removal will be required. Raise and support the vehicle. Refer to Vehicle Lifting. 2. Remove the transmission oil pan and filter. Refer to Automatic Transmission Fluid and Filter Replacement. 3. Compress the reverse boost valve sleeve into the bore of the oil pump to release tension on the reverse boost valve retaining ring. 4. Remove the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 5. Remove the reverse boost valve sleeve (5) and the reverse boost valve (4). 6. Remove the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 7. Remove the pressure regulator valve (1). Installation Procedure 1. Install the pressure regulator valve (1). 2. Install the pressure regulator isolator spring (3) and the pressure regulator valve spring (2). 3. Install the reverse boost valve (4) in the reverse boost valve sleeve (5). 4. Install the reverse boost valve (4) and sleeve (5) in the oil pump cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11239 5. Compress the reverse boost valve sleeve into the bore of the oil pump to expose the retaining ring slot. 6. Install the reverse boost valve retaining ring, then slowly release tension on the reverse boost valve sleeve. 7. Install the transmission oil filter and pan. Refer to Automatic Transmission Fluid and Filter Replacement. 8. Lower the vehicle. 9. Fill the transmission to the proper level with DEXRON(r) VI transmission fluid. Refer to Transmission Fluid Check. 10. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. Reset the TAP values. Refer to Transmission Adaptive Functions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11240 Pressure Regulating Solenoid: Service and Repair 4L80-E/4L85-E - Automatic Transmission Pressure Regulator Replacement Tools Required ^ J 36850 Transjel(r) Lubricant Removal Procedure 1. Raise and suitably support the vehicle. Refer to Vehicle Lifting. 2. Remove the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 3. Caution: Valve springs can be tightly compressed. Use care when removing retainers and plugs. Personal injury could result. Remove the reverse boost valve bushing retainer ring (2). 4. Remove the following from the reverse boost valve cylinder: ^ The reverse boost valve bushing ^ The reverse boost valve ^ The pressure regulator spring retainer ^ The pressure regulator spring ^ The pressure regulator valve ^ The reverse boost valve bushing Installation Procedure 1. Install the pressure regulator valve using J 36850. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11241 2. Pre-assemble the following parts: ^ The reverse boost valve bushing ^ A new reverse boost valve ^ A new pressure regulator spring retainer ^ The added isolator pressure regulator spring ^ The pressure regulator spring 3. Install the pre-assembled parts into the pump bore. 4. Install the reverse boost valve bushing retainer ring while holding the reverse boost valve bushing in place. Ensure the retainer ring (2) is in the groove. 5. Install the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 6. Fill the transmission to the proper level with DEXRON(r) VI transmission fluid. Refer to Transmission Fluid Check. 7. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. Reset the TAP values. Refer to Transmission Adaptive Functions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11242 Pressure Regulating Solenoid: Service and Repair Allison - Automatic Transmission Control Valve Solenoid Replacement (PCS1 and PCS2) Removal Procedure 1. Remove the oil pan and transmission internal oil filter. Refer to Oil Pan Replacement. 2. Disconnect the internal wiring harness from the solenoid being changed. 3. Remove the 2 bolts that fasten reverse signal pipe to the control valve assembly. Remove the reverse signal pipe. 4. Important: ^ When the pressure control valve retaining bracket (5) is removed, there are 2 sets of accumulators (3) and springs (6) which may fall from the bores. Be sure to catch the accumulators and springs so as to prevent damage to these parts. ^ The pressure control valve retaining bracket (5) must not be modified. Note that the angle between the 2 bracket surfaces is less than 90°. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11243 Replace the bracket if the angle is 90° or more. To remove the pressure control solenoid 1 (PCS1) or PCS2, remove three bolts (4) and the pressure control valve retaining bracket (5). Remove accumulators (3) and springs (6) if they do not fall out when the bracket (5) is removed. 5. Note the position of the solenoid connector and pull the solenoid (1) or (8) out of the bore in the control valve assembly. The O-ring on the solenoid provides the resistance felt during removal. Installation Procedure 1. Obtain the new solenoid (1) or (8). Lubricate new O-ring (2) or (7) with clean transmission fluid. Install the O-ring and push the new solenoid into the control valve body bore with the wiring harness connector in the correct position. 2. Install the 2 accumulators (3) and springs (6) before installing the pressure control valve retaining bracket (5). The valve (3) goes in the bore first with the hollow end facing outward, followed by the spring (6) which goes inside the hollow portion of the valve. 3. Notice: Refer to Fastener Notice in Service Precautions. Install the pressure control valve retaining bracket (5), and install the 3 bolts (4). Tighten the bolts to 12 Nm (108 inch lbs.). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Pressure Regulating Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11244 4. Install the reverse signal pipe. Install the 2 bolts that fasten reverse signal pipe to the control valve assembly. Tighten the bolts to 12 Nm (108 inch lbs.). 5. Reconnect the internal wiring harness to the solenoid. 6. Install the oil pan and transmission internal oil filter. Refer to Oil Pan Replacement. 7. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Interlock Solenoid > Component Information > Service and Repair Shift Interlock Solenoid: Service and Repair Automatic Transmission Shift Lock Actuator Replacement Removal Procedure 1. Caution: Refer to SIR Caution. Disable the SIR system. Refer to SIR Disabling and Enabling. 2. Remove the body control module (BCM). Refer to Body Control Module Replacement. 3. Put the shift lever clevis into the neutral position. 4. Disconnect the electrical connector. 5. Using a small screwdriver, pry the automatic transmission shift lock control actuator away from the steering column jacket and the cable shift cam. 6. Remove the shift lock control actuator. Installation Procedure Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Interlock Solenoid > Component Information > Service and Repair > Page 11248 1. Firmly install the shift lock control actuator onto the steering column jacket and the cable shift cam. 2. Connect the electrical connector. 3. Adjust the shift lock control actuator (with the shift lever clevis in the neutral position) in the following way: 1. Pull out the tab (1) on the adjuster block side (2) of the shift lock control actuator. 2. Press on the adjuster block (2) to compress the internal adjuster spring which disengages the adjuster teeth. Slide the adjuster block (2) as far away from the actuator as possible. 3. Lock the adjuster block (2) in place by pushing in on the tab (1). 4. Inspect the shift lock control actuator for the following items: 1. The shift lock control actuator must lock the shift lever clevis when the shift lever clevis is put into the park position. 2. Depress the brake pedal to move the shift lever out of the park position. 3. The actuator will be energized. 4. Readjust the shift lock control actuator if needed. 5. Install the BCM. Refer to Body Control Module Replacement. 6. Enable the SIR system. Refer to SIR Disabling and Enabling. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Specifications > 4L60-E/4L65-E/4L70-E - Automatic Transmission Shift Solenoid: Specifications 4L60-E/4L65-E/4L70-E - Automatic Transmission Shift Solenoid Valve State and Gear Ratio Shift Solenoid Valve State and Gear Ratio Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Specifications > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11253 Shift Solenoid: Specifications 4L80-E/4L85-E - Automatic Transmission Shift Solenoid Valve State and Gear Ratio Shift Solenoid Valve State and Gear Ratio Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Specifications > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11254 Shift Solenoid: Specifications Allison - Automatic Transmission Solenoid and Clutch Chart (Tow/Haul) Solenoid and Clutch Chart (Tow/Haul) Solenoid and Clutch Chart (Tow/Haul) Solenoid and Clutch Chart (Normal Mode) Solenoid and Clutch Chart (Normal Mode) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Specifications > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11255 Solenoid and Clutch Chart (Normal Mode) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission Shift Solenoid: Locations 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Electronic Component Views Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 108 - Secondary Fluid Pump Assembly - M33 Model Only 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11258 Shift Solenoid: Locations 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Electronic Component Views Automatic Transmission Internal Electronic Components (4L80-E) 22a - Automatic Transmission (AT) Input (Shaft) Speed Sensor (ISS) Assembly 22b - Automatic Transmission (AT) Output (Shaft) Speed Sensor (OSS) Assembly 34 - Automatic Transmission Fluid Temperature (TFT) Sensor 40 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 311 - 2-3 Shift Solenoid (SS) Valve Assembly 313 - 1-2 Shift Solenoid (SS) Valve Assembly 320 - Pressure Control (PC) Solenoid Valve Assembly 323 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11259 Shift Solenoid: Locations Shift Lock Control Shift Lock Control Component Views Lower Steering Column Components 1 - A/T Shift Lock Control Actuator 2 - Steering Column Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions Shift Solenoid: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11262 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11263 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11264 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11265 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11266 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11267 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11268 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11269 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11270 Shift Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11271 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11272 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11273 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11274 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11275 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11276 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11277 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11278 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11279 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11280 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11281 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11282 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11283 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11284 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11285 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11286 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11287 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11288 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11289 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11290 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11291 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11292 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11293 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11294 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11295 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11296 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11297 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11298 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11299 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11300 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11301 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11302 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11303 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11304 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11305 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11306 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11307 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11308 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11309 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11310 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11311 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11312 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11313 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11314 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11315 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11316 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11317 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11318 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11319 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11320 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11321 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11322 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11323 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11324 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11325 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11326 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11327 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11328 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11329 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11330 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11331 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11332 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11333 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11334 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11335 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11336 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11337 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11338 6. Gently pry the plastic terminal retainer down and carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Yazaki Connectors (16-Way) YAZAKI CONNECTORS (16-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. While depressing the lock, pull the two connector halves apart. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11339 2. Use a small flat-blade tool to very carefully push the terminal position assurance (TPA) towards the face of the connector on both sides of the connector. IMPORTANT: The TPA is fragile and may break if not done carefully. View of the male half of the connector with female terminals. View of the female half of the connector with male terminals. 3. Use the J 38125-215 tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11340 View of the female half of the connector with male terminals. View of the male half of the connector with female terminals. 4. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Flat Wire Repairs FLAT WIRE REPAIRS NOTE: The flat wire within the flex wiring harness is not serviceable. If an open or short exists within the flex wiring harness the complete harness must be replaced. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11341 GMLAN Wiring Repairs GMLAN WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The GM Local Area Network (GMLAN) System requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working on GMLAN connectors and terminals. The tool kit J-38125 contains the following items in order to repair the GMLAN wiring: DuraSeal splice sleeves - A wire stripping tool - J 38125-8 Crimping Tool (GM P/N 12085115) - J 38125-5 Ultra Torch Special Tool (GM P/N 12085116) The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides necessary contact integrity for the sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: - A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors GMLAN REPAIRS IMPORTANT: When making a repair to any GMLAN network, the original wire length after the repair must be the same length as before the repair. If the network is a twisted pair, the twist must be maintained after the repair is completed. GMLAN has 2 types of networks, low speed and high speed. Low speed GMLAN has a single wire and works at slow speeds. High speed GMLAN has 2 wires in a twisted pair and works at higher speeds. For more information on GMLAN, refer to Data Link Communications Description and Operation. GMLAN CONNECTOR TERMINAL REPAIR IMPORTANT: A service terminal can be used to replace damaged connector terminals for both high speed and low speed GMLAN systems. When making a connector terminal repair on a GMLAN high speed system with twisted pair wires, do not untwist the wires more than necessary to make the repair. The terminals in the GMLAN system are made of a special metal. This metal provides the necessary contact integrity for the sensitive, low energy circuits. These terminals are available in the J-38125. If the individual terminals are damaged on any GMLAN connection, use the appropriate connector repair procedure in order to repair the terminal. Refer to Connector Repairs for the appropriate connector repair procedure. GMLAN WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11342 If a wire is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm, etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper (available from sewing supply stores) in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except coaxial. - Do not use the DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11343 proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Start in the middle and gradually move the heat barrel to the open ends of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Heated Oxygen Sensor Wiring Repairs HEATED OXYGEN SENSOR WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit NOTE: Do not solder repairs under any circumstances as this could result in the air reference being obstructed. If the heated oxygen sensor pigtail wiring, connector, or terminal is damaged the entire oxygen sensor assembly must be replaced. Do not attempt to repair the wiring, connector, or terminals. In order for the sensor to function properly it must have a clean air reference. This clean air reference is obtained by way of the oxygen sensor signal and heater wires. Any attempt to repair the wires, connectors or terminals could result in the obstruction of the air reference and degrade oxygen sensor performance. The following guidelines should be used when servicing the heated oxygen sensor: Do not apply contact cleaner or other materials to the sensor or vehicle harness connectors. These materials may get into the sensor, causing poor performance. Also, the sensor pigtail and harness wires must not be damaged in such a way that the wires inside are exposed. This could provide a path for foreign materials to enter the sensor and cause performance problems. - Neither the sensor nor vehicle lead wires should be bent sharply or kinked. Sharp bends, kinks, etc., could block the reference air path through the lead wire. - Do not remove or defeat the oxygen sensor ground wire (where applicable). Vehicles that utilize the ground wire sensor may rely on this ground as the only ground contact to the sensor. Removal of the ground wire will also cause poor engine performance. - To prevent damage due to water intrusion, be sure that the peripheral seal remains intact on the vehicle harness connector. The engine harness may be repaired using the J-38125. High Temperature Wiring Repairs HIGH TEMPERATURE WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit HIGH TEMPERATURE WIRING Wiring that is exposed to high temperatures, 135°C (275°F) or higher, for prolonged periods of time may use materials i.e. wires, connectors, and shielding that has a higher heat rating than typical wiring. When making a repair in a high temperature area observe the following: Use high temperature bulk wire rated at 150°C (302°F) continuous temperature to replace any damaged wire. - Replace any heat shielding that is removed. - Cover any DuraSeal splice sleeves with SCT1 shrink tubing (available in the J-38125 Terminal Repair kit). - After making a wiring repair, ensure that the location of the wiring is not moved closer to the heat source. IDENTIFYING HIGH TEMPERATURE WIRING Wiring that is exposed to high temperature, 135°C (275°F) or higher, for prolonged periods of time need special considerations when making wiring repairs. Areas that may be exposed to higher temperatures can be identified by heat resistant materials that are being used in those areas. These materials may include heat reflective tape, moon tape, and high temperature shrink tubing. Also conduit and other protective coverings may be used. Because conduit or similar coverings are used throughout the vehicle regardless of the temperature, it may be necessary for the technician to determine if an area is exposed to excessive heat before making a wiring repair. Obvious areas of consideration would be any area located near the exhaust manifolds, catalytic converter, and exhaust pipes. The J-38125 contains much of the material you will need to perform repairs on areas exposed to high heat. The kit contains the following items: Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11344 - DuraSeal splice sleeves to crimp and seal connections - High temperature SCT1 shrink tubing to protect the splice sleeves - A large sampling of common electrical terminals - The correct crimp tool to attach the terminals to the wires - The correct tools to remove the terminals from the connectors The J-38125 does not contain wire that is suitable to high temperature exposure. Use high temperature bulk wire rated at 150°C (302°F) continuous temperature of the same or larger gage size as the original wire when repair damage wire. Also replace any reflective tape that you remove during the repair. HIGH TEMPERATURE WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire rated at 150°C (302°F) continuous temperature rating of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125 and then encapsulate the splice sleeve using the high temperature SCT1 shrink tubing. Use the following wiring repair procedures in order to ensure the integrity of the sealed splice. 1. IMPORTANT: You must perform the following procedures in the order listed. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip keeping all of the wire strands intact. Open the harness by removing any tape. 2. Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. 3. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 4. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent American wire gage (AWG) size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 5. Slide a section of high temperature SCT1 shrink tubing down the length of wire to be spliced. Ensure that the shrink tubing will not interfere with the splice procedure. 6. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11345 7. Use the Splice Crimp Tool from the J-38125 in order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 8. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 9. Insert the wire into the DuraSeal splice sleeve barrel until the wire hits the barrel stop. 10. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. 11. Using the heat torch, apply heat to the crimped area of the barrel. 12. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11346 13. Center the high temperature SCT1 shrink tube over the DuraSeal splice sleeve. 14. Using the heat torch, apply heat to the high temperature heat shrink tubing. 15. Gradually move the heat from the center to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. 16. Replace any reflective tape and clips that may have been remove during the repair. Repairing Damaged Wire Insulation REPAIRING DAMAGED WIRE INSULATION Wire Size Conversion If the conductive portion of the wire is not damaged, locate the problem and apply tape around the wire. If the damage is more extensive, replace the faulty segment of the wire. Refer to Splicing Copper Wire Using Splice Clips and follow the instruction to repair the wire. SIR/SRS Wiring Repairs SIR/SRS WIRING REPAIRS TOOLS REQUIRED J-38125 Terminal Repair Kit The Supplemental Inflatable Restraint (SIR) System/Supplemental Restraint System (SRS) requires special wiring repair procedures due to the sensitive nature of the circuitry. Follow the specific procedures and instructions when working with the SIR/SRS, and the wiring components, such as connectors and terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11347 IMPORTANT: Do not use the terminals in the kit in order to replace damaged SIR/SRS system terminals. Use either an SIR/SRS pigtail or a terminated lead from the SIR Repair Kit Tray. The tool kit J-38125 contains the following items: DuraSeal splice sleeves, in order to repair the SIR/SRS wiring - A special crimping tool - A heat torch - An instruction data The DuraSeal splice sleeves have the following 2 critical features: A special heat shrink sleeve environmentally seals the splice. The heat shrink sleeve contains a sealing adhesive inside. - A cross hatched (knurled) core crimp provides the necessary low resistance contact integrity for these sensitive, low energy circuits. The J-38125 also serves as a generic terminal repair kit. The kit contains the following items: A large sampling of common electrical terminals - The correct tools in order to attach the terminals to the wires - The correct tools in order to remove the terminals from the connectors SIR/SRS CONNECTOR REPAIR (PLASTIC BODY AND TERMINAL METAL PIN) The terminals in the SIR/SRS system are made with a special plating. This plating provides the necessary contact integrity for the sensitive, low energy circuits. Use the J-38125 SIR/SRS Terminal Repair Kit for repairing SIR/SRS terminals and connectors. Do not substitute any other terminals for those in the repair kit. The J-38125 SIR/SRS Terminal Repair Kit contains: Various terminated leads for sensing and diagnostic module (SDM) terminal replacement - Various connector positive assurance (CPA) locks for SIR/SRS connectors - Base of steering column pigtail connectors part number 12085514 - Yellow vinyl electrical tape Pigtail repair packs are available for SIR/SRS connectors with eight or less terminals. Only the connector body is available for connectors with more than eight terminals. The terminated leads in the J-38125 SIR/SRS Terminal Repair Kit can be used to replace damaged terminals when replacing the connector body. SIR/SRS COMPONENT WIRE PIGTAIL REPAIR IMPORTANT: Do not make wire, connector, or terminal repairs on components with wire pigtails. A wire pigtail is a wire or wires attached directly to the device, not by a connector. If a wiring pigtail is damaged, you must replace the entire component, with pigtail. The inflatable restraint steering wheel module coil is an example of a pigtail component. SIR/SRS WIRE REPAIR IMPORTANT: Refer to Wiring Repairs in order to determine the correct wire size for the circuit you are repairing. You must obtain this information in order to ensure circuit integrity. If any wire except the pigtail is damaged, repair the wire by splicing in a new section of wire of the same gage size (0.5 mm, 0.8 mm, 1.0 mm etc.). Use the DuraSeal splice sleeves and splice crimping tool from the J-38125. Use the following wiring repair procedures in order to ensure the integrity of the DuraSeal splice sleeves. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11348 1. IMPORTANT: You must perform the following procedures in the listed order. Repeat the procedure if any wire strands are damaged. You must obtain a clean strip with all of the wire strands intact. Open the harness by removing any tape: Use a sewing seam ripper, available from sewing supply stores, in order to cut open the harness in order to avoid wire insulation damage. - Use the DuraSeal splice sleeves on all types of insulation except tefzel and coaxial. - Do not use the crimp and DuraSeal splice sleeve to form a splice with more than 2 wires coming together. 2. Cut as little wire off the harness as possible. You may need the extra length of wire in order to change the location of a splice.Adjust splice locations so that each splice is at least 40 mm (1.5 in) away from the other splices, harness branches, or connectors. 3. Strip the insulation: - When adding a length of wire to the existing harness, use the same size wire as the original wire. - Perform one of the following items in order to find the correct wire size: Find the wire on the schematic and convert the metric size to the equivalent AWG size. - Use an AWG wire gage. - If you are unsure of the wire size, begin with the largest opening in the wire stripper and work down until achieving a clean strip of the insulation. - Strip approximately 7.5 mm (0.313 in) of insulation from each wire to be spliced. - Do not nick or cut any of the strands. Inspect the stripped wire for nicks or cut strands. - If the wire is damaged, repeat this procedure after removing the damaged section. 4. Select the proper DuraSeal splice sleeve according to the wire size. Refer to the above table at the beginning of the repair procedure for the color coding of the DuraSeal splice sleeves and the crimp tool nests. 5. Use the Splice Crimp Tool from the J-38125 to crimp DuraSeal splice sleeve. In order to position the DuraSeal splice sleeve in the proper color nest of the Splice Crimp Tool. The crimp tool has three nests, 1 is for the salmon and green splice sleeve, 2 is for the blue splice sleeve, and 3 is for the yellow splice sleeve. 6. Place the DuraSeal splice sleeve in the nest. Ensure that the crimp falls midway between the end of the barrel and the stop. The sleeve has a stop (3) in the middle of the barrel (2) in order to prevent the wire (1) from going further. Close the hand crimper handles slightly in order to firmly hold the DuraSeal splice sleeve in the proper nest. 7. Insert the wire into the splice sleeve barrel until the wire hits the barrel stop. 8. Tightly close the handles of the crimp tool until the crimper handles open when released.The crimper handles will not open until you apply the proper amount of pressure to the DuraSeal splice sleeve. Repeat steps 4 and 5 for the opposite end of the splice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11349 9. Using the heat torch, apply heat to the crimped area of the barrel. 10. Gradually move the heat barrel to the open end of the tubing: - The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. CONNECTOR POSITION ASSURANCE (CPA) The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of a connector. CPAs are used in all SIR System connectors and also in some connectors of other systems. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals of a connection. TERMINAL POSITION ASSURANCE (TPA) The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Splicing Copper Wire Using Splice Clips SPLICING COPPER WIRE USING SPLICE CLIPS IMPORTANT: When making a splice in an area that may be exposed to moisture use a crimp and seal splice sleeve instead of a Splice Clip. Refer to Splicing Copper Wire Using Splice Sleeves. TOOLS REQUIRED J-38125 Terminal Repair Kit 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original (except fusible link). - The wire insulation must have the same or higher temperature rating. Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. IMPORTANT: Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced. 5. Select the proper clip to secure the splice. Follow the instructions in the J-38125 in order to determine the proper clip size crimp tool and anvil. 6. Overlap the 2 stripped wire ends and hold them between thumb and forefinger. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11350 7. Center the splice clip (2) over the stripped wires (1) and hold the clip in place. - Ensure that the wires extend beyond the clip in each direction. - Ensure that no insulation is caught under the clip. 8. Center the crimp tool over the splice clip and wires. 9. Apply steady pressure until the crimp tool closes.Ensure that no strands of wire are cut. 10. Crimp the splice on each end (2). 11. Apply 60/40 rosin core solder to the opening in the back of the clip. Follow the manufacturer's instructions for the solder equipment. 12. Tape the splice. Roll on enough tape in order to duplicate the thickness of the insulation on the existing wires. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11351 13. Additional tape can be applied to the wire if the wire does not belong in a conduit or another harness covering. Use a winding motion in order to cover the first piece of tape. Splicing Copper Wire Using Splice Sleeves SPLICING COPPER WIRE USING SPLICE SLEEVES TOOLS REQUIRED J-38125 Terminal Repair Kit IMPORTANT: Use only duraseal splice sleeves. Other splice sleeves may not protect the splice from moisture or provide a good electrical connection. Use duraseal splice sleeves to form a one-to-one splice on all types of insulation except tefzel and coaxial. Use duraseal splice sleeves where there is special requirements such as moisture sealing. Follow the instructions below in order to splice copper wire using duraseal splice sleeves. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the desired wire. 2. Cut the wire. - Cut as little wire off the harness as possible. - Ensure that each splice is at least 40 mm (1.5 in) away from other splices, harness branches, and connectors. This helps prevent moisture from bridging adjacent splices and causing damage. 3. Select the proper size and type of wire. - The wire must be of equal or greater size than the original. - The wires insulation must have the same or higher temperature rating (4). Use general purpose insulation for areas that are not subject to high temperatures. - Use a cross-linked polyethylene insulated wire for areas where high temperatures are expected. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11352 IMPORTANT: - Use cross-linked polyethylene wire to replace PVC, but do not replace cross-linked polyethylene with PVC. - Cross-linked polyethylene wire is not fuel resistant. Do not use to replace wire where there is the possibility of fuel contact. 4. Strip the insulation. - Select the correct size opening in the wire stripper or work down from the largest size. - Strip approximately 7.5 mm (5/16 in) of insulation from each wire to be spliced (1). 5. Select the proper duraseal splice sleeve (2) and the required crimp nest tool. Refer to the Crimp and Seal Splice Table. 6. Place the duraseal splice sleeve in the J-38125-8 (GM P/N 12085115) crimp tool nest so that the crimp falls at point 1 on the splice. 7. Close the hand crimper handles slightly in order to hold the duraseal splice sleeve firmly in the proper crimp tool nest. 8. Insert the wires into the duraseal splice sleeve until the wire hits the barrel stop. The splice sleeve has a stop in the middle of the barrel in order to prevent the wire from passing through the splice (3). 9. Close the handles of the J-38125-8 (GM P/N 12085115), until the crimper handles open when released. The crimper handles will not open until the proper amount of pressure is applied to the splice sleeve. 10. Shrink the insulation around the splice. - Using the heat torch, apply heat to the crimped area of the barrel. - Gradually move the heat barrel to the open end of the tubing. The tubing will shrink completely as the heat is moved along the insulation. - A small amount of sealant will come out of the end of the tubing when sufficient shrinkage is achieved. Splicing Inline Harness Diodes SPLICING INLINE HARNESS DIODES Many vehicle electrical systems use a diode to isolate circuits and protect the components from voltage spikes. When installing a new diode use the following procedure. 1. Open the harness. - If the harness is taped, remove the tape. - To avoid wiring insulation damage, use a sewing ripper in order to cut open the harness. - If the harness has a black plastic conduit, pull out the diode. 2. If the diode is taped to the harness, remove all of the tape. 3. Check and record the current flow direction and orientation of diode. 4. Remove the inoperative diode from the harness with a suitable soldering tool. IMPORTANT: If the diode is located next to a connector terminal remove the terminal(s) from the connector to prevent damage from the soldering tool. 5. Carefully strip away a section of insulation next to the old soldered portion of the wire(s). Do not remove any more than is needed to attach the new diode. 6. Check current flow direction of the new diode, being sure to install the diode with correct bias. Reference the appropriate service data wiring schematic to obtain the correct diode installation position. 7. Attach the new diode to the wire(s) using 60/40 rosin core solder. Before soldering attach some heat sinks (aluminum alligator clips) across the diode wire ends to protect the diode from excessive heat. Follow the manufacturer's instruction for the soldering equipment. 8. Reinstall terminal(s) into the connector body if previously removed. 9. IMPORTANT: To prevent shorts to ground and water intrusion, completely cover all exposed wire and diode attachment points with tape. Tape the diode to the harness or connector using electrical tape. Splicing Twisted or Shielded Cable SPLICING TWISTED OR SHIELDED CABLE Twisted/shielded cable is used in order to protect wiring from electrical noise. Two-conductor cable of this construction is used between the radio and the Delco-Bose(R) speaker/amplifier units and other applications where low level, sensitive signals must be carried. Follow the instructions below in order to repair the twisted/shielded cable. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11353 1. Remove the outer jacket (1). Use care not to cut into the drain wire of the mylar tape. 2. Unwrap the tape. Do not remove the tape. Use the tape in order to rewrap the twisted conductors after the splice is made. 3. Prepare the splice. Untwist the conductors and follow the splicing instructions for copper wire. Staggering the splices by 65 mm (2.5 in) is recommended. 4. IMPORTANT: Apply the mylar tape with the aluminum side inward. This ensures good electrical contact with the drain wire. Re-assemble the cable. Rewrap the conductors with the mylar tape. - Use caution not to wrap the drain wire in the tape (1). - Follow the splicing instructions for copper wire and splice the drain wire. - Wrap the drain wire around the conductors and tape with mylar tape. 5. Tape over the entire cable. Use a winding motion when you apply the tape. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11354 Shift Solenoid: Connector Views 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side Automatic Transmission Internal Connector End Views (M30/M32) 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side Automatic Transmission Internal Connector End Views (M30/M32) 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11355 2-3 Shift Solenoid (SS) Valve, Wiring Harness Side 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side Automatic Transmission Internal Connector End Views (M30/M32) 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11356 3-2 Shift Solenoid (SS) Valve Assembly, Wiring Harness Side 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side Automatic Transmission Internal Connector End Views 1-2 Shift Solenoid (SS) Valve, Wiring Harness Side 2-3 Shift Solenoid (SS), Wiring Harness Side Automatic Transmission Internal Connector End Views Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11357 2-3 Shift Solenoid (SS), Wiring Harness Side Shift Lock Control Shift Lock Control Connector End Views A/T Shift Lock Control Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11358 A/T Shift Lock Control Solenoid Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission Shift Solenoid: Service and Repair 4L60-E/4L65-E/4L70-E - Automatic Transmission Control and Shift Solenoids Replacement Removal Procedure 1. Remove the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 2. Important: Removal of the 1-2 accumulator is necessary only if servicing the pressure control solenoid. Remove the 1-2 accumulator, if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 3. Disconnect the internal wiring harness electrical connectors from the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ torque converter clutch pulse width modulation (TCC PWM) solenoid (5) ^ 3-2 control solenoid (6) 4. Remove the pressure control solenoid retainer bolt (364A) and retainer (378). 5. Remove the pressure control solenoid (377). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11361 6. Remove the 1-2 shift solenoid retainer (395) and the 1-2 shift solenoid (367A). 7. Remove the 2-3 shift solenoid retainer (395) and the 2-3 shift solenoid (367A). 8. Remove the 3-2 control solenoid retainer (395) and the 3-2 control solenoid (394). Installation Procedure 1. Install the 3-2 control solenoid (394) and the 3-2 control solenoid retainer (395). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11362 2. Install the 2-3 shift solenoid (367A) and the 2-3 shift solenoid retainer (395). 3. Install the 1-2 shift solenoid (367A) and the 1-2 shift solenoid retainer (395). 4. Notice: Be sure all solenoids are installed with the electrical connectors facing the non-machined (cast) side of the valve body; otherwise, the solenoids will bind against the transmission case as the valve body bolts are tightened and damage may occur. Important: When installing the pressure control solenoid, the electrical connector must be in the position 1 shown. Do not use position 2. Install the pressure control solenoid (377). 5. Notice: Refer to Fastener Notice. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11363 Install the pressure control solenoid retainer (378) and retainer bolt (364A). Tighten the bolt to 11 Nm (97 inch lbs.). 6. Connect the internal wiring harness electrical connectors to the following components: ^ Transmission fluid pressure switch (1) ^ 1-2 shift control solenoid (2) ^ 2-3 shift control solenoid (3) ^ Pressure control solenoid (4) ^ TCC PWM solenoid (5) ^ 3-2 control solenoid (6) 7. Install the 1-2 accumulator, if necessary. Refer to Accumulator Assembly, Spacer Plate, and Gaskets. 8. Install the transmission filter. Refer to Automatic Transmission Fluid and Filter Replacement. 9. Important: It is recommended that transmission adaptive pressure (TAP) information be reset. Resetting the TAP values using a scan tool will erase all learned values in all cells. As a result, the engine control module (ECM), powertrain control module (PCM) or transmission control module (TCM) will need to relearn TAP values. Transmission performance may be affected as new TAP values are learned. Reset the TAP values. Refer to Transmission Adaptive Functions. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11364 Shift Solenoid: Service and Repair Allison - Automatic Transmission Control Valve Solenoid Replacement (SS1, SS2, SS3, TCC, and MAIN MOD) Removal Procedure 1. Remove the oil pan and the transmission internal oil filter. Refer to Oil Pan Replacement. 2. Disconnect the internal wiring harness from the solenoid being changed. 3. Remove the solenoid retainer (2) for shift solenoid 1 (SS1) (5). Note the position of the solenoid connector and pull the solenoid (5) out of the bore in the control valve assembly (1). The O-rings (3 and 4) provide the resistance felt during removal. 4. Remove the solenoid retainer (6) for shift solenoid 2 (SS2) (1) or shift solenoid 3 (SS3) (4), whichever is being replaced. 5. Note the position of the solenoid connector and pull the solenoid out of the bore in the control valve assembly. The O-rings (2 and 3) provide the resistance felt during removal. 6. Important: The TCC pressure control solenoid (PCS) retaining bracket must not be modified. Note that the angle between the 2 bracket surfaces is less than 90°. Replace the bracket if the angle is 90° or more. Remove the TCC PCS retaining bolt and retaining bracket. 7. Remove the TCC PCS (7). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Shift Solenoid, A/T > Component Information > Service and Repair > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11365 Installation Procedure 1. Obtain a new SS 2 (1), SS 3 (4), TCC PCS (7), or modulated main pressure solenoid. Install O-rings (2 and 3) and lubricate with clean transmission fluid. Push the new solenoid into the control valve assembly (5) with the wiring harness connector in the correct position. 2. Install the solenoid retainer (6). Connect the internal wiring harness to the solenoids replaced. 3. For a new TCC PCS (7), install O-rings and lubricate with clean transmission fluid. Push the new TCC PCS (7) into the control valve assembly with the wiring harness connector in the correct position. 4. Install the TCC PCS retainer and bolt. Tighten the bolt to 12 Nm (108 inch lbs.). 5. For a new SS 1 (5), install O-rings (3 and 4) and lubricate with clean transmission fluid. Push the new SS 1 (5) into the control valve assembly with the wiring harness connector in the correct position. Install the solenoid retainer (2). 6. Install the oil pan and transmission internal oil filter. Refer to Oil Pan Replacement. 7. Important: The FastLearn (adapt) procedure must be performed. This can be done in one step using a scan tool. If this procedure is not done, the TCM's adaptive values will be at the settings that it learned for the old components. and will be in slow adaptive mode. Under these conditions, it would take an unacceptably long time for the adaptive values to converge to levels suitable for the new transmission. Perform the FastLearn procedure. Refer to FastLearn Procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission Torque Converter Clutch Solenoid: Locations 4L60-E/4L65-E/4L70-E - Automatic Transmission Automatic Transmission Electronic Component Views Electronic Components 36 - Vehicle Speed Sensor (VSS) - Model Dependent 66 - Torque Converter Clutch (TCC) Solenoid Valve 69 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 108 - Secondary Fluid Pump Assembly - M33 Model Only 367a - 1-2 Shift Solenoid (SS) Valve 367b - 2-3 Shift Solenoid (SS) Valve 377 - Pressure Control (PC) Solenoid Valve 394 - 3-2 Shift Solenoid (SS) Valve Assembly 396 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Locations > 4L60-E/4L65-E/4L70-E - Automatic Transmission > Page 11370 Torque Converter Clutch Solenoid: Locations 4L80-E/4L85-E - Automatic Transmission Automatic Transmission Electronic Component Views Automatic Transmission Internal Electronic Components (4L80-E) 22a - Automatic Transmission (AT) Input (Shaft) Speed Sensor (ISS) Assembly 22b - Automatic Transmission (AT) Output (Shaft) Speed Sensor (OSS) Assembly 34 - Automatic Transmission Fluid Temperature (TFT) Sensor 40 - Automatic Transmission Fluid Pressure (TFP) Manual Valve Position Switch 311 - 2-3 Shift Solenoid (SS) Valve Assembly 313 - 1-2 Shift Solenoid (SS) Valve Assembly 320 - Pressure Control (PC) Solenoid Valve Assembly 323 - Torque Converter Clutch Pulse Width Modulation (TCC PWM) Solenoid Valve Assembly Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions Torque Converter Clutch Solenoid: Diagram Information and Instructions Electrical Symbols Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11373 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11374 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11375 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11376 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11377 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11378 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11379 Vehicle Zoning Strategy TRUCK ZONING Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11380 All grounds, in-line connectors, pass-through grommets, and splices have identifying numbers that corresponds to where they are located in the vehicle. The table explains the numbering system. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11381 Torque Converter Clutch Solenoid: Diagnostic Aids Arrows and Symbols Arrows and Symbols This service manual uses various symbols in order to describe different service operations. Arrows and Symbols 1 - Front of Vehicle 2 - View Detail 2 - View Detail 3 - Ambient Air Mixed With Another Gas or Indicate Temperature Change 4 - Motion or Direction 5 - View Angle 6 - Dimension (1:2) 7 Ambient/Clean Air Flow or Cool Air Flow 8 - Lubrication Point - Oil or Fluid 9 - Task Related 10 Sectioning (1:3) 11 - Gas Other Than Ambient Air or Hot Air Flow 12 - Lubrication Point - Grease or Jelly 13 - Multidirectional Arrow Basic Knowledge Required GENERAL ELECTRICAL DIAGNOSIS BASIC KNOWLEDGE REQUIRED Without a basic knowledge of electricity, it will be difficult to use the diagnostic procedures contained in the service data. You should understand the basic theory of electricity, and know the meaning of voltage (volts), current (amps), and resistance (ohms). You should also be able to read and understand a wiring diagram, as well as understand what happens in a circuit with an open or a shorted wire. Conversion - English/Metric US English/Metric Conversion Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11382 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11383 Decimal and Metric Equivalents Decimal and Metric Equivalents Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11384 Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11385 Checking Aftermarket Accessories CHECKING AFTERMARKET ACCESSORIES Do not connect aftermarket accessories into the following circuits: - CAUTION: Refer to SIR Caution. SIR circuits, all such circuits are indicated on circuit diagrams with the SIR symbol. - NOTE: Refer to OBD II Symbol Description Notice. OBD II circuits, all such circuits are indicated on circuit diagrams with the OBD II symbol. Always check for aftermarket accessories (non-OEM) as the first step in diagnosing electrical problems. If the vehicle is so equipped, disconnect the system to verify that these add-on accessories are not the cause of the problems. Possible causes of vehicle problems related to aftermarket accessories include: - Power feeds connected to points other than the battery - Antenna location - Transceiver wiring located too close to vehicle electronic modules or wiring - Poor shielding or poor connectors on antenna feed line - Check for recent service bulletins detailing installation guidelines for aftermarket accessories. Circuit Protection - Circuit Breakers CIRCUIT PROTECTION - CIRCUIT BREAKERS A circuit breaker is a protective device that is designed to open the circuit when a current load is in excess of the rated breaker capacity. If there is a short or other type of overload condition in the circuit, the excessive current will open the circuit between the circuit breaker terminals. Two types of circuit breakers are used. Circuit Breaker This type opens when excessive current passes through it for a period of time. It closes again after a few seconds, and if the cause of the high current is Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11386 still present, it will open again. The circuit breaker will continue to cycle open and closed until the condition causing the high current is removed. Positive Temperature Coefficient (PTC) Circuit Breaker This type greatly increases its resistance when excessive current passes through it. The excessive current heats the PTC device, as the device heats its resistance increases. Eventually the resistance gets so high that the circuit is effectively open. Unlike the ordinary circuit breaker the PTC unit will not reset until the circuit is opened, by removing the voltage from its terminals. Once the voltage is removed the circuit breaker will re-close within a second or 2. Circuit Protection - Fuses CIRCUIT PROTECTION - FUSES Fuse Types The fuse is the most common method of an automotive wiring circuit protection. Whenever there is an excessive amount of current flowing through a circuit the fusible element will melt and create an open or incomplete circuit. Fuses are an one time protection device and must be replaced each time the circuit is overloaded. To determine if a fuse is open, remove the suspected fuse and examine the element in the fuse for an open (2). If not broken (1), also check for continuity using a DMM or a continuity tester. If the element is open or continuity is suspect, replace the fuse with one of equal current rating. Circuit Protection - Fusible Links CIRCUIT PROTECTION - FUSIBLE LINKS Fusible link is wire designed to melt and break continuity when excessive current is applied. It is often located between or near the battery and starter or electrical center. Use a continuity tester or a DMM at each end of the wire containing the fusible link in order to determine if it is broken. If broken, it Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11387 must be replaced with fusible link of the same gage size. Repairing a Fusible Link IMPORTANT: Fusible links cut longer than 225 mm (approximately 9 in) will not provide sufficient overload protection. Refer to Splicing Copper Wire Using Splice Clips. Inducing Intermittent Fault Conditions INDUCING INTERMITTENT FAULT CONDITIONS TOOLS REQUIRED J 25070 Heat Gun Many intermittent open or shorted circuits are affected by harness/connector movement that is caused by vibration, engine torque, bumps/rough pavement, etc. In order to duplicate the customer's concern, it may be necessary to manipulate the wiring harness if the malfunction appears to be vibration related. Manipulation of a circuit can consist of a wide variety of actions, including: Wiggling the harness - Disconnecting a connector and reconnecting - Stressing the mechanical connection of a connector - Pulling on the harness or wire in order to identify a separation/break inside the insulation - Relocating a harness or wires All these actions should be performed with some goal in mind. For instance, with a scan tool connected, wiggling the wires may uncover a faulty input to the control module. The snapshot option would be appropriate here. Refer to Scan Tool Snapshot Procedure. Another option is, with the component commanded ON and OFF by the scan tool, move related connectors and wiring and observe the component operation. With the engine running, move related connectors and wiring while monitoring engine operation. If harness or connector movement affects the data displayed, component/system operation, or engine operation, inspect and repair the harness/connections as necessary. You may need to load the vehicle in order to duplicate the concern. This may require the use of weights, floorjacks, jackstands, frame machines, etc. In these cases you are attempting to duplicate the concern by manipulating the suspension or frame. This method is useful in finding harnesses that are too short and their connectors pull apart enough to cause a poor connection. A DMM set to Peak Min/Max mode and connected to the suspect circuit while testing can yield desirable results. Refer to Testing for Electrical Intermittents. Certainly, using the senses of sight, smell, and hearing while manipulating the circuit can provide good results as well. There may be instances where circuit manipulation alone will not meet the required criteria for the fault condition to appear. In such cases it may be necessary to expose the suspect circuit to other conditions while manipulating the harness. Such conditions would include high moisture conditions, along with exceptionally high or low temperatures. The following discusses how to expose the circuit to these kinds of conditions. SALT WATER SPRAY Some compounds possess the ability to conduct electricity when dissolved in water such as ordinary salt. By mixing table salt with water in sufficient quantities, you can enhance the conductive properties of water so that any circuit which may be sensitive to moisture will more readily fail when liberally sprayed with this mixture. Mixing 0.35L (12 oz) of water with approximately 1 tablespoon of salt will yield a salt solution of 5 percent. Fill a normal spray bottle with this mixture. This mixture is sufficient to enhance the water's own conductivity. This may cause the circuit to fail more easily when sprayed. Once the mixture is completed, spray the suspect area liberally with the solution. Then, while monitoring either a scan tool or DMM, manipulate the harness as discussed previously. HIGH TEMPERATURE CONDITIONS If the complaint tends to be heat related, you can simulate the condition using the J 25070. Using the heat gun, you can heat up the suspected area or component. Manipulate the harnesses under high temperature conditions while monitoring the scan tool or DMM to locate the fault condition. The high temperature condition may be achieved simply by test driving the vehicle at normal operating temperature. If a heat gun is unavailable, consider this option to enhance your diagnosis. This option does not allow for the same control, however. LOW TEMPERATURE CONDITIONS Depending on the nature of the fault condition, placing a fan in front of the vehicle while the vehicle is in the shade can have the desired effect. If this is unsuccessful, use local cooling treatments such as ice or a venturi type nozzle (one that provides hot or cold air). This type of tool is capable of producing air stream temperatures down to -18°C (0°F) from one end and +71°C (160°F) from the other. This is ideally suited for localized cooling needs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11388 Once the vehicle, component, or harness has been sufficiently cooled, manipulate the harness or components in an effort to duplicate the concern. DUPLICATING FAILURE CONDITIONS - If none of the previous tests are successful, attempt to duplicate and/or capture the failure conditions. - Freeze Frame/Failure Records data, where applicable, contains the conditions that were present when the DTC set. 1. Review and record Freeze Frame/Failure Records data. 2. Clear the DTCs using the scan tool. 3. Turn the key to OFF and wait 15 seconds. 4. Operate the vehicle under the same conditions that were noted in Freeze Frame/Failure Records data, as closely as possible. The vehicle must also be operating within the Conditions for Running the DTC. Refer to Conditions for Running the DTC in the supporting text if a DTC is being diagnosed. 5. Monitor DTC Status for the DTC being tested. The scan tool will indicate Ran, when the enabling conditions have been satisfied long enough for the DTC to run. The scan tool will also indicate whether the DTC passed or failed. - An alternate method is to drive the vehicle with the DMM connected to a suspected circuit. An abnormal reading on the DMM when the concern occurs, may help you locate the concern. Measuring Frequency MEASURING FREQUENCY NOTE: Refer to Test Probe Notice. The following procedure determines the frequency of a signal. IMPORTANT: Connecting the DMM to the circuit before pressing the Hz button will allow the DMM to autorange to an appropriate range. 1. Apply power to the circuit. 2. Set the rotary dial of the DMM to the V (AC) position. 3. Connect the positive lead of the DMM to the circuit to be tested. 4. Connect the negative lead of the DMM to a good ground. 5. Press the Hz button on the DMM. 6. The DMM will display the frequency measured. Measuring Voltage MEASURING VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure measures the voltage at a selected point in a circuit. 1. Disconnect the electrical harness connector for the circuit being tested, if necessary. 2. Enable the circuit and/or system being tested. Use the following methods: - Turn ON the ignition, with the engine OFF. - Turn ON the engine. - Turn ON the circuit and/or system with a scan tool in Output Controls. - Turn ON the switch for the circuit and/or system being tested. 3. Select the V (AC) or V (DC) position on the DMM. 4. Connect the positive lead of the DMM to the point of the circuit to be tested. 5. Connect the negative lead of the DMM to a good ground. 6. The DMM displays the voltage measured at that point. Measuring Voltage Drop MEASURING VOLTAGE DROP NOTE: Refer to Test Probe Notice. The following procedure determines the difference in voltage potential between 2 points. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11389 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one point of the circuit to be tested. 3. Connect the negative lead of the DMM to the other point of the circuit. 4. Operate the circuit. 5. The DMM displays the difference in voltage between the 2 points. Probing Electrical Connectors PROBING ELECTRICAL CONNECTORS IMPORTANT: Always be sure to reinstall the connector position assurance (CPA) and terminal position assurance (TPA) when reconnecting connectors or replacing terminals. Frontprobe Disconnect the connector and probe the terminals from the mating side (front) of the connector. NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. IMPORTANT: When probing female 0.64 terminals, it is important to use the correct adapter. There have been some revisions to the test adapter for 0.64 terminals. The proper adapter for 0.64 terminals is the J 35616-64B which has a gold terminal and a black wire between the base and tip. Failure to use the proper test adapter may result in damage to the terminal being tested and improper diagnosis. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11390 Refer to the table as a guide in selecting the correct test adapter for front probing connectors. Backprobe IMPORTANT: Do not disconnect the connector and probe the terminals from the harness side (back) of the connector. - Backprobe connector terminals only when specifically required in diagnostic procedures. - Do not backprobe a sealed (Weather Pack(R)) connector, less than a 280 series Metri-Pack connector, a Micro-Pack connector, or a flat wire (dock and lock) connector. - Backprobing can be a source of damage to connector terminals. Use care in order to avoid deforming the terminal, either by forcing the test probe too far into the cavity or by using too large of a test probe. - After backprobing any connector, inspect for terminal damage. If terminal damage is suspected, test for proper terminal contact. Scan Tool Snapshot Procedure SCAN TOOL SNAPSHOT PROCEDURE Snapshot is a recording of what a control module on the vehicle was receiving for information while the snapshot is being made. A snapshot may be used to analyze the data during the time a vehicle condition is current. This allows you to concentrate on making the condition occur, rather than trying to view all the data in anticipation of the fault. The snapshot contains information around a trigger point that you have determined. Only a single data list Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11391 may be recorded in each snapshot. The Scan Tool has the ability to store 2 snapshots. The ability to record 2 snapshots allows comparing hot versus cold and good versus bad vehicle scenarios. The snapshots are stored on a first-in, first-out basis. If a third snapshot is taken, the first snapshot stored in the memory will be lost. Snapshots can be 1 of 2 types: - Snapshot - taken from the Snapshot menu choice - Quick Snapshot - taken from the Data Display soft key choice, does not contain DTC information When a snapshot is taken, it is recorded on the memory card and may contain as many as 1200 frames of information. Because the snapshot is recorded onto the memory card, snapshots are not lost if the Scan Tool is powered down. The snapshot replay screen has a plot soft key that can be of great value for intermittent diagnosis. The snapshot plot feature can help you to quickly determine if a sensor is outside of its expected values by plotting 3 parameters at a time. The data will be displayed both graphically and numerically showing the minimum and maximum values for all frames captured. This is helpful, especially if the fault occurs only once and does not set a DTC. Testing for a Short to Voltage TESTING FOR A SHORT TO VOLTAGE NOTE: Refer to Test Probe Notice. The following procedure tests for a short to voltage in a circuit. 1. Set the rotary dial of the DMM to the V (DC) position. 2. Connect the positive lead of the DMM to one end of the circuit to be tested. 3. Connect the negative lead of the DMM to a good ground. 4. Turn ON the ignition and operate all accessories. 5. If the voltage measured is greater than 1 volt, there is a short to voltage in the circuit. Testing for Continuity TESTING FOR CONTINUITY NOTE: Refer to Test Probe Notice. The following procedures verify good continuity in a circuit. With a DMM 1. Set the rotary dial of the DMM to the ohm position. 2. Disconnect the power feed (i.e. fuse, control module) from the suspect circuit. 3. Disconnect the load. 4. Press the MIN MAX button on the DMM. 5. Connect one lead of the DMM to one end of the circuit to be tested. 6. Connect the other lead of the DMM to the other end of the circuit. 7. If the DMM displays low or no resistance and a tone is heard, the circuit has good continuity. With a Test Lamp IMPORTANT: Only use the test lamp procedure on low impedance power and ground circuits. 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to one end of the circuit to be tested. 4. Connect the other lead of the test lamp to battery positive voltage. 5. Connect the other end of the circuit to ground. 6. If the test lamp illuminates (full intensity), then the circuit has good continuity. Testing for Electrical Intermittents TESTING FOR ELECTRICAL INTERMITTENTS TOOLS REQUIRED J 39200 Digital Multimeter Perform the following procedures while wiggling the harness from side to side. Continue this at convenient points (about 6 inches apart) while watching the test equipment. Testing for Short to Ground Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11392 - Testing for Continuity - Testing for a Short to Voltage If the fault is not identified, perform the procedure below using the MIN MAX feature on the J 39200 DMM. This feature allows you to manipulate the circuit without having to watch the J 39200. The J 39200 will generate an audible tone when a change is detected. IMPORTANT: The J 39200 must be used in order to perform the following procedure since the J 39200 can monitor current, resistance or voltage while recording the minimum (MIN), and maximum (MAX) values measured. 1. Connect the J 39200 to both sides of a suspected connector (still connected), or from one end of a suspected circuit to the other. 2. Set the rotary dial of the J 39200 to the V (AC) or V (DC) position. 3. Press the range button of the J 39200 in order to select the desired voltage range. 4. Press the MIN MAX button of the J 39200. The J 39200 displays 100 ms RECORD and emits an audible tone (beep). IMPORTANT: The 100 ms RECORD mode is the length of time an input must stay at a new value in order to record the full change. 5. Simulate the condition that is potentially causing the intermittent connection, either by wiggling the connections or the wiring, test driving, or performing other operations. Refer to Inducing Intermittent Fault Conditions. 6. Listen for the audible Min Max Alert which indicates that a new minimum or maximum value has been recorded. 7. Press the MIN MAX button once in order to display the MAX value and note the value. 8. Press the MIN MAX button again in order to display the MIN value and note the value. 9. Determine the difference between the MIN and MAX values. - If the variation between the recorded MIN and MAX voltage values is 1 volt or greater an intermittent open or high resistance condition exists. Repair the condition as necessary. - If the variation between the recorded MIN and MAX voltage values is less than 1 volt an intermittent open or high resistance condition does not exist. Testing for Intermittent Conditions and Poor Connections TESTING FOR INTERMITTENT CONDITIONS AND POOR CONNECTIONS TOOLS REQUIRED - J 35616 GM-Approved Terminal Test Kit - J-38125 Terminal Repair Kit When the condition is not currently present, but is indicated in DTC history, the cause may be intermittent. An intermittent may also be the cause when there is a customer complaint, but the symptom cannot be duplicated. Refer to the Symptom Table of the system that is suspect of causing the condition before trying to locate an intermittent condition. Most intermittent conditions are caused by faulty electrical connections or wiring. Inspect for the following items: Wiring broken inside the insulation - Poor connection between the male and female terminal at a connector - Poor terminal to wire connection-Some conditions which fall under this description are poor crimps, poor solder joints, crimping over the wire insulation rather than the wire itself, and corrosion in the wire to terminal contact area, etc. - Pierced or damaged insulation can allow moisture to enter the wiring causing corrosion. The conductor can corrode inside the insulation, with little visible evidence. Look for swollen and stiff sections of wire in the suspect circuits. - Wiring which has been pinched, cut, or its insulation rubbed through may cause an intermittent open or short as the bare area touches other wiring or parts of the vehicle. - Wiring that comes in contact with hot or exhaust components - Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required, in order to verify the customer concern. - Refer to Testing for Electrical Intermittents for test procedures to detect intermittent open, high resistance, short to ground, and short to voltage conditions. - Refer to Scan Tool Snapshot Procedure for advanced intermittent diagnosis and Vehicle Data Recorder operation. TESTING FOR PROPER TERMINAL CONTACT It is important to test terminal contact at the component and any inline connectors before replacing a suspect component. Mating terminals must be inspected to ensure good terminal contact. A poor connection between the male and female terminal at a connector may be the result of contamination or deformation. Contamination may be caused by the connector halves being improperly connected. A missing or damaged connector seal, damage to the connector itself, or exposing the terminals to moisture and dirt can also cause contamination. Contamination, usually in the underhood or underbody connectors, leads to terminal corrosion, causing an open circuit or intermittently open circuit. Deformation is caused by probing the mating side of a connector terminal without the proper adapter. Always use the J 35616 when probing connectors. Other causes of terminal deformation are improperly joining the connector halves, or repeatedly separating and joining the connector halves. Deformation, usually to the female terminal contact tang, can result in poor terminal contact causing an open or intermittently open circuit. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11393 TESTING FOR PROPER TERMINAL CONTACT IN BUSSED ELECTRICAL CENTERS (BEC) It is very important to use the correct test adapter when testing for proper terminal contact of fuses and relays in a bussed electrical center (BEC). Use J-35616-35 to test for proper terminal contact. Failure to use J-35616-35 can result in improper diagnosis of the BEC. Follow the procedure below in order to test terminal contact: 1. Separate the connector halves. 2. Visually inspect the connector halves for contamination. Contamination may result in a white or green build-up within the connector body or between terminals. This causes high terminal resistance, intermittent contact, or an open circuit. An underhood or underbody connector that shows signs of contamination should be replaced in its entirety: terminals, seals, and connector body. 3. Using an equivalent male terminal from the J-38125 , test that the retention force is significantly different between a good terminal and a suspect terminal. Replace the female terminal in question. FLAT WIRE (DOCK AND LOCK) CONNECTORS There are no serviceable parts for flat wire (dock and lock) connectors on the harness side or the component side. Follow the procedure below in order to test terminal contact: 1. Remove the component in question. 2. Visually inspect each side of the connector for signs of contamination. Avoid touching either side of the connector as oil from your skin may be a source of contamination as well. 3. Visually inspect the terminal bearing surfaces of the flat wire circuits for splits, cracks, or other imperfections that could cause poor terminal contact. Visually inspect the component side connector to ensure that all of the terminals are uniform and free of damage or deformation. 4. Insert the appropriate adapter from the on the flat wire harness connector in order to test the circuit in question. CONTROL MODULE/COMPONENT VOLTAGE AND GROUNDS Poor voltage or ground connections can cause widely varying symptoms. Test all control module voltage supply circuits. Many vehicles have multiple circuits supplying voltage to a control module. Other components in the system may have separate voltage supply circuits that may also need to be tested. Inspect connections at the module/component connectors, fuses, and any intermediate connections between the voltage source and the module/component. A test lamp or a DMM may indicate that voltage is present, but neither tests the ability of the circuit to carry sufficient current. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Power Distribution Schematics. - Test all control module ground and system ground circuits. The control module may have multiple ground circuits. Other components in the system may have separate grounds that may also need to be tested. Inspect grounds for clean and tight connections at the grounding point. Inspect the connections at the component and in splice packs, where applicable. Ensure that the circuit can carry the current necessary to operate the component. Refer to Circuit Testing and Ground Distribution Schematics. TEMPERATURE SENSITIVITY - An intermittent condition may occur when a component/connection reaches normal operating temperature. The condition may occur only when the component/connection is cold, or only when the component/connection is hot. - Freeze Frame, Failure Records, Snapshot, or Vehicle Data Recorder data may help with this type of intermittent condition, where applicable. - If the intermittent is related to heat, review the data for a relationship with the following: High ambient temperatures - Underhood/engine generated heat - Circuit generated heat due to a poor connection, or high electrical load - Higher than normal load conditions, towing, etc. - If the intermittent is related to cold, review the data for the following: Low ambient temperatures-In extremely low temperatures, ice may form in a connection or component. Inspect for water intrusion. - The condition only occurs on a cold start. - The condition goes away when the vehicle warms up. - Information from the customer may help to determine if the trouble follows a pattern that is temperature related. - If temperature is suspected of causing an intermittent fault condition, attempt to duplicate the condition. Refer to Inducing Intermittent Fault Conditions in order to duplicate the conditions required. ELECTROMAGNETIC INTERFERENCE (EMI) AND ELECTRICAL NOISE Some electrical components/circuits are sensitive to electromagnetic interference (EMI) or other types of electrical noise. Inspect for the following conditions: A misrouted harness that is too close to high voltage/high current devices such as secondary ignition components, motors, generator etc-These components may induce electrical noise on a circuit that could interfere with normal circuit operation. - Electrical system interference caused by a malfunctioning relay, or a control module driven solenoid or switch-These conditions can cause a sharp electrical surge. Normally, the condition will occur when the malfunctioning component is operating. - Improper installation of non-factory or aftermarket add on accessories such as lights, 2-way radios, amplifiers, electric motors, remote starters, alarm systems, cell phones, etc-These accessories may lead to interference while in use, but do not fail when the accessories are not in use. - Test for an open diode across the A/C compressor clutch and for other open diodes. Some relays may contain a clamping diode. - The generator may be allowing AC noise into the electrical system. INCORRECT CONTROL MODULE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11394 - There are only a few situations where reprogramming a control module is appropriate: - A new service control module is installed. - A control module from another vehicle is installed. - Revised software/calibration files have been released for this vehicle. IMPORTANT: DO NOT re-program the control module with the SAME software/calibration files that are already present in the control module. This is not an effective repair for any type of concern. Verify that the control module contains the correct software/calibration. If incorrect programming is found, reprogram the control module with the most current software/calibration. Refer to Control Module References for replacement, setup, and programming. See: Testing and Inspection/Programming and Relearning Testing for Short to Ground TESTING FOR SHORT TO GROUND NOTE: Refer to Test Probe Notice. The following procedures test for a short to ground in a circuit. With a DMM 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Set the rotary dial of the DMM to the ohm position. 4. Connect one lead of the DMM to one end of the circuit to be tested. 5. Connect the other lead of the DMM to a good ground. 6. If the DMM does NOT display infinite resistance (OL), there is a short to ground in the circuit. With a Test Lamp 1. Remove the power feed (i.e. fuse, control module) from the suspect circuit. 2. Disconnect the load. 3. Connect one lead of the test lamp to battery positive voltage. 4. Connect the other lead of the test lamp to one end of the circuit to be tested. 5. If the test lamp illuminates, there is a short to ground in the circuit. Fuse Powering Several Loads 1. Review the system schematic and locate the fuse that is open. 2. Open the first connector or switch leading from the fuse to each load. 3. Connect a DMM across the fuse terminals (be sure that the fuse is powered). - When the DMM displays voltage the short is in the wiring leading to the first connector or switch. - If the DMM does not display voltage. 4. Close each connector or switch until the DMM displays voltage in order to find which circuit is shorted. Troubleshooting with a Digital Multimeter TROUBLESHOOTING WITH A DIGITAL MULTIMETER NOTE: Refer to Test Probe Notice. IMPORTANT: Circuits which include any solid state control modules, such as the powertrain control module (PCM), should only be tested with a 10 megohm or higher impedance digital multimeter such as the J 39200 Digital Multimeter (DMM). The J 39200 instruction data is a good source of information and should be read thoroughly upon receipt of the DMM as well as kept on hand for future reference. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The ohmmeter function on a DMM shows how much resistance exists between 2 points along a circuit. Low resistance in a circuit means good continuity. IMPORTANT: Disconnect the power feed from the suspect circuit when measuring resistance with a DMM. This prevents incorrect readings. DMMs apply such a small voltage to measure resistance that the presence of voltages can upset a resistance reading. Diodes and solid state components in a circuit can cause a DMM to display a false reading. To find out if a component is affecting a measurement take a reading once, then reverse the leads and take a second reading. If the readings differ the solid state component is affecting the measurement. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11395 Following are examples of the various methods of connecting the DMM to the circuit to be tested: - Backprobe both ends of the connector and either hold the leads in place while manipulating the connector or tape the leads to the harness for continuous monitoring while you perform other operations or test driving. Refer to Probing Electrical Connectors. - Disconnect the harness at both ends of the suspected circuit where it connects either to a component or to other harnesses. - If the system that is being diagnosed has a specified pinout or breakout box, it may be used in order to simplify connecting the DMM to the circuit or for testing multiple circuits quickly. Troubleshooting With A Test Lamp TROUBLESHOOTING WITH A TEST LAMP TOOLS REQUIRED J 35616-200 Test Light - Probe Kit NOTE: Refer to Test Probe Notice. A test lamp can simply and quickly test a low impedance circuit for voltage. A DMM should be used instead of a test lamp in order to test for voltage in high impedance circuits. While a test lamp shows whether voltage is present if the impedance is low enough, a DMM indicates how much voltage is present. In other words, if there is not enough current, the test lamp will not illuminate even though voltage is present. The J 35616-200 is Micro-Pack compatible and comprised of a 12-volt light bulb with an attached pair of leads. To properly operate this tool use the following procedures. When testing for voltage: 1. Attach one lead to ground. 2. Touch the other lead to various points along the circuit where voltage should be present. 3. When the bulb illuminates, there is voltage at the point being tested. When testing for ground: 1. Attach one lead to battery positive voltage. 2. Touch the other lead to various points along the circuit where ground should be present. 3. When the bulb illuminates, there is ground at the point being tested. Using Connector Test Adapters USING CONNECTOR TEST ADAPTERS NOTE: Do not insert test equipment probes (DVOM etc.) into any connector or fuse block terminal. The diameter of the test probes will deform most terminals. A deformed terminal will cause a poor connection, which will result in a system failure. Always use the J-35616 GM-Approved Terminal Test Kit in order to front probe terminals. Do not use paper clips or other substitutes to probe terminals. When using the J-35616 GM-Approved Terminal Test Kit, ensure the terminal test adapter choice is the correct size for the connector terminal. Do not visually choose the terminal test adapter because some connector terminal cavities may appear larger than the actual terminal in the cavity. Using a larger terminal test adapter will damage the terminal. Refer to the J-35616 GM-Approved Terminal Test Kit label on the inside of the J-35616 GM-Approved Terminal Test Kit for the correct adapter along with the connector end view for terminal size. Using Fused Jumper Wires USING FUSED JUMPER WIRES TOOLS REQUIRED J 36169-A Fused Jumper Wire IMPORTANT: A fused jumper may not protect solid state components from being damaged. The J 36169-A includes small clamp connectors that provide adaptation to most connectors without damage. This fused jumper wire is supplied with a 20-A fuse which may not be suitable for some circuits. Do not use a fuse with a higher rating than the fuse that protects the circuit being tested. AFL/ECP Connectors AFL/EPC CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11396 1. For connectors with a bolt in the dress cover, turn the bolt counterclockwise to remove the connector from the component. 2. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11397 3. Slide the lever lock forward while pressing down on the lever lock release tab. View showing depressing of the lever lock release tab. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11398 View of connector in released position. 4. Disconnect the connector from the component. 5. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Release the rear lower half of the wiredress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11399 Release the tabs that are holding the wiredress cover to the connector body. 6. Remove the nose piece by inserting a small flat-blade tool into the slots on both ends of the connector body. Gently pry the nose piece out of the connector. J 38125-216 can also be used to remove the nose piece. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by lifting the terminal retaining tabs on the inside of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11400 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (BSK) BOSCH CONNECTORS (BSK) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Remove the wire dress cover, if necessary. 3. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 4. Insert the J 38125-561 tool into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 5. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11401 TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Bosch Connectors (ECM) BOSCH CONNECTORS (ECM) TOOLS REQUIRED J-38125Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the assist lever on the top of the connector. Move the assist lever to the forward position. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11402 3. Locate the dress cover locking tabs at the corners of the connector. Use a small flat-blade tool to release the locking tabs and remove the dress cover. 4. The terminal positive assurance (TPA) is located in the front of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11403 5. Use a small flat-blade tool to remove TPA from the connector. 6. Use the J 38125-213 or the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE IMPORTANT: Ensure that the dress cover and connector body are both in the released position before reassembling. Failure to do so may cause damage to the connector and component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11404 Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Bosch Connectors (0.64) BOSCH CONNECTORS (0.64) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the lever lock on the wire dress cover. While pressing the lock, pull the lever over and past the lock until the lever is at the end of its travel. 2. Disconnect the connector from the component. 3. Pull the rubber boot that covers the wires back to expose the end of the connector dress cover. 4. Place the connector locking lever in the center of the connector. 5. Locate the 2 dress cover locking tabs that are on the wire end of the connector. Insert a small flat-bladed tool between the cover and connector body and pry up. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11405 6. Locate the 2 dress cover locking tabs located on the opposite side of the connector. Insert a small flat-bladed tool between the cover at the connector end and pry up. 7. Remove the dress cover. 8. Cut the tie wrap on the wire bundle. 9. Remove the terminal position assurance (TPA) by inserting a small flat-bladed tool into the small slot in the end of the slider and pushing on the TPA until it comes out of the connector. When the TPA exits the opposite side of the connector, gasp the TPA and pull it completely out of the connector. 10. Push the wire side of the terminal that is being removed toward the connector and hold it in position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11406 11. Insert the J 38125-560 (GM P/N 15314260) into the 2 triangular cavities on each side of the terminal at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 12. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. TERMINAL REPLACEMENT PROCEDURE 1. Prior to installation the terminal must be aligned so the (1) coding lugs align with the (2) coding grooves on the connector. 2. Once the terminal is aligned, slide the terminal into the cavity until the retainer has engaged in the cavity of the connector. 3. Slide the TPA in the connector body and seat it using a small flat bladed tool. The TPA is seated when it is flush with the contact housing. 4. Secure the wires to the connector body using a tie wrap and replace the dress cover and grommet. Bosch Connectors (2.8 JPT) BOSCH CONNECTORS (2.8 JPT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Pull out the slider on the connector position assurance (CPA) until it is at the end of its travel. 2. Disconnect the connector from the component. 3. Remove the wire dress cover, if necessary. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-557 (GM P/N 12122378) into the 2 cavities on each side of the terminal at the front of the connector and push until you feel the Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11407 tool disengage the terminal retainers. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 6. Carefully pull the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Connector Position Assurance Locks CONNECTOR POSITION ASSURANCE LOCKS The connector position assurance (CPA) is a small plastic insert that fits through the locking tabs of the connector. CPAs are used in various connectors throughout the vehicle. CPAs are also used in all SIR system electrical connectors. The CPA ensures that the connector halves cannot vibrate apart. You must have the CPA in place in order to ensure good contact between the mating terminals, of the connector. Delphi Connectors (Micro .64) DELPHI CONNECTORS (MICRO .64) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from Micro .64 connectors. 1. Locate the lever lock on the wire dress cover. While depressing the lock, pull the lever over and past the lock. The lever lock may be located on the top or sides of the wire dress cover. View of a typical Micro 64 connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11408 Depress the lock and pull the lever over and past the lock. View of the connector when released from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11409 View of another type of Micro 64 connector. Depress the locks that are located on both sides of the wiredress cover and pull the lever over and past the locks. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11410 View of the connector when released from the component. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the front of the connector. Using a small flat-blade tool push down on one of the locking tabs and pull the cover up until the dress cover releases. Repeat this procedure for the other locking tab. 4. Once the front 2 locks are unlocked, lift the front of the dress cover and pull it forward. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Remove the TPA by inserting a small flat-blade tool into the small slot on the TPA and pushing down until the TPA releases. Gently pry the TPA out of the connector. 6. IMPORTANT: Be careful not to angle or rock the J 38125-21 tool when inserting it into the connector or the tool may break. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11411 Insert the J 38125-21 (GM P/N 15381651-2) tool into the round canal between the terminals cavities at the front of the connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Follow the steps below in order to repair Micro 64 connector terminals. The Micro 64 connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-64 (M jaw) was developed to crimp Micro 64 terminals. The J 38125-64 crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. The J 38125-64 crimping tool is also designed to crimp both the wire and the insulation at the same time. After the terminal is removed from the connector perform the following procedure in order to repair Micro 64 terminals. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. 1. Cut the wire as close to the damaged terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11412 4. Insert terminal into the appropriate terminal holder until it hits bottom and stops. The correct terminal holder is determined by the wire size. Also ensure that the terminals wings are pointing towards the former on the tool and the release locator. 5. Insert the stripped cable into the terminal. Insulation should be visible on both sides of the terminal insulation wings. 6. Compress the handles until the ratchet automatically releases. 7. Place the terminal into the appropriate cavity and assemble the connector. Delphi Connectors (Micro-Pack 100W) DELPHI CONNECTORS (MICRO-PACK 100W) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE There are 2 styles of Micro-Pack 100W connectors. These connectors are very similar but use different terminals and have some minor physical differences also. The first connector design of the Micro-Pack 100W (1) has a white connector interface that holds the terminals. The second design of the Micro-Pack 100W (2) has a gray interface to hold the terminals. Also, the first design has terminal cavities that are further apart (3 mm centerline) and offset from the other row of terminal cavities in the connector. The second design has terminals cavities that are closer together (2.54 mm centerline) and aligned vertically. One other way to identify the second design is the thin strip of material that runs along the outside of the cavities. IMPORTANT: There are 2 styles of Micro-Pack 100W terminals which are very similar. Ensure that you have the correct terminal before crimping the new terminal to the wire. The first design connector uses the longer terminal (1) that has a raised area in front of the recess in the terminal. The second design connector uses the shorter terminal without the raised area. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11413 Follow the steps below in order to remove terminals from Micro-Pack 100W connectors. Some Micro-Pack 100W connector disassembly procedures will vary. Use this procedure as a guide. 1. Disconnect the connector from the component. 2. Locate the nose piece locking tabs that are positioned on the side of the connector nose piece. The connector nose piece acts as a terminal positive assurance (TPA) and may be referred to as such. 3. Use a small flat-blade tool to push in one of the locking tabs while gently pulling on the same side of the nose piece. 4. Repeat the procedure for the other locking tab and remove the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11414 5. Remove the wire dress cover. The following is a general procedure for wire dress cover removal. Use this procedure as a guide, some dress cover removal procedures may vary. 6. Use fingers to squeeze the 2 locking legs of the cover. 7. Apply pressure and gently rock the cover until one locking leg is unseated. 8. Continue to apply pressure and rock the cover until the second locking leg is unseated. Repeat procedure for the other side of the dress cover and remove the cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11415 9. Use J 38125-12A (GM P/N 12094429) to gently lift the terminal retaining tab while gently pulling the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 10. If the terminal is severely bent or damaged, it may be possible on some connectors to push the wire out of the front of the connector instead of pulling it through. This will prevent damage to the internal seals of the connector. Once the terminal is pushed out of the connector, cut the wire as close to the terminal as possible and pull the wire through the connector. TERMINAL REPAIR PROCEDURE The Micro-Pack 100W connectors have small terminals that are difficult to handle and hold when crimping. In order to aid the technician when crimping these terminals, a new crimping tool was developed. The J 38125-101 (W jaw) crimping tool was developed to crimp Micro-Pack 100W terminals. The J 38125-101 (W jaw) crimping tool has a terminal holding block that will hold the terminal in place while the terminal is being crimped. After the terminal is removed from the connector perform the following procedure in order to repair Micro-Pack 100 terminals. 1. Cut the wire as close to the terminal as possible. 2. IMPORTANT: After cutting the damaged terminal from the wire, determine if the remaining wire is long enough to reach the connector without putting a strain on the wire. If the wire is not long enough, splice a small length of the same gage wire to the existing wire, then crimp the new terminal on the added wire. Strip 5 mm (3/16 in) of insulation from the wire. 3. Depress the spring loaded locator of the J 38125-101 (W jaw) crimping tool until the terminal holder is completely visible. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11416 4. Insert the terminal into the crimp tool until the core wings are flush with the anvil on the crimp tool. Be sure that the wings are pointed toward the crimp tool former and release the spring locator. The locator will hold the terminal in place. Inspect the alignment of the terminal wings with the crimp tool former. If the terminal wings are wider than the crimp tool former, remove the terminal and bend the terminal wings in slightly. 5. Place stripped wire into terminal. 6. Crimp the new terminal to the wire. If a jam occurs, press the emergency release to open applicator. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire perform the following procedure in order to replace Micro-Pack 100 terminals. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the Terminal Removal Procedure. Delphi Connectors (Pull To Seat) DELPHI CONNECTORS (PULL TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL If the terminal is visibly damaged or is suspected of having a faulty connection, the terminal should be replaced. Follow the steps below in order to repair pull-to-seat connectors: 1. Remove the connector position assurance (CPA) device and/or the secondary lock. 2. Disconnect the connector from the component or separate the connectors for in-line connectors. 3. Remove the terminal position assurance (TPA) device. 4. Insert the proper pick or removal tool into the front of the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11417 5. IMPORTANT: On connectors with more than one terminal the service loop may not be large enough to remove the terminal and crimp on a new one. If the terminal wire does not have a large enough service loop for removal, cut the wire 5 cm (2 in) behind the connector before removal. Grasp the wire at the back of the connector body and gently push the terminal out the front of the connector body. TERMINAL REPAIR 1. If the wire needed to be cut in order to remove the terminal, gently push a small length of the same size wire through the back of the connector cavity until there is enough wire exposed in order to crimp on a new terminal. If the wire was not cut, cut the existing wire as close to the old terminal as possible. 2. Strip 5 mm (3/16 in) of insulation from the wire. 3. Crimp a new terminal to the wire. 4. Solder the crimp with rosin core solder. TERMINAL INSTALLATION 1. Align the terminal and pull the wire from the back of the connector in order to seat the terminal. 2. If necessary, cut the new wire to proper length and splice with existing circuit. Refer to Splicing Copper Wire Using Splice Sleeves to. 3. If the connector is outside of the passenger compartment, apply dielectric grease to the connector. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Push To Seat) DELPHI CONNECTORS (PUSH TO SEAT) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL Follow the steps below in order to repair push to seat connectors. 1. Remove the terminal position assurance (TPA) device, the connector position assurance (CPA) device, and/or the secondary lock. 2. Separate the connector halves (1). 3. Use the proper pick or removal tool (1) in order to release the terminal. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 4. Gently pull the cable and the terminal (2) out of the back of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11418 5. Re-form the locking device if you are going to reuse the terminal (1). 6. To repair the terminal, refer to Terminal Repair. TERMINAL REPAIR 1. Slip the cable seal away from the terminal. 2. Cut the wire as close to the terminal as possible. 3. Slip a new cable seal onto the wire. 4. Strip 5 mm (3/16 in) of insulation from the wire. 5. Crimp a new terminal to the wire. 6. Solder the crimp with rosin core solder. 7. Slide the cable seal toward the terminal. 8. Crimp the cable seal and the insulation. 9. If the connector is outside of the passenger compartment, apply grease to the connector. REINSTALLING TERMINAL 1. In order to reuse a terminal or lead assembly, refer to Wiring Repairs. 2. Ensure that the cable seal is kept on the terminal side of the splice. 3. Insert the lead from the back until it catches. 4. Install the TPA, CPA, and/or the secondary locks. Delphi Connectors (Weather Pack) DELPHI CONNECTORS (WEATHER PACK) TOOLS REQUIRED J-38125 Terminal Repair Kit The following is the proper procedure for the repair of Weather Pack(R) Connectors. 1. Separate the connector halves (1). 2. Open the secondary lock. A secondary lock aids in terminal retention and is usually molded to the connector (1). 3. Grasp the wire and push the terminal to the forward most position. Hold the wire in this position. 4. Insert the Weather Pack(R) terminal removal tool J 38125-10A (GM P/N 12014012-1) into the front (mating end) of the connector cavity until it rests on the cavity shoulder (1). 5. Gently pull on the wire to remove the terminal through the back of the connector (2). IMPORTANT: Never use force to remove a terminal from a connector. 6. Inspect the terminal and connector for damage. Repair as necessary. 7. Reform the lock tang (2) and reset terminal in connector body. 8. Close secondary locks and join connector halves. 9. Verify that circuit is complete and working satisfactorily. 10. Perform system check. Delphi Connectors (12 Way) Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11419 DELPHI CONNECTORS (12-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Remove the connector position assurance (CPA) and slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11420 Release the lower wiredress cover locking tab. Release the upper wiredress cover locking tab. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11421 Remove the TPA by inserting a small flat-blade tool into the locking tabs on both sides of the TPA. Gently pry the TPA out of the connector. 6. Remove the nose piece by inserting a small flat-blade tool into the locking tabs on both sides of the nose piece. Gently pry the nose piece out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11422 Insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. FCI Connectors FCI CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11423 REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Slide the lever lock forward while pressing down on the lever lock release tab. The release tab is located on the top of the wiredress cover. View of connector in released position. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs at the corners of the dress cover. Use a small flat-blade tool to release the locking tabs and remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11424 4. Use a small flat-blade tool to slide the terminal position assurance (TPA) up one notch on both ends of the connector. The TPA is located underneath the wire dress cover. For the larger terminals insert the J 38125-556 (GM P/N 12093647) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11425 5. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Kostal Connectors KOSTAL CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11426 View of typical connector. View of connector in released position. 1. Locate the assist lever at the back of the connector. Move the assist lever to the rear position. 2. Disconnect the connector from the component. 3. Use a small flat-blade tool to remove the dress cover. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11427 4. Slide the dress cover forward and off of the connector. 5. The terminal positive assurance (TPA) is located in the front and rear of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11428 6. Use a small flat-blade tool to remove the rear TPA from the connector. 7. IMPORTANT: The front TPA cannot be removed from the connector. Only move it to the release point. Use a small flat-blade tool to move the front TPA to the release position. 8. Use the J 38125-213 or the J 38125-560 (GM P/N 15314260) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 9. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Molex Connectors Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11429 MOLEX CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the top of the wire dress cover. Slide the CPA forward. 2. Slide the lever lock forward while pressing down on the lever lock release tab. 3. The lever should be in the full forward position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11430 4. Disconnect the connector from the component. 5. Remove the dress cover by using a flat bladed tool to release the dress cover locking tabs and lift up on the dress cover. 6. Cut the tie wrap that holds the wires to the connector body. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11431 7. Use a small flat-blade tool to pry one side of the nose piece up to the pre-stage position. When the nose piece is in the pre-staged position, the nose piece will be raised above the connector body the length of the step in the nose piece. 8. Use a small flat-blade tool to pry the other side of the piece to the pre-stage position. If the nose piece is higher than the first step in the nose piece, gently push down on the nose piece until it meets with resistance from the connector body, you should feel the nose piece click into position. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11432 9. Insert the J 38125-213 into the small terminal release hole on the nose piece and gently pull on the back of the wire. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Insure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Repairing Connector Terminals REPAIRING CONNECTOR TERMINALS TOOLS REQUIRED J-38125 Terminal Repair Kit Use the following repair procedures in order to repair the following: Push to Seat terminals - Pull to Seat terminals Some terminals do not require all of the steps shown. Skip the steps that do not apply for your terminal repair. The J-38125 contains further information. 1. Cut off the terminal between the core and the insulation crimp. Minimize any wire loss.For cable seal terminals, remove the seal. 2. Apply the correct cable seal per gage size of the wire, if used.Slide the seal back along the wire in order to enable insulation removal. 3. Remove the insulation. 4. For sealed terminals only, align the seal with the end of the cable insulation. 5. Position the strip in the terminal.For sealed terminals, position the strip and seal in the terminal. 6. Hand crimp the core wings. 7. Hand crimp the insulation wings.For sealed terminals, hand crimp the insulation wings around the seal and the cable. 8. Solder all of the hand crimp terminals excepting Micro-Pack 100.64 size. Soldering Micro-Pack 100 World terminals may damage the terminal. Sumitomo Connectors SUMITOMO CONNECTORS TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11433 TERMINAL REMOVAL PROCEDURE 1. Slide the lever lock forward while pressing down on the lever lock release tab. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11434 3. Remove the dress cover by using a flat-blade tool to release the connector locking tabs and pulling off the dress cover. 4. Relieve the tension on the nose piece retainers by inserting J-38125-12A (12094429) into the single retainer slot on the end of the nose piece and gently prying out the locking tab. Repeat the process for both of the nose piece locking tabs on the opposite side of the nose piece. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11435 5. Once the nose piece retainers are relaxed, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should raise slightly. 6. On the opposite side of the nose piece, use the J-38125-552 (15313892) to pull up the nose piece by hooking the tool under the nose piece and pulling up. The nose piece should release completely. If the nose piece does not come off, repeat the procedure on the opposite side. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11436 7. The illustration above identifies the entry canal where the terminal release tool will be inserted, and the terminal cavity. - Terminal (1) - Entry Canal (2) 8. Insert the J-38125-553 (15315247) tool into the entry canal and pry up on the terminal retainer. The terminal retainer is a small plastic piece on the top of the terminal. The terminal retainer must be held up while the terminal is pulled out of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11437 9. The illustration shows a cutaway view of the connector to aid the technician in releasing the terminal retainer. 10. See the release tool cross reference in the Reference Guide of the J-38125 Terminal Repair Kit to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Refer to the terminal crimping procedure in the Reference Guide of the J-38125 Terminal Repair Kit. TERMINAL REPLACEMENT PROCEDURE After the terminal is crimped to the wire, perform the following procedure in order to replace the terminal. 1. Slide the new terminal into the correct cavity at the back of the connector. 2. Push the terminal into the connector until it locks into place. The new terminal should be even with the other terminals. Ensure that the terminal is locked in place by gently pulling on the wire. 3. To assemble the connector, reverse the connector disassembly procedure. Terminal Position Assurance Locks TERMINAL POSITION ASSURANCE LOCKS The terminal position assurance (TPA) insert resembles the plastic combs used in the control module connectors. The TPA keeps the terminal securely seated in the connector body. Do not remove the TPA from the connector body unless you remove a terminal for replacement. Tyco/Amp Connectors (CM 42-Way) TYCO/AMP CONNECTORS (CM 42-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE 1. Locate the connector position assurance (CPA) on the connector body and pull the CPA out. The CPA is on the wire harness side of connector. 2. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11438 3. Use a small flat-bladed tool to gently pry off the dress cover by inserting the tool under the cover opposite the harness side and prying up. 4. Remove the cover. 5. Using a small flat-bladed tool, push on the side of the nose piece retainer while pushing the nose piece forward with your thumb. This will release the terminal position assurance (TPA). 6. Insert the J 38125-12A (GM P/N 12094429) into the corresponding terminal release cavity. The release cavities are the 2 center rows of cavities on one half of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11439 7. Pressing the J 38125-12A (GM P/N 12094429) tool in the release cavity of the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and crimper in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (Door Module) TYCO/AMP CONNECTORS (DOOR MODULE) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Side view of connector. View of top of connector. 1. Locate the assist lever and lock on the top of the connector. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11440 2. While depressing the lock, pull the lever over and past the lock. 3. Disconnect the connector from the component. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11441 4. Locate the dress cover locking tabs at the rear of the connector. Use a small flat-blade tool to release the locking tabs. Repeat this procedure for the other locking tab. 5. Once the locking tabs are unlocked, slide the inner connector out of the rear of the connector housing. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11442 6. Use the J 38125-12A (GM P/N 12094429) tool to release the terminals by pressing on the tang. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Tyco/AMP Connectors (Sensor) TYCO/AMP CONNECTORS (SENSOR) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert the J 38125-11A (GM P/N 12094430) tool into the cavity on the lower right hand face of the connector until the terminal release tang access panel slides over. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11443 3. Ensure that the terminal release tang access panel is in the correct location to access the terminals. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-11A (GM P/N 12094430) into the terminal release tang access slot located behind the access panel of the connector and press down on the terminal while carefully pulling the terminal out of the connector. Always remember never use force when pulling a terminal out of a connector. If the terminal is difficult to remove, repeat the entire procedure. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Tyco/AMP Connectors (0.25 Cap) TYCO/AMP CONNECTORS (0.25 CAP) TOOLS REQUIRED J-38125 Terminal Repair Kit TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component by pressing down on the connector position assurance (CPA). Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11444 2. Use a small flat-bladed tool to release the terminal position assurance (TPA) by inserting the tool in the small recess on the side of the connector and pushing up until the TPA releases from the connector body. The TPA should raise just slightly. Do not try to remove the TPA. IMPORTANT: The TPA on this connector cannot be removed unless the terminals are removed first. The TPA will come out of the connector body, but only slightly. When the TPA is slightly raised the terminals can be removed. Using excessive force to remove the TPA with the terminals still in the connector will damage the connector. 3. Repeat the process for the other side of the connector. 4. Ensure that the TPA is in the proper position to remove the terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11445 5. While pushing the terminal forward, insert the J 38125-24 in the release cavity above the terminal you are removing, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. TERMINAL REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125 in order to replace the terminal. Tyco/AMP Connectors (43-Way) TYCO/AMP CONNECTORS (43-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit REMOVAL PROCEDURE Follow the steps below in order to remove terminals from the connector. 1. Locate the lever lock on the wire dress cover. Slide the lever lock away from the connector body. 2. Disconnect the connector from the component. 3. Locate the dress cover locking tabs on the dress cover of the connector. Using a small flat-blade tool release all of the locking tabs. 4. Once the locks are unlocked, lift the dress cover off. 5. IMPORTANT: Always use care when removing a terminal position assurance (TPA) in order to avoid damaging it. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11446 Release the TPA by inserting a small flat-blade tool into the blue locking tabs on both ends of the connector. Gently slide the TPA up to the released position on both ends. 6. For the larger terminals insert the J 38125-13A (GM P/N 12031876-1) tool to release the terminals by inserting the tool into the terminal release cavity. For the smaller terminals insert the J 38125-12A (GM P/N 12094429) tool to release the terminals by inserting the tool into the terminal release cavity. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used. View of the release tool being used for the larger terminals. Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11447 View of the release tool being used for the larger terminals. View of the release tool being used for the smaller terminals. 7. While holding the removal tool in place, gently pull the wire out of the back of the connector. Always remember never use force when pulling a terminal out of a connector. REPAIR PROCEDURE Use the appropriate terminal and follow the instructions in the J-38125. Location of the terminal in the repair tray and the proper crimp tool can be found in the appropriate connector end view. Yazaki Connectors (2-Way) YAZAKI CONNECTORS (2-WAY) TOOLS REQUIRED J-38125 Terminal Repair Kit Chevrolet Silverado Classic 1500 2wd Workshop Manual (V8-6.0L (2007)) Chevrolet Workshop Manuals > Powertrain Management > Transmission Control Systems > Actuators and Solenoids Transmission and Drivetrain > Actuators and Solenoids - A/T > Torque Converter Clutch Solenoid, A/T > Component Information > Diagrams > Diagram Information and Instructions > Page 11448 TERMINAL REMOVAL PROCEDURE 1. Disconnect the connector from the component. 2. Insert a small flat-blade tool in the slot below the front loaded terminal position assurance (TPA) and pry up. 3. Remove the TPA by pulling it out of the connector. 4. Push the wire side of the terminal that is being removed toward the connector and hold it in position. 5. Insert the J 38125-553 (GM P/N 15315247) on a slight upward angle into the cavity below the terminal to be removed. Ensure that the pointed on the end of the tool is facing the bottom of the terminal and it stays in contact with the terminal until it stops on the plastic terminal retainer. See the release tool cross reference in the Reference Guide of the J-38125 to ensure that the correct release tool is used.